
 
 
 

High Performance Biosequence Database Scanning on Reconfigurable Platforms 
 
 

Timothy Oliver and Bertil Schmidt 
School of Computer Engineering 

Nanyang Technological University 
Singapore 639798 

Tim.oliver@pmail.ntu.edu.sg, asbschmidt@ntu.edu.sg  
 

 
Abstract 

 
Molecular biologists frequently compare an unknown 
protein sequence with a set of other known sequences (a 
database scan) to detect functional similarities. Even 
though efficient dynamic programming algorithms exist 
for the problem, the required scanning time is still very 
high, and because of the rapid database growth finding 
fast solutions is of highest importance to research in this 
area. In this paper we present a new approach to 
biosequence database scanning on reconfigurable 
hardware platforms to gain high performance at low cost. 
To derive an efficient mapping onto this type of 
architecture, we have designed fine-grained parallel 
processing elements (PEs). Since our solution is based on 
reconfigurable hardware, we can design PEs that are 
tailored towards the parameters of a query. This results 
in an implementation with significant runtime savings on 
a standard off-the-shelf FPGA. 
 
 
1. Introduction 
 

Scanning protein sequence databases is a common and 
often repeated task in molecular biology. The need for 
speeding up this treatment comes from the exponential 
growth of the biosequence banks: every year their size 
scaled by a factor 1.5 to 2. The scan operation consists of 
finding similarities between a particular query sequence 
and all sequences of a bank. This operation allows 
biologists to point out sequences sharing common 
subsequences. From a biological point of view, it leads to 
identify similar functionality. 

Comparison algorithms whose complexities are 
quadratic with respect to the length of the sequences 
detect similarities between the query sequence and a 
subject sequence. One frequently used approach to speed 
up this time consuming operation is to introduce 
heuristics in the search algorithm [1]. The main drawback 

of this solution is that the more time efficient the 
heuristics, the worse is the quality of the result [17].  

Another approach to get high quality results in a short 
time is to use parallel processing. There are two basic 
methods of mapping the scanning of sequence databases 
to a parallel processor: one is based on the systolisation of 
the sequence comparison algorithm, the other is based on 
the distribution of the computation of pairwise 
comparisons. Systolic array architectures have been 
proven as a good candidate structure for the first 
approach [5,12,18], while more expensive 
supercomputers and networks of workstations are suitable 
architectures for the second [7,15].  

Special-purpose systolic arrays provide the best 
area/performance ratio by means of running a particular 
algorithm [14]. Their disadvantage is the lack of 
flexibility with respect to the implementation of different 
algorithms. Several massively parallel SIMD 
architectures have been developed in order to combine 
the speed and simplicity of systolic arrays with flexible 
programmability [3,6,19]. However, because of the high 
production costs involved, there are many cases where 
announced second-generation architectures have not been 
produced. The strategy to high performance sequence 
database scanning used in this paper is based on FPGAs. 
FPGAs provide a flexible platform for fine-grained 
parallel computing based on reconfigurable hardware. 
Since there is a large overall FPGA market, this approach 
has a relatively small price/unit and also facilitates 
upgrading to FPGAs based on state-of-the-art technology. 
Taking full advantage of hardware reconfiguration, we 
present PE designs that are tailored towards particular 
query parameters. We will show how this leads to a high-
speed implementation on a Virtex II XC2V6000. The 
implementation is also portable to other FPGAs. 

This paper is organised as follows. In Section 2, we 
introduce the basic sequence comparison algorithm for 
database scanning.  Section 3 highlights previous work in 
parallel sequence comparison. The parallel algorithm and 



its mapping onto a reconfigurable platform are explained 
in Section 4. The performance is evaluated and compared 
to previous implementations in Section 5. Section 6 
concludes the paper. 
 
2. Sequence Comparison Algorithm 
 

Surprising relationships have been discovered between 
protein sequences that have little overall similarity but in 
which similar subsequences can be found. In that sense, 
the identification of similar subsequences is probably the 
most useful and practical method for comparing two 
sequences. The Smith-Waterman algorithm [20] finds the 
most similar subsequences of two sequences (the local 
alignment) by dynamic programming. 

The algorithm compares two sequences by computing 
a distance that represents the minimal cost of 
transforming one segment into another. Two elementary 
operations are used: substitution and insertion/deletion 
(also called a gap operation). Through series of such 
elementary operations, any segments can be transformed 
into any other segment. The smallest number of 
operations required to change one segment into another 
can be taken into as the measure of the distance between 
the segments. 

 ∅ A T C T C G T A T G A T G

∅ 0 0 0 0 0 0 0 0 0 0 0 0 0 0
G 0 0 0 0 0 0 2 1 0 0 2 1 0 2
T 0 0 2 1 2 1 1 4 3 2 1 1 3 2
C 0 0 1 4 3 4 3 3 3 2 1 0 2 2
T 0 0 2 3 6 5 4 5 4 5 4 3 2 1
A 0 2 2 2 5 5 4 4 7 6 5 6 5 4
T 0 1 4 3 4 4 4 6 5 9 8 7 8 7
C 0 0 3 6 5 6 5 5 5 8 8 7 7 7
A 0 2 2 5 5 5 5 4 7 7 7 10 9 8
C 0 1 1 4 4 7 6 5 6 6 6 9 9 8

Figure 1. Example of the Smith-Waterman 
algorithm to compute the local alignment 
between two DNA sequences ATCTCGTATGATG 
and GTCTATCAC. The matrix H(i,j) is shown for 
the linear gap cost α = 1, and a substitution cost 
of +2 if the characters are identical and −1 
otherwise. From the highest score (+10 in the 
example), a traceback procedure delivers the 
corresponding alignment (shaded cells), the two 
subsequences TCGTATGA and TCTATCA. 

Consider two strings S1 and S2 of length l1 and l2. To 
identify common subsequences, the Smith-Waterman 
algorithm computes the similarity H(i,j) of two sequences 
ending at position i and j of the two sequences S1 and S2. 
The computation of H(i,j) is given by the following 
recurrences: 

H(i,j) = max{0, E(i,j), F(i,j), H(i−1,j−1)+Sbt(S1i,S2j)}, 
for 1≤i≤l1, 1≤j≤l2. 

E(i,j) = max{H(i,j−1)−α, E(i,j−1)−β}, 0≤i≤l1, 1≤j≤l2.  
F(i,j) = max{H(i−1,j)−α, F(i−1,j)−β}, 1≤i≤l1, 0≤j≤l2. 

where Sbt is a character substitution cost table. 
Initialization of these values are given by H(i,0) = E(i,0) 
= H(0,j) = F(0,j) = 0 for 0≤i≤l1, 0≤j≤l2. Multiple gap 
costs are taken into account as follows: α is the cost of 
the first gap; β is the cost of the following gaps. This type 
of gap cost is known as affine gap penalty. Some 
applications also use a linear gap penalty, i.e. α = β. For 
linear gap penalties the above recurrence relations can be 
simplified to: 

H(i,j) = max{0, H(i,j−1)−α, H(i−1,j)−α, H(i−1,j−1) + 
Sbt(S1i,S2j)}, for 1≤i≤l1, 1≤j≤l2. 

H(i,0) = H(0,j) = 0 for 0≤i≤l1, 0≤j≤l2. 

Each position of the matrix H is a similarity value. The 
two segments of S1 and S2 producing this value can be 
determined by a backtracking procedure. Fig. 1 illustrates 
an example. 

3. Previous Work 

A number of parallel architectures have been 
developed for sequence analysis. In addition to 
architectures specifically designed for sequence analysis, 
existing programmable sequential and parallel 
architectures have been used for solving sequence 
alignment problems. 

Special-purpose hardware implementations can 
provide the fastest means of running a particular 
algorithm with very high PE density. However, they are 
limited to one single algorithm, and thus cannot supply 
the flexibility necessary to run a variety of algorithms 
required analyzing DNA, RNA, and proteins. P-NAC was 
the first such machine and computed edit distance over a 
four-character alphabet [16]. More recent examples, 
better tuned to the needs of computational biology, 
include BioScan, BISP, and SAMBA [5,12,18]. 

An approach presented in [19] is based on instruction 
systolic arrays (ISAs). ISAs combine the speed and 
simplicity of systolic arrays with flexible 
programmability. Several other approaches are based on 
the SIMD concept, e.g. MGAP [3], Kestrel [6], and 
Fuzion [19]. SIMD and ISA architectures are 
programmable and can be used for a wider range of 
applications, such as image processing and scientific 
computing. Since these architectures contain more 
general-purpose parallel processors, their PE density is 
less than the density of special-purpose ASICs. 
Nevertheless, SIMD solutions can still achieve significant 
runtime savings. However, the costs involved in 



designing and producing SIMD architectures are quite 
high. As a consequence, none of the above solutions has a 
successor generation, making upgrading impossible.  

Reconfigurable systems are based on programmable 
logic such as field-programmable gate arrays (FPGAs) or 
custom-designed arrays. They are generally slower and 
have lower PE densities than special-purpose 
architectures. They are flexible, but the configuration 
must be changed for each algorithm, which is generally 
more complicated than writing new code for a 
programmable architecture. Several solutions including 
Splash-2 [13] and Decipher [21] are based on FPGAs 
while PIM has its own reconfigurable design [8]. 
Solutions based on FPGAs have the additional advantage 
that they can be regularly upgraded to state-of-the-art-
technology. This makes FPGAs a very attractive 
alternative to special-purpose and SIMD architectures. 

Compared to the previously published FPGA 
solutions, we are using a new partitioning technique for 
varying query sequence lengths. The design presented in 
[22] is closest to our approach since it also uses a linear 
array of PEs on a reconfigurable platform. Unfortunately, 
it only allows for linear gap penalties and global 
alignment, while our implementation considers both 
linear and affine gap penalties and is able to compute 
local alignments. 

4. Mapping of Sequence Comparison on a 
Reconfigurable Platform 

The dynamic programming calculation presented in 
Section 2 can be efficiently mapped to a linear array of 
PEs. A common mapping is to assign one PE to each 
character of the query string, and then to shift a subject 
sequence systolically through the linear chain of PEs (see 
Figure 2). If M is the length of the first sequence and K is 
the length of the second, the comparison is performed in 
M+K−1 steps on M PEs, instead of M×K steps required on 
a sequential processor. In each step the computation for 
dynamic programming cells along a single diagonal in 
Figure 1 is performed in parallel. 

A C G T

�  T G A C

subject sequence
query sequence

 
Figure 2. Sequence comparison on a linear 
processor array: the query sequence is loaded 
into the processor array (one character per PE) 
and a subject sequence flows from left to right 
through the array. During each step, one 
elementary matrix computation is performed in 
each PE. 
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Figure 3. (a) Shows linear gap penalty PE. (b) 
Shows affine gap penalty PE. Data width (dw) is 
scaled to the required precision (usually dw=16 
is sufficient). The LUT depth is scaled to hold the 
required number of substitution table rows. 
Substitution width (sw) is scaled to 
accommodate the dynamic range required by the 
substitution table. Look-up address width (lw) is 
scaled in relation to the LUT depth. Each PE has 
local memory to store H(i,j−1), H(i−1,j) and 
H(i−1,j−1). The PE holds a column of the 
substitution table in its LUT. The look-up of 
Sbt(S1i,S2j) and addition to H(i−1,j−1) is done in 
one cycle. The score is calculated in the next 
cycle and passed to the next PE in the array. The 
PE keeps track of the maximum score computed 
so far and passes it to the next PE in the array. 
The affine gap penalty PE has additional storage 
for E(i,j−1) and F(i−1,j) and additional score 



computation circuitry. Additions are performed 
using saturation arithmetic. 

 
Taking advantage of having a reconfigurable hardware 

platform, we can tailor the individual PE design towards 
different gap penalty functions. This approach allows us 
to include only as much computational hardware and 
local memory as required. Figure 3 shows our designs for 
linear gap penalties and for affine gap penalties.  

Assuming, we are aligning the sequences A = 
a1a2�aM and B = b1b2�bK, on a linear processor array of 
size M with affine gap penalties, where A is the query 
sequence and B is a subject sequence of the database. As 
a preprocessing step, symbol ai, is loaded into PE i, 
1≤i≤M. After that the row of the substitution table 
corresponding to the respective character is loaded into 
each PE as well as the gap penalties α and β. B is then 
completely shifted through the array in M+K−1 steps as 
displayed in Figure 2. In iteration step k, 1≤k≤M+K−1, 
the values H(i,j), E(i,j), and F(i,j) for all i, j with 1≤i≤M, 
1≤j≤K and k=i+j−1 are computed in parallel in all PEs 
1≤i≤M, within a single clock cycle. For this calculation 
PE i, 2≤i≤M, receives the values H(i,j−1), E(i,j−1), and bj 
from its left neighbour i−1, while the values H(i−1,j−1), 
H(i−1,j), F(i−1,j), ai, α, β, and Sbt(ai,bj) are stored 
locally. PE 0 receives bj in steps j with 1≤j≤K. 
Computation for linear gap penalties is similar. 

Thus, it takes M+K−1 steps to compute the alignment 
score of the two sequences with the SW algorithm. 
However, notice that after the last character of B enters 
the array, the first character of a new subject sequence 
can be input for the next iteration step. Thus, all subject 
sequences of the database can be pipelined with only one 
step delay between two different sequences. 

Because of the very limited memory of each PE, only 
the highest score of matrix H is computed on the FPGA 
for each pairwise comparison. Ranking the compared 
sequences and reconstructing the alignments are carried 
out by the front end PC. Because this last operation is 
only performed for very few subject sequences, its 
computation time is negligible.  

Our PE design incorporates the maximum computation 
of the matrix H with only a constant time penalty as 
follows: After each iteration step all PEs compute a new 
value max by taking the maximum of the newly computed 
H-value and the old value of max from its left neighbor. 
After the last character of a subject sequence has been 
processed in PE M, the maximum of matrix H is stored in 
PE M, which is then written into the off-chip memory. 

So far we have assumed a processor array equal in 
size of the query sequence length. In practice, this rarely 
happens. Since the length of the sequences may vary 
(several thousands in some cases, however commonly the 
length is only in hundreds), the computation must be 

partitioned on the fixed size processor array. The query 
sequence is usually larger than the processor array. For 
sake of clarity we firstly assume a query sequence of 
length M and a processor array of size N where M is a 
multiple of N, i.e. M=k⋅N where k≥1 is an integer. A 
possible solution is to split the computation into k passes:  

The first N characters of the query sequence are 
loaded into the processor array together with the 
corresponding substitution table columns. The entire 
database then crosses the array; the H-value and E-value 
computed in PE N in each iteration step are output. In the 
next pass the following N characters of the query 
sequence are loaded into the array. The data stored 
previously is loaded together with the corresponding 
subject sequences and sent again through the processor 
array. The process is iterated until the end of the query 
sequence is reached. 

Unfortunately, this solution requires a large amount of 
off-chip memory (assuming 16-bit accuracy for 
intermediate results, four times database size bytes per 
pass are needed). The memory requirement can be 
reduced by factor p by splitting the database into p equal-
sized pieces and computing the alignment scores of all 
subject sequences within each piece. However, this 
approach also increases the loading time of substitution 
table columns by factor p.  

In order to eliminate this loading time we have slightly 
extended our PE design. Each PE now stores k columns 
of the substitution table instead of only one. Although this 
increases the area per PE a bit (see Section 5 for details), 
it allows for alignment of each database sequence with 
the complete query sequence without additional delays. It 
also reduced the required off-chip memory for storing 
intermediate results to four times longest database 
sequence size (again assuming 16-bit accuracy). Figure 4 
illustrates our solution. We can again take advantage of 
reconfiguration and design different configurations for 
different values of k. This allows us to load a particular 
configuration that is suited for a range of query sequence 
lengths.  

So far we have assumed that the query sequence 
length M is a multiple of the processor array size N, i.e. M 
= k⋅N where k is an integer. If this is not the case, we can 
still use our design by filling substitution table columns in 
the remaining PEs with zeros. 
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Figure 4. System Implementation: The linear array of PEs is encapsulated in psap_n. The database 
sequences are passed in from the host one by one through a FIFO to the S2 interface. The database 
sequences have been pre-converted to LUT addresses. For query lengths longer than the PE array the 
intermediate results are stored in a FIFO of width 2×dw + lw + 1 for affine gap penalty. For linear gap 
penalty the FIFO width is dw + lw + 1. The FIFO depth is sized to hold the longest sequence in the 
database. The database sequence is also stored in the FIFO. On each consecutive pass an LUT offset 
is added to address the next column of the substitution table stored within the PEs. The maximum 
score on each pass is compared with those from all other passes and the absolute maximum is 
returned to the host. 

Table 1. Achieved number of PEs and clock frequencies of our different designs on a Virtex II 
XC2V6000. The maximal query sequence lengths and performance (in Giga CUPS) for each design is 
also reported. 

Design Number of PEs Clock frequency Max. query length Performance 
Linear, k=3 252 55 MHz 756 13.9 GCUPS 
Linear, k=12 168 55 MHz 2016 9.2 GCUPS 
Affine, k=3 168 45 MHz 504 7.6 GCUPS 
Affine, k=12 126 45 MHz 1512 5.7 GCUPS 

 
5. Performance Evaluation 

We have described the PE design in Verilog and 
targeted it to the Xilinx Virtex II architecture. The size of 
a linear gap penalty PE is 3×10 CLBs and the size of an 
affine gap penalty PE is 6×8 CLBs. Figure 5 shows the 
layout plans. We have implemented a linear array of these 
PEs. Using a Virtex II XC2V6000 we are able to 
accommodate 252 linear PEs or 168 affine PEs using k=3. 
This allows handling of query sequence lengths up to 756 
and 504 respectively, which is sufficient in most cases 
(74% of sequences in Swiss-Prot are ≤ 500 [2]). For 
longer queries we have implemented a design with k = 12, 
which can accommodate 168 linear PEs or 126 affine 
PEs. The corresponding clock frequencies are 55 MHz 
for linear and 45 MHz for affine.  

A performance measure commonly used in 
computational biology is cell updates per second (CUPS). 
A CUPS represents the time for a complete computation 

of one entry of the matrix H, including all comparisons, 
additions and maxima computations. The CUPS 
performance of our implementations can be measured by 
multiplying number of PEs times clock frequency. Table 
1 summarizes our results. 

Since CUPS does not consider data transfer time, 
query length and initialization time, it is often a weak 
measure that does not reflect the behavior of the complete 
system. Therefore, we will use database scans for 
different query lengths in our evaluation. Table 2 reports 
the performance for scanning the Swiss-Prot protein 
databank (release 42.5, which contains 138�922 
sequences comprising 51�131�444 amino acids [2]) for 
query sequences of various lengths using our design on 
an RC2000 FPGA Mezzanine PCI-board with a Virtex II 
XC2V6000 from Celoxica [4]. 

 



(a) (b)

 

Figure 5. Layout plans for a single affine gap penalty PE (a) and for a single linear gap penalty PE (b) 
on the Virtex II architecture using k=3. 

 
Table 2. Performance evaluation for various query sequence length ranges of our implementation (for 
both linear and affine gap penalties) on a Virtex II XC2V6000 FPGA. Mean performance indicates the 
performance for the mean value of the corresponding query length range. 

Query length 
range 

Mean performance 
(linear) 

Query length 
range 

Mean performance 
(affine) 

1 � 252 5.6 GCUPS 1 � 168 3.2 GCUPS 
253 � 504 9.2 GCUPS 169 � 336 5.1 GCUPS 
505 � 756 10.6 GCUPS 337 � 504 5.8 GCUPS 
757 � 840 8.3 GCUPS 505 � 630 4.8 GCUPS 

841 � 1004 8.0 GCUPS 631 � 756 5.0 GCUPS 
 



For the same application an optimized C-program on a 
Pentium IV 1.6 GHz has a performance of 52 MCUPS for 
linear gap penalties and 40 MCUPS for affine gap 
penalties. Hence, our FPGA implementation achieves a 
speedup of approximately 170 for linear gap penalties and 
125 for affine gap penalties. 

For the comparison of different massively parallel 
machines, we have taken data from [6,12,19,22] for a 
database search with the SW algorithm for different query 
lengths. The Virtex II XC2V6000 is around ten times 
faster than the much larger 16K-PE MasPar. Kestrel, 
Fuzion and Systola 1024 are one-board SIMD solutions. 
Kestrel is 12 times slower [6], Fuzion is two to three 
times slower [19], and Systola is around 50 times slower 
[19] than our solution. All these boards reach a lower 
performance, because they have been built with older 
CMOS technology (Kestrel: 0.5-µm, Fuzion: 0.25-µm, 
Systola 1024: 1.0-µm) than the Virtex II XC2V6000 
(0.15-µm). Extrapolating to this technology both SIMD 
and reconfigurable FPGA platforms have approximately 
equal performance. However, the difference between both 
approaches is that FPGAs allow easy upgrading, e.g. 
targeting our design to a Virtex II XC2V8000 would 
improve the performance by around 30%.  

Our implementation is slower than the FPGA 
implementations described in [9,13,23]. However, all 
these designs only implement edit distance. This greatly 
simplifies the PE design and therefore achieves a higher 
PE density as well as a higher clock frequency. Although 
of theoretical interest, edit distance is not used in practice 
because it does not allow for different gap penalties and 
substitution tables. The FPGA implementation presented 
in [22] on a Virtex XCV2000E is around three times 
slower than our solution. Unfortunately, the design only 
implements global alignment. 

6. Conclusions 

In this paper we have demonstrated that reconfigurable 
hardware platforms provide a cost-effective solution to 
high performance biosequence database scanning. PE 
designs for linear gap penalties and for affine gap 
penalties have been presented. We have described a 
partitioning strategy to implement database scans with a 
fixed-size processor array and varying query sequence 
lengths. Using our PE design and our partitioning strategy 
we can achieve supercomputer performance at low cost 
on an off-the-shelf FPGA. 

The exponential growth of genomic databases 
demands even more powerful parallel solutions in the 
future. Because comparison and alignment algorithms 
that are favoured by biologists are not fixed, 

programmable parallel solutions are required to speed up 
these tasks. As an alternative to inflexible special-purpose 
systems, hard-to-upgrade SIMD systems, and expensive 
supercomputers, we advocate the use of reconfigurable 
hardware platforms based on FPGAs. 

Our future work includes extending our design to 
database scanning with hidden Markov Models using the 
Viterbi algorithm and making our implementation 
available as a special resource in a computational grid. 
We will be making the design more flexible at run-time. 
This requires the processors to be described using a 
language like Xilinx�s RTPCore [10] specification which, 
in turn, uses the JBits API [11]. 
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