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Abstract

A number of software packages are available for the
construction of comprehensive human genetic maps. In
this paper we parallelize the widely used package Gene-
hunter. We restrict our attention to only one function of the
package, namely the computations of Identity By Descent
(IBD) genes of a family. We use a master-slave model with
the Message Passing Interface (MPI) parallel environment.
Our tests are done on two different architectures: a net-
work of workstations and a shared memory multiprocessor.
A new and efficient strategy to classify the parallelization of
genetic linkage analysis programs results from our experi-
ments. The classification is based on values of parameters
which affect the complexity of the computation.

1 INTRODUCTION

Many genetics projects focus on the development of a
comprehensive human genetic map, which is used in the
identification of genes associated with genetic diseases.
Amongst the software packages resulting these projects,
Genehunter is one of the most popular. The package
provides a wide range of methods for performing linkage
and disequilibrium analysis. It has been implemented by
the Whitehead Institute for Biomedical Research and can
be downloaded from the site [2]:
www-genome.wi.mit.edu/ftp/distribution/software/genehunter

The program is based on a study done by Lander and
Green [5] that uses the Hidden Markov Models in calculat-
ing inheritance distribution. The package can rapidly ana-
lyze moderately sized families but fails to analyze an arbi-
trary sized instances, as calculations require large amounts
of memory and central processing unit (CPU) time.

Genehunter is the main tool for the researchers who are
particularly interested in using the genetic data of all mem-

bers of a family to identify the identical locus1 transmitted
by a common ancestor. This problem is known asIden-
tity by Descent (IBD)problem. To specify the genetic re-
semblance between two relatives2 affected by the same ge-
netic disease, researchers localize regions where this resem-
blance is frequent and then identify the disease genes in
founded regions. Polymorph loci used to quantify the ge-
netic resemblance are calledmarkersand a family is called
a pedigree. For a given pedigree, performing multipoint
linkage analysis with many markers, and taking account of
all pedigree information, is a fundamental task for studying
a complex inherited diseases. Thus, the computation time
scales linearly with thenumber of markers studied,
but exponentially with the number of non-founders. An in-
dividual is called non-founder if his parents are members
of the family—in other words, if his genes values on each
marker(genotypes) are known.

The time required for Hidden Markov Model reconstruc-
tion using this algorithm isO(m.24.n) wherem is the num-
ber of markers andn is the number of non-founders. Of
course, this scaling behaviour limits the size of pedigrees
that may be studied. The different approaches used to
reduce this complexity have been implemented in special
cases. For example, Krugklak et al. [4] focus on the possi-
bility of using a different pedigree size and reduce the com-
plexity toO(m.n.22.n).

Thus, the complexity is reduced toO(m.n.22.n−f ).
Time complexity is not the only consideration: the space
complexity for even moderate pedigree sizes, say2.n−f ∼
16 will consume all the memory on a typical workstation.
Finally, an additional improvement was done to give an al-
gorithm which scales asO(22.n−f log2(22.n−f )) [3].

Moreover, the computation time depends on three
other parameters: thenumber of families , the in-
formativity of the markers and thefamilial

1locus: small DNA sequence presenting several variations in a popula-
tion.

2relatives: two individuals with a common ancestor(e.g. two brothers
or an uncle and a nephew).



structure . Marker informativity denotes the average
amount of variant diversity in a population. If parents
present identical variants, genetic resemblance in sibs is
less accurate. The familial structure contains the number
of typed parents3 (also known as founders), the sibship size
(the number of children) and the number of generations.
When no genetic information is available for one or both
parents, this information has to be inferred from children. In
this case, missing information is better inferred from large
sibship. When parent missing information is poorly recon-
structed, we have to compute and summarize probabilities
from many possible alternatives.

Geneticists are always facing the limitations of the se-
quential Genehunter version which are memory allocation
and CPU time consumption. The goal of this paper is
to provide a new strategy for solving linkage packages
analysis based on a parallel program capable of manag-
ing these two main handicaps. Conant et al. [1] paral-
lelize the Genehunter by distributing markers among dif-
ferent processors—we call this algorithm the low-level par-
allel model. However, our high-level model is based on a
master-slave paradigm. A more general strategy would be
the possibility of selecting either one of these models, or
a combination of both. In the high-level model, the gran-
ularity of a task is one family. Thus, computing the IBD
of a family can be considered as independent task and it
is possible to run all the tasks on the available processors
using master-slave approach. In addition, the use of Mes-
sage Passing Interface provides source-code portability and
allows efficient implementation across a range of architec-
ture.

We begin with a brief introduction to the problem’s
mathematical basis in Section 2. Section 3 describes the
parallel implementation. Some experiments and computa-
tional results on parallel machines are presented in in Sec-
tion 4. In Section 5, we propose a general parallelisation
strategy for the linkage genetic analysis problem and finally
we conclude in Section 6.

2 Problem description

The solution of the IBD problem is based on the Hidden
Markov Model (HMM) and is presented in detail in [6, 8].
The purpose of this paper is not to alter the mathematical de-
tails of the problem but to parallelize the Genehunter pack-
age as it is. The interested reader may refer to the above
two papers for more information. To facilitate the compar-
ison between (HMM) and Genehunter characteristics and
parameters we give here only few definitions: the known
states of the genes represent the genotypes, the observed
states of the genes represent the phenotypes, the different

3type parent: parent with available genetic information. If parent is
dead, no genetic information is available.

time status represents the marker locus, the forward vari-
able represents the probabilities of ancestors, the backward
variable represents the probabilities of descendants and sib-
lings, and the different states are represented by the inheri-
tance vectors. In fact, the reconstruction of the hidden states
is the reconstruction of the genetic mapping. All the com-
putation is based on the probability of the unobserved states
that must be recalculated [8, 7].

We focus, in this paper, on the calculation of the IBD
probability. The complexity of this computation is based on
the length of the states of genes in a family. Suppose thatn
is the number of non-founders in a family. The conditional
inheritance distribution at any point along a chromosome is
obtained after the computation of the forward matrix and
the backward matrix of HMM with states of length equal
to 2 ∗ n in a family, and with number of possible states
equal to22∗n. If m is the number of markers, the algo-
rithm calculates the complete probability over all markers
forwards and backwards. From here, the IBD probability at
any point is equal to the summation of the conditional inher-
itance distribution over the state corresponding to inheriting
either zero, one or two common genes from the same ances-
tor (IBD = 0, 1, 2). See [10, 9] for more details.

3 Parallel implementation

Our algorithm is based on the master-slave paradigm. In
order to guarantee the scalability of the algorithm, a dy-
namic allocation method assigns tasks to processes at exe-
cution time. The advantage of this over static allocation is
that it tends to keep processes busier. Suppose we havep
processors and we runk processesP0, · · ·,Pk−1. P0 is the
master process and the others are slave processes.

The algorithm works as follows. The master process is
responsible for the distribution of the work to slaves. At the
beginning the master assigns a task to each slavePi where
0 < i < k. Then, it waits for a WORK-REQUEST message
from Pi, which means thatPi is idle. When the WORK-
REQUEST message arrives, the master identifies the slave
and checks if there are still any tasks to be executed. If so,
it will send a task to the slave asking for a work. Otherwise,
the master sends an END-SIGNAL requesting the slave to
stop working.

Each slave process works as follows. At the beginning it
sends a WORK-REQUEST message to the master and waits
for a new assignment or for an END-SIGNAL. If an END-
SIGNAL is received, the slave stops. Otherwise, it stores
the message data from the received message and starts the
execution of the task.

The master processor uses a simple data structure to
manage the load balancing: a vector of sizek, wherek is
the number of processes. At the beginning, tasks are allo-
cated sequentially based on processor identity. Then, when



a slave finishes one task the master sends the next task from
the task vector. Thus, the load balancing is done relative
to the number of families, and not to their size (and hence
computational complexity). Evaluating the performance of
our algorithm is shown in The section 4.

4 Experimental Results

We tested our program on three types of architec-
ture, including both distributed and shared memory plat-
forms(SMP): a network of workstations (NOW) Ultra
Sparcs10 with 128 Megabytes of memory, with 750MHz
and 100 Mbit Ethernet card and an MPI standard soft-
ware; a Sun Enterprise HPC 3500, which is an SMP system
with eight 400MHz UltraSPARC-II processors, 8 Gbyte
of shared memory and 72 Gbyte of disc space; and on
a SunFire 6800 SMP system, with twenty-four 750MHz
UltraSPARC-III processors, 48 Gbyte of shared memory
each, and 120 Gbyte of disc space. All three architectures
use Solaris as operating system.

The experiments on the network of workstations (NOW)
were launched on a maximum of 10 processors. On the
HPC 3500 we use up to 8 processors and on the SunFire
6800 we use up to 24 processors. In addition, the times
reported from our experiments are the average of ten execu-
tions.

In the case of the network of workstations we run in a
way such that each process is assigned to one processor, ex-
cept for the master whose work is only to assign processes
to processors. On the HPC 3500 we run in interactive mode,
sharing the resources with others users. The operating sys-
tem scheduler takes care of the process to processor assign-
ments. On the SunFire 6800, we run our jobs in batch mode,
which guarantees one process per processor.

On all platforms, all our tests (Table 1) are based on four
parameters. The first parameter is the number of families
in the input file to be analyzed; the second parameter is the
number of markers; the third parameter is the informativity
of the marker, and the last parameter is the familial struc-
ture. It is worth explaining the meaning of third parameter
and the fourth parameter. The human genome is composed
of 23 pairs of chromosomes. Each individual inherits one
chromosome of each pair from his mother and his father.
So, each individual has two versions of each markers (2
alleles). When these two versions present different vari-
ants(alleles), an individual is heterozygote for this marker.
Then 50% of homozygote means that each founder is ho-
mozygote for 50% of the markers. Therefore, it is half in-
formative.

For the fourth parameter consider a family composed of
two generations: the first generation consists of grandpar-
ents and parents and the second generations consist of par-
ents and children. For our tests both generations in a family

(noted as Fam.) are of the form two parents (noted as pa.)
and two children (noted as ch.).

The following figures are different variations of all pa-
rameters according to table 1 and their relatives efficiency.

Table 1 shows the values of these parameters for the eight
test cases (labelled A-H) used in our experiments.

Case #Fam. #Markers Informative Fam. structure
A 200 10 Yes 2 pa. & 5 ch.
B 400 10 Yes 2 pa. & 5 ch.
C 200 20 Yes 2 pa. & 5 ch.
D 200 10 Half 2 pa. & 5 ch.
E 200 10 Yes 0 pa. & 5 ch.
F 200 10 Yes 2 pa. & 3 ch.
G 200 10 Yes 0 pa. & 3 ch.
H 200 10 Yes 3 generations

Table 1. Parameter values for different test
cases.

Case NOW HPC 3500 SunFire 6800
A 75.01 54.431 28.568
B 143.76 109.989 57.545
C 132.38 101.072 50.367
D 78.07 56.274 29.598
E 69.27 54.217 28.22
F 12.74 9.201 4.58
G 13.16 9.65 4.73
H 23.56 17.33 9.14

Table 2. Execution times on one processor

Table 2 shows the sequential (one processor) execution
time for each test case on each of the three systems.
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Figure 1. Execution time of all test cases on
NOW.

Figure 1 shows the execution time of all the test cases
with on the network of workstations. The running time on



two processors is greater than on one processor, because the
master process is not doing any execution, but only assign-
ment of jobs and the second processor is the only worker
slave.
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Figure 2. Efficiency of all test cases on NOW.

Figure 2 shows the efficiency of all the test cases on the
network of workstations. The efficiency initially decreases
from one to two processor, but then tends to increase with
the number of processors. The small variations in the graph
result from running our tests in interactive mode on this ar-
chitecture.
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Figure 3. Execution time of all test cases on
HPC 3500.

Figure 3 shows the execution of all the test cases on the
HPC 3500. We notice that the overall shape of curves is
the same as on the NOW, and the enhancement of the exe-
cution time is due to the faster clock speed. For example,

the range of values for case B in Figure 1 is approximately
143 seconds on one processor to 30 seconds on 8 proces-
sors. However, the range of values for case B in Figure 3 is
approximately 109 seconds on one processor to 23 seconds
on 8 processors.
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Figure 4. Efficiency of all test cases on the
HPC 3500.

Figure 4 shows the efficiency of all test cases on the HPC
3500. Notice that when the number of markers increases
(Case C) the efficiency is highest. Also, when the parents’
genotype is unknown (Case E) the efficiency increases with
the number of processors.
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Figure 5. Execution time of all test cases on
the SunFire 6800.

Figure 5 shows the execution time of all test cases on
the SunFire 6800. The machine’s CPU speed noticeably
decreases the execution time of all test cases. The range of



execution times when the number of families is doubled is
higher (Case B) than the range when the number of marker
is doubled (Case C). In all figures, these two tasks are the
most time consuming.
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Figure 6. Efficiency of all test cases on the
SunFire 6800.

Figure 6 shows the efficiency of all test cases on the Sun-
Fire 6800. The decrease of efficiency when the number of
processor is greater than 8 is due to the high number of com-
munications between processors, relative to the small exe-
cution time (approximately 0.6 ms) for each task.
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Figure 7. Execution time for Case A on differ
ent architectures

Figure 7 shows the execution time for Case A on the
different architectures. The use of the SunFire 6800 is the
fastest up to 15 processors—even though the running time

increases when the number of processors is greater than 8, it
is still less the execution time on the other two architecture.
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Figure 8. The efficiency of Case A on all ar
chitectures.

Figure 8 shows the efficiency of Case A on different ar-
chitectures. The efficiency on the network of workstation is
the best and may be better still if we were to increase the
number of processors.

5 A general parallelisation strategy for Gene-
hunter

Our approach is based on the contents of the file contain
pedigrees, so that depending on certain variables we will se-
lect the most suitable model of parallelism. We distinguish
three models of parallelism: the first model, high-level par-
allelism, is the use of master slave model described above
which assigns families dynamically to processors. The sec-
ond model, low-level parallelism, is that developed by Co-
nant [1] which assigns different markers to different proces-
sors, and the third model is a combination of both models.

Suppose thatc1, c2, c3, c4 are respectively the values of
the four parameters: the first parameter is the number of
families in the input file to be analyzed; the second param-
eter is the number of markers; the third parameter is the
informativity of the marker, and the last parameter is the fa-
milial structure. Our approach is to select the appropriate
model of parallelism based on the values ofc1, c2, c3, c4.

Increasing the value ofc1 while keepingc2, c3, c4 fixed
(e.g. Case B) increases the complexity linearly. However,
the execution time could be reduced by sorting the families
in descending order of number of individuals before starting
the dynamic allocation. This would minimise the risk of
load imbalance resulting from assigning an expensive task



near the end of the computation. Thus, the first model is
the most suitable in case of large values of the parameter
number of families.

Increasing the value ofc2 while keepingc1, c3, c4 fixed
(e.g. Case B) also increases the complexity linearly. How-
ever in this case, the first model is not optimal. Since the
second model assigns markers to different processors, this
may be the most efficient in case of large values the param-
eternumber of markers.

The change of value of the parameterinformativity of
markers c3, has no influence on the running time (com-
pare Cases A and D). This parameter can be ignored when
determining the best parallel strategy.

Finally, the last parameterfamilial structure c4 is more
complicated. Execution time depends on the number of
members in a family as well as the number of generations.
As the same input file may contain different families of dif-
ferent sizes and generations, we propose that after sorting it
in descending order all families, we apply the second model
to sufficiently large families. Once family size decreases to
a point where this model is no longer efficient, we can apply
the first model to the remaining families. Thus a combined
model may be the most efficient in case of changes in the
parameterfamilial structure .

6 Conclusion and Future work

We have discussed in this paper the parallelization of the
popular Genehunter package used to solve the Identity by
Descent problem. We have been motivated for this study
by the huge time and memory consumption of the origi-
nal Genehunter program which is a real drawback for re-
searchers in the domain. Based on the observation that a
treatment of family can be considered as an independent
task, we have showed that the master-slave paradigm can be
successfully applied in order to reduce significantly the time
and memory requirements in cases where low-level paral-
lelism fails to be the optimal solution.

Future work includes the implementation of the com-
bined model on different platforms, and to use a classifi-
cation of parameters so that the appropriate model of par-
allelism can be selected. Finally, this result shows that the
linkage analysis problem can be a classification problem to
predict the optimized complexity based on the selection of
the appropriate model.

7 Acknowledgements

I would like to acknowledge the support of the Euro-
pean Commission through grant number HPRI-CT-1999-
00026 (the TRACS Programme at EPCC). Moreover, spe-
cial thanks to Dr. Mark Bull for providing valuable support
and input for accomplishing the aims of this research study.

References

[1] G. Conant, S. Plimpton, W. Old, A. Wagner, P. Fain, and
G. Heffelfinger. Parallel genehunter: Implementation of a
linkage analysis package for distributed-memory architec-
tures. InProceedings of the First IEEE Workshop on High
Performance Computational Biology, International Parallel
and Distributed Computing Symposium, 2002. 16 electronic.

[2] W. I. for Biomedical Research. http://www-
genome.wi.mit.edu.

[3] L. Kruglayk, M. R.-D. M.J. Daly, and E. Lander. Rapid mul-
tipoint linkage analysis of recessive traits in nuclear families,
including homozygosity mapping. InAm. J. Hum. Genet.,
volume 56, pages 519–527, 1995.

[4] L. Kruglayk, M. Reeve-Daly, and E. Lander. Parametric
and nonparametric linkage analysis: a unified multipoint ap-
proach. InAm. J. Hum. Genet., volume 58, pages 1347–
1363, 1996.

[5] E. Lander and P. Green. Construction of multilocus genetic
linkage maps in humans. InProc. Natl. Acad. Sci. USA,
volume 84, pages 2363–2367, 1987.

[6] S. Lin. A scheme for constructing an irreductible markov
chain for pedigree data. InBiometrics, volume 51, pages
318–322, 1995.

[7] J. Olson, J. Witte, and R. Elston. Tutorial in biostatistics ge-
netic mapping of complex traits. InStatist. Med., volume 18,
pages 2961–2981, 1999.

[8] S. Ray and M. Craven. Representing sentence in hidden
markov models for information extraction. InProceedings
of the 17th International Joint Conference on aritifical Intel-
ligence, 2001.

[9] C. Smith and D. Stephens. Simple likelihood and probabil-
ity calculations for linkage analysis. InGenetic Mapping
of Disease Genes eds I.H Pawlowitzki, J.H Edwards, E.A
Thompson, pages 73–96. Academic Press, London, 1997.

[10] A. Whittemore and J. Halpern. Probability of gene identity
by descent: computation and applications. InBiometrics,
volume 56, pages 109–117, 1994.


