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Abstract—HMMER3 is biological sequence search suite used 
in significant volume on systems hosted at the National Energy 
Research Scientific Computing Center. This heavy usage has 
revealed ways that HMMER3 underutilizes the resources 
available in an HPC environment such as the Manycore 
architecture Knights Landing processors available in the Cori 
supercomputer. After rigorous performance analysis it was 
determined that the thread architecture of HMMER3 is the most 
promising optimization target to increase throughput and 
efficiency. A refactoring effort introduced an OpenMP task 
based threading design, the ability to respond to imbalanced 
computation with work stealing, and input buffering to eliminate 
a large amount of redundant parsing. These efforts have been 
implemented and in production on Cori for over a year. In that 
time they have simplified the best practice for use of HMMER3 
in workflows and conserved hundreds of thousands of CPU 
hours. 

Keywords—Multithreading; Multicore Processing; OpenMP; 
High Performance Computing; Bioinformatics 

I.  INTRODUCTION 
HMMER3 [1] is a bioinformatics application used to search 

a protein sequence database for contents which are statistically 
similar to a profile Hidden Markov Model (HMM) [2]. This 
application is heavily used on National Energy Research 
Scientific Computing Center (NERSC) systems by users from 
the Joint Genome Institute (JGI) for purposes such as DNA 
sequencing quality assurance, as a component in workflows 
that automatically annotate newly sequenced genomes, and 
novel research projects. JGI uses approximately 7 million CPU 
hours annually to run HMMER3 on NERSC systems. 

HMMER3 is heavily optimized for the personal computing 
hardware of ten years ago. Data movement is organized such 
that very low working set memory usage has been achieved at 
the cost of increased file access. The application is arranged as 
a pipeline of filters using SSE intrinsic vector instructions to 
implement dynamic programming (DP) with a complex 
striping pattern [3]. Threading support uses pthreads via a 
master to worker queue dispatch that distributes sequence data 
to individual threads for processing. An MPI implementation is 
also provided in the HMMER3 distribution that does not 

support threading and decomposes data with the same pattern 
and performance as the pthread implementation. 

A significant literature exists discussing the optimization of 
the HMMER lineage of applications. One common theme is a 
focus on porting low-level filter kernels to less standard 
platforms such as GPU accelerators [4, 5, 6], FPGA 
accelerators [7, 8, 9, 10], and the Cell processor architecture 
[11, 12]. Another pattern is adaptation of HMMER to better 
utilize more sophisticated HPC support systems such as better-
organized network communication via MPI [13] and parallel 
file systems [14].  

In distinction, this work describes a case study modifying 
HMMER3 to improve performance at a production facility 
with established user base, workload characteristics, hardware 
availability, and operational support systems. Priorities extend 
beyond generic speed benchmarks to include efficient 
utilization of allocated resources, compatibility with specific 
hardware and systems, consideration for labor needed to 
implement changes, user demanded invariance with standard 
HMMER3 results, ease of adoption by user base, and 
simplicity of integration into existing workflows and pipelines. 

This project bolsters the list of example OpenMP tasking 
systems. Working, useful, performant, and visible (able to be 
found with a reasonable Google search) code using task 
directives is a rarity. Existing examples tend towards two 
types: Either a toy implementation of the Fibonacci sequence 
using nested tasks to perform the recursion, or walking through 
a linked data structure. The code implemented for this project 
demonstrates a useful and succinct example of OpenMP 
tasking achieving goals that are difficult in other threading 
patterns such as overlapping independent compute blocks with 
I/O and balancing load between units of work with divergent or 
unpredictable computational demands. 

II. BACKGROUND 

A. The HMMER3 Algorithm 
HMMER3 uses DP to solve a sequence alignment problem 

in similar manner to the Smith-Waterman algorithm. Profile 
HMMs are constructed to describe noteworthy protein 
sequence features, and candidate sequences are searched 
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against these models up to the scale of millions of sequences 
and tens of thousands of HMMs. 

The HMMER3 core pipeline is composed of a series of 
filters that discard non-matching searches quickly and cheaply. 
This behavior minimizes time spent in the expensive full 
precision DP table calculations. Initially, each sequence is 
processed with the Single Segment Viterbi (SSV) filter, which 
only considers high scoring diagonals in the DP table at 8-bit 
precision; a similar Multiple Segment Viterbi (MSV) filter 
allowing mismatches is sometimes included when SSV scores 
are near the threshold. If that SSV/MSV score exceeds a 
statistical boundary then the sequence will be passed to the 
more complex Viterbi filter. The Viterbi filter considers a 
wider range of possible sequence perturbations such as 
insertions and deletions, and uses 16-bit precision. A sequence 
passing the Viterbi filter is sent to the Forward-Backward 
algorithm. This final step builds and traverses the full DP table 
in 32-bit precision and sums score over multiple alignment 
paths to generate the final output. 

The layer of abstraction which separates the HMMER3 
core pipeline from it’s top-level drivers is very well designed 
and facilitates a wide flexibility of parallelization. A single 
pipeline call requires five data structures: a protein sequence 
which will not be modified and can be shared with other 
pipelines, a HMM which can also be shared, read-only and 
sharable storage of background residue probabilities, a private 
pipeline structure which stores reusable working set memory, 
and a top-hits object which gathers search results for a single 
HMM and must only be accessed by one pipeline at a time. A 
parallel driver for a HMMER3 tool need only concern itself 
with accepting command line parameters, performing I/O, 
supplying these five data structures to core pipeline calls with 
appropriate synchronization, and organizing pipeline calls to 
guide search coverage of the entire input space.  

B. The Cori supercomputer 
Cori is the primary production machine operated by 

NERSC; it is ranked as the #8 fastest supercomputer 
worldwide as of March 2018.  Cori is a Cray XC40 machine 
containing 2,388 32-core Xeon E5-2698 (Haswell) nodes with 
128GB RAM and 9,688 68-core Xeon Phi 7250 (Knights 
Landing or KNL) nodes with 96GB RAM. Cori uses a Cray 
Aries interconnect with dragonfly topology, a Cray Sonexion 
2000 Lustre file system, and includes 288 DataWarp nodes that 
mount high speed and high capacity SSD storage inside the 
Aries network. A Slurm workload manager controls resource 
allocation and job scheduling on Cori. 

The unit of economic account on Cori is an allocation hour, 
corresponding to the use of one compute node for one hour 
scaled by factors including total job size, relative performance 
of node types and platforms, or a prorate by cores when a job is 
run using the shared queue. NERSC services support over 
6,000 users leading to wide fluctuations in utilization and 
availability of system resources. The wait times and throughput 
of the various job queues are the main expression of this 
demand variation. A user not limited to small shared jobs but 
also able to effectively run hmmsearch on the full 32 or 68 
cores of a node can more flexibly request a job submission that 

minimizes time until completion or obtains the most science 
possible from each precious allocation hour. 

C. Usage of HMMER3 at NERSC 
HMMER3 includes a number of applications related to the 

creation, manipulation, and searching of profile HMMs. High 
volume use of HMMER3 at NERSC is exclusively in the form 
of hmmsearch, which searches all pairs of model against 
protein via an outer loop over HMMs and an inner loop over 
sequences. For this reason, the work described here focuses 
only on analysis and optimization of hmmsearch. Use of 
HMMER3 on NERSC systems most resembles a High 
Throughput Computing model: The pairwise searching of a 
very large number of sequences against a large number of 
HMMs in hmmsearch is trivial to decompose with effectively 
no interdependencies. The active memory needed by the core 
pipeline for a single pair search is minuscule1 relative to the 
RAM available on each node, even when permitting hundreds 
of threads. 

The Integrated Microbial Genomes and Metagenomes 
database (IMG) [15] hosted by JGI is a common source of 
protein sequence data for HMMER3 usage at NERSC. At the 
time of writing, the IMG database contains 45,865,548,268 
candidate protein sequences extracted from metagenome data 
sets. A full hmmsearch of IMG against the Pfam HMM 
database [16] using a naïve HMMER3 configuration would 
require more than 600,000 Haswell node hours to complete. 

The needs, demands, and behaviors of NERSC users, and 
available systems, preclude the use of existing research on the 
optimization of HMMER3. There is no user demand at NERSC 
for any MPI implementation of hmmsearch; waiting a few 
hours for one or more single node jobs with better throughput 
is chosen in lieu of the user perceived mental overhead of 
dealing with MPI. This rules out the use of optimization 
projects such as MPI-HMMER [14] that target parallel file 
systems via an MPI layer. It further hinders MPI-HMMER that 
it is a port of the less powerful HMMER2 algorithm and it’s 
source and documentation website is dead. NERSC possesses 
no production scale GPU or FPGA accelerated nodes so those 
categories of existing research are also not applicable.  

Performance of Manycore architecture KNL processors 
depends dominantly on the need for very efficient thread 
implementations. This is a gap in HMMER3 optimization 
literature as it currently stands; a highly optimized thread 
implementation would be most appropriate for NERSC users 
and systems but has not been a development of preceding 
papers. The most direct comparison available to this project, 
and what the users originally used, is the baseline parallel code 
provided with the HMMER3.1b2 release.  

III. INITIAL PERFORMANCE EVALUATION 

A. Thread Scaling 
A first experiment was conducted to measure thread scaling 

of baseline HMMER3.1b2 hmmsearch.  One hundred HMMs 
were sampled from the Pfam 31.0 database and 100,000 
sequences from the UniProt/Swiss-Prot [17] database to create 

1  Low RAM usage does not hold for a tiny number of the longest 
biologically valid sequences and domains. The most extreme demonstration of 
this would be searching a 35,991 residue TITIN protein against it’s own 
domain. 
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an input file pair; ten pairs in total were created. Each input 
pair was passed to hmmsearch for execution on a Haswell 
node of Cori. Additional runs used the same input while 
progressively increasing the number of threads from 1 to 16. 
The strong scaling speedups determined by this experiment are 
presented in Fig. 1. Average wall time of a one-thread job was 
used to scale the speedup of each replicate; these single thread 
times ranged from 35.7 to 126.1 seconds with the ten replicate 
average being 69.4 seconds. 

Results show naïve use of hmmsearch obtains 
performance benefit only from the first four to five threads and 
any additional have minimal positive impact. Though not 
shown, this trend continues with consistently flat speedup and 
even degradation when utilizing more than 16 threads on a 
Haswell node. The same scaling pattern appears when running 
on a KNL node but with significantly longer wall times due to 
lack of L3 cache and the core-per-core weakness of KNL 
relative to Haswell. 

It is well established in the literature that the length of 
sequences and HMMs given to hmmsearch affects 
performance and scaling [1, 5, 6, 7, 12]. For all experiments 
conducted in this work a large number of sampled HMMs (100 
or more) and sequences (100,000 or more) are used for 
experiments, along with replications of unique samples 
(usually 10); these large samplings are intended to reasonably 
emulate the distribution of input sequence and model lengths as 
they would occur during productive use. 

B. Inconvenience as Best Practice 
Given the poor performance of only using threads to scale 

HMMER3, many users have adapted a mitigation strategy that 
reclaims modest performance at the expense of an obnoxious 
but endurable amount of added complexity. This method uses 
the file system as an additional layer of parallel decomposition: 
split input files into shards, run multiple hmmsearch 
processes simultaneously, and then join the outputs. This idea 
is similar to methods devised in earlier works, though 
implemented purely with file manipulation instead of MPI, 
parallel file system, or source code modification. 

 

 

Fig. 1. Speedup achieved by thread scaling hmmsearch on one Cori 
Haswell node. Whisker plots show the aggregate speedup factor of 10 
different input combinations taken from Swiss-Prot and Pfam databases. The 
dotted line shows the theoretical perfect scaling trendline and is intentionally 
cut off to preserve  detail in the whisker plot. 

Using the file system to parallelize hmmsearch is not 
trivial to implement on Cori. Slurm support for concurrent 
background execution of multiple processes on a single 
reserved compute node is currently not correct, so a 
workaround must be used which employs Multiple Program 
Multiple Data (MPMD) mode. Designed to connect multiple, 
unique, and concurrent programs to the same MPI 
communicator, MPMD allows the assignment of multiple 
process executions with unique command line parameters to 
disjoint sets of cores on a node. In this case the user simply 
ignores the MPI support. 

Fig. 2 shows an example job submission script to execute 
an MPMD hmmsearch with multiple shards of an input file. 
A number of details in this configuration are notable. The 
srun flags –n and –c determine the total number of processes 
and the number of cores allocated to each, but notice their 
product is 64 and not the expected 32. This is because Haswell 
processors possess Hyper-Threading (HT) that, for resource 
allocation purposes, is treated as two logical cores per single 
physical core. Those two logical cores compete for shared 
resources to the extreme degree that using HT results in only a 
5-10% performance gain with most applications; for the 
remainder of this writing HT will be avoided as not worth the 
trouble. It’s unlikely the file split will perfectly balance load so 
the –k flag is used to disable the default MPMD behavior of 
ending a job when any one of its processes first exits. Note the 
ability to use the %t symbol in an MPMD configuration script 
to access the unique index of each task for use in parameters. 
Finally, outside of the scripting, there is an additional 
complexity for any pipeline or workflow using sharded input 
file hmmsearch, as it must assume the responsibility to divide 
inputs, store intermediate files, and merge output files. 

An experiment was performed to demonstrate the possible 
configurations and performance consequences of using 
hmmsearch with split input files. The ten input file pairs used 
in the thread scaling experiment were reused, with the 
modification that sets of divided input sequence files were 
created to distribute their total content between 2, 4, 8, 16, and 
32 files. The number of input sequence files determined the 
number of hmmsearch processes used and the number of 
threads allocated to each that would fully utilize 32 Haswell 
cores. Fig. 3 shows the speedup achieved by various ratios of 
threads to split files along with a theoretical ceiling based on 
perfect scaling of single thread performance to the full node. 
Amusingly, ignoring the hmmsearch thread implementation 
completely and only using the file system to parallelize 
achieves the best performance. 

Fig. 2. Example scripts to create a Slurm job which runs a sharded 
hmmsearch using 16 input files and 2 threads each 

Slurm Batch Script 
#SBATCH -N 1
#SBATCH -t 00:30:00 
#SBATCH -C haswell 
srun -n 16 -c 4 --cpu_bind=cores --multi-prog –k  

mpmd_16.conf 

mpmd_16.conf 
0-15 ./hmmsearch --cpu 1 -o out%t.txt 

pfam/input.%t.hmm sequence.fasta 
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Fig. 3. Cori Haswell node hmmsearch speedup achieved by combining 
thread scaling with split input file scaling. A single whisker column shows the 
aggregate speedup factor of 10 different input combinations taken from 
UniProtKB/Swiss-Prot and Pfam databases. Six different combinations of 
input shard number and threads per process are shown. The dotted line shows 
a ceiling  calculated from theoretical perfect scaling. 

Note that splitting input file contents by round robin 
assignment of an entire sequence or HMM to each shard is not 
the most equal distribution of work available. Sequence length 
and HMM size are among factors determining needed run time 
so a method which distributes shard content balancing amino 
acid residues or model positions would reduce load imbalance 
between processes. The load imbalance able to be reclaimed by 
implementing this strategy relative to the labor needed to 
devise, debug, and incorporate it into a workflow is poor. I 
have yet to encounter an end user employing this method and it 
will not be considered further. 

C. Performance Analysis 
It has been accepted among HMMER experts that 

application performance in the parallel context is I/O bound. 
This claim was tested on Cori by staging all input files in on-
node RAM, completely bypassing the file system, and 
measuring the wall time of a large search. Results indicated 
performance did not change in any measurable manner relative 
to use of the file system. Though at a point in the past the 
HMMER3 performance bottleneck may have indeed been disk 
access, when exposed to our usage on Cori it is not. 

A second experiment was performed to determine if 
memory bandwidth is a factor that limits performance. It is an 
option on Cori to reduce the CPU clock frequency of a 
processor while leaving all other node systems unchanged. If 
the clock speed is reduced 50% and the run time doubles then 
the application is compute bound. If the run time increases by 
less than double, such as when less frequent access can be 
served by the memory system with fewer stalls, then it suggests 
memory bandwidth or latency is indeed a limit on performance. 
Experiments running hmmsearch with modified clock speed 
suggest less than 4% of the running time can be attributed to 
memory performance limitations. 

  The thread implementation of hmmsearch poses a 
curious difficulty for all modern performance analysis tools. 
Each input HMM causes the master thread to fork a number of 
child threads equal to the --cpu flag. When computation is 
complete these threads are discarded, the next HMM is read, 
and a new set of threads are forked. Threading analysis tools 

shown this behavior cannot track the relationship between 
subsequent groups of forked threads and instead report 
thousands of independent and temporally disjoint threads each 
with a tiny fraction of the total compute. Any rigorous analysis 
of hmmsearch thread performance must employ a manual 
aggregation of this information into comprehensible form. 

The CrayPat performance analysis tool was used to collect 
performance data while running hmmsearch.  The executable 
was augmented with pat_build to collect function call 
sampling data. Functions were sorted into four categories: 
input sequence I/O and parsing, thread creation and 
destruction, thread blocking, and computation. Large sampling 
reports of thread behavior were manually manipulated in a 
spreadsheet to aggregate behavior by category and distinguish 
master and worker threads.  

Understanding these results requires a detailed explanation 
of the threading model and data structure used to parallelize 
hmmsearch. Threads are organized around a single master 
that reads and parses all input, maintains a synchronized queue 
and loads units of work into it, spawns and destroys worker 
threads, removes completed work from the queue, and writes 
output to file. A team of worker threads is created for each 
input HMM and the synchronized queue distributes sequences 
to the workers in this team for search against the HMM. When 
all searches against that HMM are complete the worker team is 
destroyed. The process is repeated until all HMMs have been 
searched. 

Function sampling results presented in Table I. demonstrate 
the full range of pathology when hmmsearch master and 
worker threads distribute work amongst themselves.  

Choosing no worker threads activates the serial version of 
hmmsearch and incurs no thread overhead or load balance 
problem; the ratio of I/O to compute is 1:6, which is 
conspicuously close to the empirically determined ideal 
number of worker threads.  

When one worker thread is present the master thread 
performs essentially the same amount of I/O work as it does in 
the serial case, but fills all time previously used for compute 
with thread blocking, yielding a very similar total wall time. 
The unimpressive speed gain can be explained as the master 
thread filling the work queue faster than one worker can empty 
it. A maximum queue capacity is quickly reached where the 
master blocks as it waits for additional input space to become 
available. 

TABLE I.  FUNCTION SAMPLING OF HMMSEARCH FOR VARYING NUMBER 
OF WORKER THREADS. 

 Master  Average 
Worker 

  

Work 
Thread 

 
 I/O Join Wait  Compute Wait 

 Time 
(seconds) 

0  14%    83%   127 
1  17%  81%  99%   114 
3  41% 20% 37%  71% 28%  54 
7  50% 32% 15%  44% 55%  47 

15  46% 41% 9%  27% 72%  51 
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An experiment with fifteen worker threads demonstrates in 
extremis the opposite imbalance relative to one fully loaded 
worker thread. In this second case, the master thread has 
increased it’s fraction of time spent performing I/O by a factor 
of three and significantly reduced the amount of queue related 
blocking, but replaced that queue spinning with thread fork and 
join overhead. The average worker thread spends only 25% of 
execution performing search while the rest is lost blocking on 
the synchronized queue as it waits for new data to become 
available. This behavior is a result of the single master thread 
being unable to supply sequence at a rate comparable to the 
rate at which workers consume it. Additionally, the master is 
burdened by thread creation and destruction overhead. This 
further explains why split input file hmmsearch scales so 
much more effectively: having more than one master thread in 
different processes both reduces thread overhead for each and 
enables sequence parsing to occur in parallel. The overall effect 
is the rate of input preparation increases and more worker 
threads can be effectively supplied with data. 

Results from CrayPat experiments also aggregate to suggest 
a target for optimization. Less than 2% of the sampled time 
attributed to I/O is spent in system buffered blocking read calls; 
the rest is in sqascii_Read() and header_fasta(), 
both of which are input parsing functions. This glut is a direct 
consequence of the data access pattern in the hmmsearch top-
level application. A small overhead is needed to read, parse, 
and error check one sequence from disk, but all such work is 
discarded and duplicated for each new model. These parsing 
functions are a primary factor limiting the rate new sequences 
can be added to the thread-dispatching queue and thus total 
application throughput.  

IV. MODIFICATIONS 

A. New hpc_hmmsearch Driver 
All of the following optimizations have been implemented 

by duplicating and then modifying only the top-level 
hmmsearch driver (hmmsearch.c) into a new driver 
(hpc_hmmsearch.c) while leaving the core pipeline intact. 
Code implementing the pthread or MPI use of the synchronized 
work queue was removed and replaced with a system based on 
OpenMP task directives. Restricting the scope of modification 
to only the top-level driver significantly reduced the analysis, 
engineering, quality assurance, and time necessary to complete 
the project. The new driver application will be referred to as 
hpc_hmmsearch. 

B. Input Data Buffers 
The first major modification was to change data access 

such that parsed sequence input data is retained in memory 
buffers. These buffers store sequences and models such that 
each traversal through an input file provides data to perform 
multiple core pipeline calls. An attractive tradeoff is introduced 
where using a modest amount of additional memory 
significantly reduces the number of times entire input files 
must be loaded and parsed. 

With the expense of a few hundred extra megabytes of 
RAM, which is abundantly available on Cori hardware, the 

amount of CPU used to parse and error check sequence file 
data can be reduced by a factor of 20 or more. This eliminates 
25% of the total application computation off the top before 
considering any other configuration decisions or optimizations. 

C. Concurrent HMM searches 
The distribution of HMMs amongst worker threads has 

been changed in hpc_hmmsearch. The original 
decomposition reads a single HMM, copies it to each worker, 
divides input sequences between all threads, synchronizes 
threads, and aggregates results when all searches against that 
model are complete. This arrangement minimizes the time to 
search a single model but introduces one thread 
synchronization and the potential manifestation of load 
imbalance for each additional model. The modified driver 
distributes a unique HMM to each thread such that threads do 
not need to sync and collectively aggregate reports for output. 
Individual threads completing their assigned searches can 
immediately output results and accept a new HMM without 
dependency on other threads or reducing data structures. The 
result is a more efficient packing of compute and fewer global 
synchronization points, at the expense of reduced performance 
when the number of HMMs is small relative to the number of 
CPU cores (a situation which does not fit our usage). 

D. Overlapping I/O and Compute Using OpenMP Tasking 
All pthread code has been replaced with an OpenMP 

implementation based on task directives. At the top level of 
behavior, hmmsearch input file contents define an all-
against-all search area. The total area of this search can be 
arbitrarily subdivided and the resulting rectangles streamed to 
teams of worker tasks while I/O tasks execute alongside but on 
input required during the next rectangle of work in the stream. 
The change was implemented as follows: 

Two pairs of buffers are created: a pair storing HMMs and 
a pair storing sequence data; elements of each pair are referred 
to as “flip” and “flop”. A top-level loop contains all the tasks 
needed for a rectangle of work within a taskgroup directive 
and iterates until all models in the HMM file have been fully 
searched. I/O tasks write the HMM flop buffer to output if it 
contains complete results and read sequence or HMM data 
needed by the next taskgroup into flop buffers. 
Concurrently, worker tasks perform core pipeline searches of 
sequences and HMMs in the flip buffers, and deposit their 
results into top-hits structs in the HMM flip buffer. When all 
tasks in the taskgroup are complete the content of the 
sequence flip and flop buffers are exchanged. This swap moves 
the next rectangle of unprocessed searches to where they will 
be accessed by worker tasks during the next taskgroup. 
After a full scan through the sequence database file, the flip 
and flop HMM buffers are swapped and the sequence file is 
rewound.  

With this organization, and reasonable configuration of 
buffer sizes, workers do not need to wait for disk access, 
parsing, or thread synchronization events. When a file access 
task finishes before overall processing is complete it will 
automatically convert itself to an additional worker thread. 
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E. Dynamic Load Balancing 
Load balancing hmmsearch is a challenge due to the 

highly conditional nature of its control flow. Though it is 
simple enough to dispatch equal amounts of sequence to each 
worker or balance the number of residues, uneven 
concentrations of search hits advancing deeper into the pipeline 
and consuming disproportionate resources cannot be 
anticipated and lead to significant risk of imbalance. This effect 
has been modestly mitigated using OpenMP taskgroup to 
implement a work stealing mechanism in hpc_hmmsearch. 

 All worker tasks are issued within a taskgroup directive 
and the number of outstanding tasks is tracked; when that 
number falls below the number of cores available then tasks 
with a sufficient amount of unprocessed sequence will create a 
new child task and pass half their remaining work to it. The 
child task is then immediately scheduled to execute by the 
runtime and occupies the empty core. The taskgroup 
directive is needed to guarantee all child tasks spawned by the 
work stealing mechanism have finished before finalizing a 
rectangle of work and swapping buffers (a taskwait 
directive would only collect all tasks at the same depth before 
releasing, ignoring any child tasks that may remain 
outstanding). 

V. RESULTS 
An initial performance experiment is included to directly 

contrast the thread-scaling difference between the original 
hmmsearch driver and hpc_hmmsearch. Fig. 4 presents 
data obtained by running both hmmsearch drivers on the 
Edison system with the same configuration as used to create 
Fig. 1 (Edison is architecturally analogous to Cori Haswell, but 
one generation older with 24 cores per node instead of 32). 

Best practice performance has been evaluated by running 
both hpc_hmmsearch and sharded file hmmsearch with a 
new larger set of sampled input files on both types of Cori 
nodes. The entire Pfam-A database was used for each 
experimental search by creating sets of divisions that round-
robin distribute all Pfam HMMs between 2, 4, 8, 16, 32, and 64 

files. Note that this division of the HMM database is different 
from earlier file shard experiments which divided the sequence 
database (A minor experiment confirmed that either division is 
equivalent in terms of performance, though in practice, 
dividing the HMM database is preferred because it is more 
convenient to implement in a workflow). Sequence files for 
this experiment were created via sampling one million protein 
sequences from the UniProtKB/TrEMBL database. 

Fig. 5 shows scaling performance results when running the 
most effective Pfam file decompositions with hmmsearch 
and hpc_hmmsearch on a Haswell Cori node. Reported 
speedup is scaled against the wall time of running one single 
threaded hmmsearch job with the same input. The best 
performing hmmsearch among the available configurations, 
using 32 serial processes, yields an average of 17.4 speedup.  
Average speedup of hpc_hmmsearch is 26.4, a 51% 
improvement and 61% closer to the theoretical maximum 
throughput. 

Fig. 6 displays Knights Landing node scaling performance 
results for a range of hmmsearch file decompositions and 
hpc_hmmsearch. The same series of Pfam input files were 
used as the Haswell performance experiment, but the number 
of sequences sampled was reduced by 80% to 200,000. The 
reported speedup is scaled to the projected time needed to run 
one single thread hmmsearch on a KNL node. A dashed line 
marks an upper bounded speedup of 136, corresponding to the 
full utilization of two hardware threads on each KNL core. Of 
several reasonable decompositions, the best performing 
hmmsearch configuration is 32 input file shards with 4 
threads each, producing an average speedup factor of 57.5. The 
KNL hpc_hmmsearch running with 136 threads yields an 
average speedup factor of 116.1; this is a 101% improvement 
above hmmsearch best practice on the KNL platform and 
almost 4x closer to the theoretical maximum. Though KNL 
speedup gains are much better than Haswell, the base 
performance of KNL is handicapped enough that the shortest 
wall times using the best configurations are still obtained using 
a Haswell node. 

 

 

Fig. 4. Speedup achieved by thread scaling hmmsearch (light) and hpc_hmmsearch (dark) on one Edison Ivy Bridge node with 24 cores. Whisker plots 
show the aggregate speedup factor of 10 different input combinations taken from Swiss-Prot and Pfam databases. The dotted line shows the theoretical perfect 
scaling trendline of the hmmsearch runs. The solid line shows the theoretical perfect scaling trendline of hpc_hmmsearch progression. 
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Fig. 5. Cori Haswell node hmmsearch speedup achieved by the three best 
file split regimes, and the same input run with hpc_hmmsearch (hpc). 
Whiskers show the aggregate speedup factor of 10 different input 
combinations taken from UniProtKB/TrEMBL and Pfam databases. Dotted 
line shows the theoretical perfect scaling ceiling. 

 

Fig. 6. Cori KNL node hmmsearch speedup achieved by various file split 
regimes, and the same input run using hpc_hmmsearch (hpc). Whiskers 
show the aggregate speedup factor of 10 different input combinations taken 
from UniProtKB/TrEMBL and Pfam databases. Dotted line shows a 
theoretical perfect scaling ceiling assuming 2 hardware threads per core. 

VI. DISCUSSION

One important point is examination of the performance 
discrepancy between running HMMER3 on Haswell vs. KNL 
nodes. Optimally configured and everything else being equal, a 
HMMER3 job will always run faster on a Haswell node than 
on a KNL node. Haswell completes a single-thread 
hmmsearch job 3.9x faster than the same single-thread job on 
KNL, a well-configured split file job 1.2x faster, and an 
hpc_hmmsearch job 1.45x faster. The flexibility to run 
either is, however, still valuable as being able to run HMMER3 
well on KNL can still benefit users when balancing allocation 
charge factors, queue demand differences, and the fact that 
over four times as many KNL nodes are available on Cori. 

What characteristics of these systems make Haswell more 
suitable to run HMMER3 than KNL? The primary suspects are 
the core filter kernels implemented using SSE vector 
instructions. Each KNL core operates at half the frequency of a 
Haswell and only has one vector-processing unit (VPU) able to 
execute legacy vector instructions. Any possible gains from the 

4x wider AVX-512 vectors or the 4 hardware threads per core 
can’t be realized through the VPU bottleneck as the HMMER3 
core is currently implemented.  

What consideration has been given to improving core 
pipeline components? The ratio of effort to reward when 
considering a vector modernization of HMMER3 pipeline 
kernels offers an intimidating calculus. Most potential upside 
for NERSC users is cut off at the knee because HMMER3 core 
components use byte and word sized instructions, but KNL 
silicon does not support the AVX-512BW instruction set which 
implements them. Upgrading software to AVX2 (256 bit vector 
width instructions) could theoretically offer up to 2x speedup 
but that would break compatibility with Edison (NERSC’s 
previous generation production system), KNL performance 
would still be limited to the single legacy VPU per core, and 
the modifications would incur an enormous labor effort to 
manually convert, debug, and verify every pipeline component, 
data structure, and post-processing routine in the entire 
software stack. Furthermore, the HMMER4 development team 
has claimed and finished implementing support for all modern 
vector instruction sets; any work in that direction would be 
redundant. This does not only apply to vectorization porting; 
all work on HMMER3 will become obsolete when HMMER4 
is released. To be successful this project needed to be 
completed and enter production well before then. 

A revised calculation of the estimated time needed to 
search IMG against Pfam quantifies the benefit to NERSC 
users since hpc_hmmsearch has entered production. I must 
concede the initial 600,000 CPU hour estimate was incendiary; 
a real power user would not use the naïve decomposition but 
instead split Pfam into 8 parts, IMG into 2,500 fasta files, and 
submit 2,500 jobs each packing 8 hmmsearch with 4 threads. 
The total allocation would use approximately 60,000 CPU 
hours, be throttled by the policy limit of 200 queued jobs per 
user, and take 25 days to pass entirely through the queue. A 
second researcher generating the same data using 
hpc_hmmsearch could split 1,000 fasta files, queue 1,000 
jobs, consume 23,000 CPU hours, and fully clear the queue in 
10 days.  

Collaboration with a FICUS JGI-NERSC [18] project 
provides a detailed real world anecdote of the performance 
gained using hpc_hmmsearch. A component in the project 
workflow required a HMMER3 search of 2.2 billion IMG 
protein sequences against 229 curated HMMs. Basic use of 
hmmsearch for this task is estimated to be almost 60,000 
CPU hours while split file configuration would consume 
approximately 7,500 hours. These usage numbers are 
overestimates because they are calculated with scaling factors 
derived from our earlier experiments; the distribution of the 
project’s metagenomic data contains fewer search hits and thus 
spends a smaller fraction of time in deeper pipeline stages. We 
worked with the project to integrate hpc_hmmsearch into 
their workflow. The resulting work split the input sequence 
into 184 parts of 12 million sequences each and consumed only 
130 CPU hours.  

The pattern of OpenMP tasking demonstrated in this 
project is applicable and beneficial to a wider and more general 
set of applications appearing in the bioinformatics toolbox. 

245



Such applications follow a pattern of reusing one or more well-
abstracted core kernels that do not induce side effects or data 
dependencies on other kernel calls. In these cases some tasks 
can perform I/O and prepare future data buffers while other 
tasks issue the kernel calls on prepared data or empty 
completed buffers to output. Throughput limited reductions, 
local filters, or all-against-all algorithms such as string or 
similarity searches can directly mimic this design. The pattern 
can also accommodate methods that require large and shared 
read-only data structures such as an FM-index or k-mer table. 
All worker tasks can trivially share a single copy of that data 
structure in the OpenMP shared memory environment. 

VII. CONCLUSION 
This work describes in detail the process of adapting 

HMMER3 to better conform to the needs of the NERSC user 
community and the Cori supercomputer. Performance analysis 
indicated that data processing in the top level driver of 
hmmsearch was the best target for optimization efforts. Only 
a modest amount of labor was necessary to refactor the 
threading architecture to use OpenMP tasking, overlap I/O and 
computation activity, automatically load balance between 
tasks, reduce I/O overhead by buffering input sequence, and 
simplify the best practice use of hmmsearch in a workflow 
context. The hpc_hmmsearch driver has been in production 
on NERSC systems for over a year at the time of this 
publication and has cumulatively reduced system-load by 
hundreds of thousands of CPU hours. 

SOURCE CODE 
The hpc_hmmsearch driver can be obtained at 

https://github.com/Larofeticus/hpc_hmmsearch along with 
instructions for installation and usage. 
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