
Modifying HMMER3 to Run Efficiently on the Cori
Supercomputer using OpenMP Tasking

William Arndt
National Energy Research Scientific Computing Center

Lawrence Berkeley National Laboratory
Berkeley, USA
warndt@lbl.gov

Abstract—HMMER3 is biological sequence search suite used
in significant volume on systems hosted at the National Energy
Research Scientific Computing Center. This heavy usage has
revealed ways that HMMER3 underutilizes the resources
available in an HPC environment such as the Manycore
architecture Knights Landing processors available in the Cori
supercomputer. After rigorous performance analysis it was
determined that the thread architecture of HMMER3 is the most
promising optimization target to increase throughput and
efficiency. A refactoring effort introduced an OpenMP task
based threading design, the ability to respond to imbalanced
computation with work stealing, and input buffering to eliminate
a large amount of redundant parsing. These efforts have been
implemented and in production on Cori for over a year. In that
time they have simplified the best practice for use of HMMER3
in workflows and conserved hundreds of thousands of CPU
hours.

Keywords—Multithreading; Multicore Processing; OpenMP;
High Performance Computing; Bioinformatics

I. INTRODUCTION
HMMER3 [1] is a bioinformatics application used to search

a protein sequence database for contents which are statistically
similar to a profile Hidden Markov Model (HMM) [2]. This
application is heavily used on National Energy Research
Scientific Computing Center (NERSC) systems by users from
the Joint Genome Institute (JGI) for purposes such as DNA
sequencing quality assurance, as a component in workflows
that automatically annotate newly sequenced genomes, and
novel research projects. JGI uses approximately 7 million CPU
hours annually to run HMMER3 on NERSC systems.

HMMER3 is heavily optimized for the personal computing
hardware of ten years ago. Data movement is organized such
that very low working set memory usage has been achieved at
the cost of increased file access. The application is arranged as
a pipeline of filters using SSE intrinsic vector instructions to
implement dynamic programming (DP) with a complex
striping pattern [3]. Threading support uses pthreads via a
master to worker queue dispatch that distributes sequence data
to individual threads for processing. An MPI implementation is
also provided in the HMMER3 distribution that does not

support threading and decomposes data with the same pattern
and performance as the pthread implementation.

A significant literature exists discussing the optimization of
the HMMER lineage of applications. One common theme is a
focus on porting low-level filter kernels to less standard
platforms such as GPU accelerators [4, 5, 6], FPGA
accelerators [7, 8, 9, 10], and the Cell processor architecture
[11, 12]. Another pattern is adaptation of HMMER to better
utilize more sophisticated HPC support systems such as better-
organized network communication via MPI [13] and parallel
file systems [14].

In distinction, this work describes a case study modifying
HMMER3 to improve performance at a production facility
with established user base, workload characteristics, hardware
availability, and operational support systems. Priorities extend
beyond generic speed benchmarks to include efficient
utilization of allocated resources, compatibility with specific
hardware and systems, consideration for labor needed to
implement changes, user demanded invariance with standard
HMMER3 results, ease of adoption by user base, and
simplicity of integration into existing workflows and pipelines.

This project bolsters the list of example OpenMP tasking
systems. Working, useful, performant, and visible (able to be
found with a reasonable Google search) code using task
directives is a rarity. Existing examples tend towards two
types: Either a toy implementation of the Fibonacci sequence
using nested tasks to perform the recursion, or walking through
a linked data structure. The code implemented for this project
demonstrates a useful and succinct example of OpenMP
tasking achieving goals that are difficult in other threading
patterns such as overlapping independent compute blocks with
I/O and balancing load between units of work with divergent or
unpredictable computational demands.

II. BACKGROUND

A. The HMMER3 Algorithm
HMMER3 uses DP to solve a sequence alignment problem

in similar manner to the Smith-Waterman algorithm. Profile
HMMs are constructed to describe noteworthy protein
sequence features, and candidate sequences are searched

239

2018 IEEE International Parallel and Distributed Processing Symposium Workshops

978-1-5386-5555-9/18/$31.00 ©2018 IEEE
DOI 10.1109/IPDPSW.2018.00048

against these models up to the scale of millions of sequences
and tens of thousands of HMMs.

The HMMER3 core pipeline is composed of a series of
filters that discard non-matching searches quickly and cheaply.
This behavior minimizes time spent in the expensive full
precision DP table calculations. Initially, each sequence is
processed with the Single Segment Viterbi (SSV) filter, which
only considers high scoring diagonals in the DP table at 8-bit
precision; a similar Multiple Segment Viterbi (MSV) filter
allowing mismatches is sometimes included when SSV scores
are near the threshold. If that SSV/MSV score exceeds a
statistical boundary then the sequence will be passed to the
more complex Viterbi filter. The Viterbi filter considers a
wider range of possible sequence perturbations such as
insertions and deletions, and uses 16-bit precision. A sequence
passing the Viterbi filter is sent to the Forward-Backward
algorithm. This final step builds and traverses the full DP table
in 32-bit precision and sums score over multiple alignment
paths to generate the final output.

The layer of abstraction which separates the HMMER3
core pipeline from it’s top-level drivers is very well designed
and facilitates a wide flexibility of parallelization. A single
pipeline call requires five data structures: a protein sequence
which will not be modified and can be shared with other
pipelines, a HMM which can also be shared, read-only and
sharable storage of background residue probabilities, a private
pipeline structure which stores reusable working set memory,
and a top-hits object which gathers search results for a single
HMM and must only be accessed by one pipeline at a time. A
parallel driver for a HMMER3 tool need only concern itself
with accepting command line parameters, performing I/O,
supplying these five data structures to core pipeline calls with
appropriate synchronization, and organizing pipeline calls to
guide search coverage of the entire input space.

B. The Cori supercomputer
Cori is the primary production machine operated by

NERSC; it is ranked as the #8 fastest supercomputer
worldwide as of March 2018. Cori is a Cray XC40 machine
containing 2,388 32-core Xeon E5-2698 (Haswell) nodes with
128GB RAM and 9,688 68-core Xeon Phi 7250 (Knights
Landing or KNL) nodes with 96GB RAM. Cori uses a Cray
Aries interconnect with dragonfly topology, a Cray Sonexion
2000 Lustre file system, and includes 288 DataWarp nodes that
mount high speed and high capacity SSD storage inside the
Aries network. A Slurm workload manager controls resource
allocation and job scheduling on Cori.

The unit of economic account on Cori is an allocation hour,
corresponding to the use of one compute node for one hour
scaled by factors including total job size, relative performance
of node types and platforms, or a prorate by cores when a job is
run using the shared queue. NERSC services support over
6,000 users leading to wide fluctuations in utilization and
availability of system resources. The wait times and throughput
of the various job queues are the main expression of this
demand variation. A user not limited to small shared jobs but
also able to effectively run hmmsearch on the full 32 or 68
cores of a node can more flexibly request a job submission that

minimizes time until completion or obtains the most science
possible from each precious allocation hour.

C. Usage of HMMER3 at NERSC
HMMER3 includes a number of applications related to the

creation, manipulation, and searching of profile HMMs. High
volume use of HMMER3 at NERSC is exclusively in the form
of hmmsearch, which searches all pairs of model against
protein via an outer loop over HMMs and an inner loop over
sequences. For this reason, the work described here focuses
only on analysis and optimization of hmmsearch. Use of
HMMER3 on NERSC systems most resembles a High
Throughput Computing model: The pairwise searching of a
very large number of sequences against a large number of
HMMs in hmmsearch is trivial to decompose with effectively
no interdependencies. The active memory needed by the core
pipeline for a single pair search is minuscule1 relative to the
RAM available on each node, even when permitting hundreds
of threads.

The Integrated Microbial Genomes and Metagenomes
database (IMG) [15] hosted by JGI is a common source of
protein sequence data for HMMER3 usage at NERSC. At the
time of writing, the IMG database contains 45,865,548,268
candidate protein sequences extracted from metagenome data
sets. A full hmmsearch of IMG against the Pfam HMM
database [16] using a naïve HMMER3 configuration would
require more than 600,000 Haswell node hours to complete.

The needs, demands, and behaviors of NERSC users, and
available systems, preclude the use of existing research on the
optimization of HMMER3. There is no user demand at NERSC
for any MPI implementation of hmmsearch; waiting a few
hours for one or more single node jobs with better throughput
is chosen in lieu of the user perceived mental overhead of
dealing with MPI. This rules out the use of optimization
projects such as MPI-HMMER [14] that target parallel file
systems via an MPI layer. It further hinders MPI-HMMER that
it is a port of the less powerful HMMER2 algorithm and it’s
source and documentation website is dead. NERSC possesses
no production scale GPU or FPGA accelerated nodes so those
categories of existing research are also not applicable.

Performance of Manycore architecture KNL processors
depends dominantly on the need for very efficient thread
implementations. This is a gap in HMMER3 optimization
literature as it currently stands; a highly optimized thread
implementation would be most appropriate for NERSC users
and systems but has not been a development of preceding
papers. The most direct comparison available to this project,
and what the users originally used, is the baseline parallel code
provided with the HMMER3.1b2 release.

III. INITIAL PERFORMANCE EVALUATION

A. Thread Scaling
A first experiment was conducted to measure thread scaling

of baseline HMMER3.1b2 hmmsearch. One hundred HMMs
were sampled from the Pfam 31.0 database and 100,000
sequences from the UniProt/Swiss-Prot [17] database to create

1 Low RAM usage does not hold for a tiny number of the longest
biologically valid sequences and domains. The most extreme demonstration of
this would be searching a 35,991 residue TITIN protein against it’s own
domain.

240

an input file pair; ten pairs in total were created. Each input
pair was passed to hmmsearch for execution on a Haswell
node of Cori. Additional runs used the same input while
progressively increasing the number of threads from 1 to 16.
The strong scaling speedups determined by this experiment are
presented in Fig. 1. Average wall time of a one-thread job was
used to scale the speedup of each replicate; these single thread
times ranged from 35.7 to 126.1 seconds with the ten replicate
average being 69.4 seconds.

Results show naïve use of hmmsearch obtains
performance benefit only from the first four to five threads and
any additional have minimal positive impact. Though not
shown, this trend continues with consistently flat speedup and
even degradation when utilizing more than 16 threads on a
Haswell node. The same scaling pattern appears when running
on a KNL node but with significantly longer wall times due to
lack of L3 cache and the core-per-core weakness of KNL
relative to Haswell.

It is well established in the literature that the length of
sequences and HMMs given to hmmsearch affects
performance and scaling [1, 5, 6, 7, 12]. For all experiments
conducted in this work a large number of sampled HMMs (100
or more) and sequences (100,000 or more) are used for
experiments, along with replications of unique samples
(usually 10); these large samplings are intended to reasonably
emulate the distribution of input sequence and model lengths as
they would occur during productive use.

B. Inconvenience as Best Practice
Given the poor performance of only using threads to scale

HMMER3, many users have adapted a mitigation strategy that
reclaims modest performance at the expense of an obnoxious
but endurable amount of added complexity. This method uses
the file system as an additional layer of parallel decomposition:
split input files into shards, run multiple hmmsearch
processes simultaneously, and then join the outputs. This idea
is similar to methods devised in earlier works, though
implemented purely with file manipulation instead of MPI,
parallel file system, or source code modification.

Fig. 1. Speedup achieved by thread scaling hmmsearch on one Cori
Haswell node. Whisker plots show the aggregate speedup factor of 10
different input combinations taken from Swiss-Prot and Pfam databases. The
dotted line shows the theoretical perfect scaling trendline and is intentionally
cut off to preserve detail in the whisker plot.

Using the file system to parallelize hmmsearch is not
trivial to implement on Cori. Slurm support for concurrent
background execution of multiple processes on a single
reserved compute node is currently not correct, so a
workaround must be used which employs Multiple Program
Multiple Data (MPMD) mode. Designed to connect multiple,
unique, and concurrent programs to the same MPI
communicator, MPMD allows the assignment of multiple
process executions with unique command line parameters to
disjoint sets of cores on a node. In this case the user simply
ignores the MPI support.

Fig. 2 shows an example job submission script to execute
an MPMD hmmsearch with multiple shards of an input file.
A number of details in this configuration are notable. The
srun flags –n and –c determine the total number of processes
and the number of cores allocated to each, but notice their
product is 64 and not the expected 32. This is because Haswell
processors possess Hyper-Threading (HT) that, for resource
allocation purposes, is treated as two logical cores per single
physical core. Those two logical cores compete for shared
resources to the extreme degree that using HT results in only a
5-10% performance gain with most applications; for the
remainder of this writing HT will be avoided as not worth the
trouble. It’s unlikely the file split will perfectly balance load so
the –k flag is used to disable the default MPMD behavior of
ending a job when any one of its processes first exits. Note the
ability to use the %t symbol in an MPMD configuration script
to access the unique index of each task for use in parameters.
Finally, outside of the scripting, there is an additional
complexity for any pipeline or workflow using sharded input
file hmmsearch, as it must assume the responsibility to divide
inputs, store intermediate files, and merge output files.

An experiment was performed to demonstrate the possible
configurations and performance consequences of using
hmmsearch with split input files. The ten input file pairs used
in the thread scaling experiment were reused, with the
modification that sets of divided input sequence files were
created to distribute their total content between 2, 4, 8, 16, and
32 files. The number of input sequence files determined the
number of hmmsearch processes used and the number of
threads allocated to each that would fully utilize 32 Haswell
cores. Fig. 3 shows the speedup achieved by various ratios of
threads to split files along with a theoretical ceiling based on
perfect scaling of single thread performance to the full node.
Amusingly, ignoring the hmmsearch thread implementation
completely and only using the file system to parallelize
achieves the best performance.

Fig. 2. Example scripts to create a Slurm job which runs a sharded
hmmsearch using 16 input files and 2 threads each

Slurm Batch Script
#SBATCH -N 1
#SBATCH -t 00:30:00
#SBATCH -C haswell
srun -n 16 -c 4 --cpu_bind=cores --multi-prog –k

mpmd_16.conf

mpmd_16.conf
0-15 ./hmmsearch --cpu 1 -o out%t.txt

pfam/input.%t.hmm sequence.fasta

241

Fig. 3. Cori Haswell node hmmsearch speedup achieved by combining
thread scaling with split input file scaling. A single whisker column shows the
aggregate speedup factor of 10 different input combinations taken from
UniProtKB/Swiss-Prot and Pfam databases. Six different combinations of
input shard number and threads per process are shown. The dotted line shows
a ceiling calculated from theoretical perfect scaling.

Note that splitting input file contents by round robin
assignment of an entire sequence or HMM to each shard is not
the most equal distribution of work available. Sequence length
and HMM size are among factors determining needed run time
so a method which distributes shard content balancing amino
acid residues or model positions would reduce load imbalance
between processes. The load imbalance able to be reclaimed by
implementing this strategy relative to the labor needed to
devise, debug, and incorporate it into a workflow is poor. I
have yet to encounter an end user employing this method and it
will not be considered further.

C. Performance Analysis
It has been accepted among HMMER experts that

application performance in the parallel context is I/O bound.
This claim was tested on Cori by staging all input files in on-
node RAM, completely bypassing the file system, and
measuring the wall time of a large search. Results indicated
performance did not change in any measurable manner relative
to use of the file system. Though at a point in the past the
HMMER3 performance bottleneck may have indeed been disk
access, when exposed to our usage on Cori it is not.

A second experiment was performed to determine if
memory bandwidth is a factor that limits performance. It is an
option on Cori to reduce the CPU clock frequency of a
processor while leaving all other node systems unchanged. If
the clock speed is reduced 50% and the run time doubles then
the application is compute bound. If the run time increases by
less than double, such as when less frequent access can be
served by the memory system with fewer stalls, then it suggests
memory bandwidth or latency is indeed a limit on performance.
Experiments running hmmsearch with modified clock speed
suggest less than 4% of the running time can be attributed to
memory performance limitations.

 The thread implementation of hmmsearch poses a
curious difficulty for all modern performance analysis tools.
Each input HMM causes the master thread to fork a number of
child threads equal to the --cpu flag. When computation is
complete these threads are discarded, the next HMM is read,
and a new set of threads are forked. Threading analysis tools

shown this behavior cannot track the relationship between
subsequent groups of forked threads and instead report
thousands of independent and temporally disjoint threads each
with a tiny fraction of the total compute. Any rigorous analysis
of hmmsearch thread performance must employ a manual
aggregation of this information into comprehensible form.

The CrayPat performance analysis tool was used to collect
performance data while running hmmsearch. The executable
was augmented with pat_build to collect function call
sampling data. Functions were sorted into four categories:
input sequence I/O and parsing, thread creation and
destruction, thread blocking, and computation. Large sampling
reports of thread behavior were manually manipulated in a
spreadsheet to aggregate behavior by category and distinguish
master and worker threads.

Understanding these results requires a detailed explanation
of the threading model and data structure used to parallelize
hmmsearch. Threads are organized around a single master
that reads and parses all input, maintains a synchronized queue
and loads units of work into it, spawns and destroys worker
threads, removes completed work from the queue, and writes
output to file. A team of worker threads is created for each
input HMM and the synchronized queue distributes sequences
to the workers in this team for search against the HMM. When
all searches against that HMM are complete the worker team is
destroyed. The process is repeated until all HMMs have been
searched.

Function sampling results presented in Table I. demonstrate
the full range of pathology when hmmsearch master and
worker threads distribute work amongst themselves.

Choosing no worker threads activates the serial version of
hmmsearch and incurs no thread overhead or load balance
problem; the ratio of I/O to compute is 1:6, which is
conspicuously close to the empirically determined ideal
number of worker threads.

When one worker thread is present the master thread
performs essentially the same amount of I/O work as it does in
the serial case, but fills all time previously used for compute
with thread blocking, yielding a very similar total wall time.
The unimpressive speed gain can be explained as the master
thread filling the work queue faster than one worker can empty
it. A maximum queue capacity is quickly reached where the
master blocks as it waits for additional input space to become
available.

TABLE I. FUNCTION SAMPLING OF HMMSEARCH FOR VARYING NUMBER
OF WORKER THREADS.

 Master Average
Worker

Work
Thread

 I/O Join Wait Compute Wait

 Time
(seconds)

0 14% 83% 127
1 17% 81% 99% 114
3 41% 20% 37% 71% 28% 54
7 50% 32% 15% 44% 55% 47

15 46% 41% 9% 27% 72% 51

242

An experiment with fifteen worker threads demonstrates in
extremis the opposite imbalance relative to one fully loaded
worker thread. In this second case, the master thread has
increased it’s fraction of time spent performing I/O by a factor
of three and significantly reduced the amount of queue related
blocking, but replaced that queue spinning with thread fork and
join overhead. The average worker thread spends only 25% of
execution performing search while the rest is lost blocking on
the synchronized queue as it waits for new data to become
available. This behavior is a result of the single master thread
being unable to supply sequence at a rate comparable to the
rate at which workers consume it. Additionally, the master is
burdened by thread creation and destruction overhead. This
further explains why split input file hmmsearch scales so
much more effectively: having more than one master thread in
different processes both reduces thread overhead for each and
enables sequence parsing to occur in parallel. The overall effect
is the rate of input preparation increases and more worker
threads can be effectively supplied with data.

Results from CrayPat experiments also aggregate to suggest
a target for optimization. Less than 2% of the sampled time
attributed to I/O is spent in system buffered blocking read calls;
the rest is in sqascii_Read() and header_fasta(),
both of which are input parsing functions. This glut is a direct
consequence of the data access pattern in the hmmsearch top-
level application. A small overhead is needed to read, parse,
and error check one sequence from disk, but all such work is
discarded and duplicated for each new model. These parsing
functions are a primary factor limiting the rate new sequences
can be added to the thread-dispatching queue and thus total
application throughput.

IV. MODIFICATIONS

A. New hpc_hmmsearch Driver
All of the following optimizations have been implemented

by duplicating and then modifying only the top-level
hmmsearch driver (hmmsearch.c) into a new driver
(hpc_hmmsearch.c) while leaving the core pipeline intact.
Code implementing the pthread or MPI use of the synchronized
work queue was removed and replaced with a system based on
OpenMP task directives. Restricting the scope of modification
to only the top-level driver significantly reduced the analysis,
engineering, quality assurance, and time necessary to complete
the project. The new driver application will be referred to as
hpc_hmmsearch.

B. Input Data Buffers
The first major modification was to change data access

such that parsed sequence input data is retained in memory
buffers. These buffers store sequences and models such that
each traversal through an input file provides data to perform
multiple core pipeline calls. An attractive tradeoff is introduced
where using a modest amount of additional memory
significantly reduces the number of times entire input files
must be loaded and parsed.

With the expense of a few hundred extra megabytes of
RAM, which is abundantly available on Cori hardware, the

amount of CPU used to parse and error check sequence file
data can be reduced by a factor of 20 or more. This eliminates
25% of the total application computation off the top before
considering any other configuration decisions or optimizations.

C. Concurrent HMM searches
The distribution of HMMs amongst worker threads has

been changed in hpc_hmmsearch. The original
decomposition reads a single HMM, copies it to each worker,
divides input sequences between all threads, synchronizes
threads, and aggregates results when all searches against that
model are complete. This arrangement minimizes the time to
search a single model but introduces one thread
synchronization and the potential manifestation of load
imbalance for each additional model. The modified driver
distributes a unique HMM to each thread such that threads do
not need to sync and collectively aggregate reports for output.
Individual threads completing their assigned searches can
immediately output results and accept a new HMM without
dependency on other threads or reducing data structures. The
result is a more efficient packing of compute and fewer global
synchronization points, at the expense of reduced performance
when the number of HMMs is small relative to the number of
CPU cores (a situation which does not fit our usage).

D. Overlapping I/O and Compute Using OpenMP Tasking
All pthread code has been replaced with an OpenMP

implementation based on task directives. At the top level of
behavior, hmmsearch input file contents define an all-
against-all search area. The total area of this search can be
arbitrarily subdivided and the resulting rectangles streamed to
teams of worker tasks while I/O tasks execute alongside but on
input required during the next rectangle of work in the stream.
The change was implemented as follows:

Two pairs of buffers are created: a pair storing HMMs and
a pair storing sequence data; elements of each pair are referred
to as “flip” and “flop”. A top-level loop contains all the tasks
needed for a rectangle of work within a taskgroup directive
and iterates until all models in the HMM file have been fully
searched. I/O tasks write the HMM flop buffer to output if it
contains complete results and read sequence or HMM data
needed by the next taskgroup into flop buffers.
Concurrently, worker tasks perform core pipeline searches of
sequences and HMMs in the flip buffers, and deposit their
results into top-hits structs in the HMM flip buffer. When all
tasks in the taskgroup are complete the content of the
sequence flip and flop buffers are exchanged. This swap moves
the next rectangle of unprocessed searches to where they will
be accessed by worker tasks during the next taskgroup.
After a full scan through the sequence database file, the flip
and flop HMM buffers are swapped and the sequence file is
rewound.

With this organization, and reasonable configuration of
buffer sizes, workers do not need to wait for disk access,
parsing, or thread synchronization events. When a file access
task finishes before overall processing is complete it will
automatically convert itself to an additional worker thread.

243

E. Dynamic Load Balancing
Load balancing hmmsearch is a challenge due to the

highly conditional nature of its control flow. Though it is
simple enough to dispatch equal amounts of sequence to each
worker or balance the number of residues, uneven
concentrations of search hits advancing deeper into the pipeline
and consuming disproportionate resources cannot be
anticipated and lead to significant risk of imbalance. This effect
has been modestly mitigated using OpenMP taskgroup to
implement a work stealing mechanism in hpc_hmmsearch.

 All worker tasks are issued within a taskgroup directive
and the number of outstanding tasks is tracked; when that
number falls below the number of cores available then tasks
with a sufficient amount of unprocessed sequence will create a
new child task and pass half their remaining work to it. The
child task is then immediately scheduled to execute by the
runtime and occupies the empty core. The taskgroup
directive is needed to guarantee all child tasks spawned by the
work stealing mechanism have finished before finalizing a
rectangle of work and swapping buffers (a taskwait
directive would only collect all tasks at the same depth before
releasing, ignoring any child tasks that may remain
outstanding).

V. RESULTS
An initial performance experiment is included to directly

contrast the thread-scaling difference between the original
hmmsearch driver and hpc_hmmsearch. Fig. 4 presents
data obtained by running both hmmsearch drivers on the
Edison system with the same configuration as used to create
Fig. 1 (Edison is architecturally analogous to Cori Haswell, but
one generation older with 24 cores per node instead of 32).

Best practice performance has been evaluated by running
both hpc_hmmsearch and sharded file hmmsearch with a
new larger set of sampled input files on both types of Cori
nodes. The entire Pfam-A database was used for each
experimental search by creating sets of divisions that round-
robin distribute all Pfam HMMs between 2, 4, 8, 16, 32, and 64

files. Note that this division of the HMM database is different
from earlier file shard experiments which divided the sequence
database (A minor experiment confirmed that either division is
equivalent in terms of performance, though in practice,
dividing the HMM database is preferred because it is more
convenient to implement in a workflow). Sequence files for
this experiment were created via sampling one million protein
sequences from the UniProtKB/TrEMBL database.

Fig. 5 shows scaling performance results when running the
most effective Pfam file decompositions with hmmsearch
and hpc_hmmsearch on a Haswell Cori node. Reported
speedup is scaled against the wall time of running one single
threaded hmmsearch job with the same input. The best
performing hmmsearch among the available configurations,
using 32 serial processes, yields an average of 17.4 speedup.
Average speedup of hpc_hmmsearch is 26.4, a 51%
improvement and 61% closer to the theoretical maximum
throughput.

Fig. 6 displays Knights Landing node scaling performance
results for a range of hmmsearch file decompositions and
hpc_hmmsearch. The same series of Pfam input files were
used as the Haswell performance experiment, but the number
of sequences sampled was reduced by 80% to 200,000. The
reported speedup is scaled to the projected time needed to run
one single thread hmmsearch on a KNL node. A dashed line
marks an upper bounded speedup of 136, corresponding to the
full utilization of two hardware threads on each KNL core. Of
several reasonable decompositions, the best performing
hmmsearch configuration is 32 input file shards with 4
threads each, producing an average speedup factor of 57.5. The
KNL hpc_hmmsearch running with 136 threads yields an
average speedup factor of 116.1; this is a 101% improvement
above hmmsearch best practice on the KNL platform and
almost 4x closer to the theoretical maximum. Though KNL
speedup gains are much better than Haswell, the base
performance of KNL is handicapped enough that the shortest
wall times using the best configurations are still obtained using
a Haswell node.

Fig. 4. Speedup achieved by thread scaling hmmsearch (light) and hpc_hmmsearch (dark) on one Edison Ivy Bridge node with 24 cores. Whisker plots
show the aggregate speedup factor of 10 different input combinations taken from Swiss-Prot and Pfam databases. The dotted line shows the theoretical perfect
scaling trendline of the hmmsearch runs. The solid line shows the theoretical perfect scaling trendline of hpc_hmmsearch progression.

244

Fig. 5. Cori Haswell node hmmsearch speedup achieved by the three best
file split regimes, and the same input run with hpc_hmmsearch (hpc).
Whiskers show the aggregate speedup factor of 10 different input
combinations taken from UniProtKB/TrEMBL and Pfam databases. Dotted
line shows the theoretical perfect scaling ceiling.

Fig. 6. Cori KNL node hmmsearch speedup achieved by various file split
regimes, and the same input run using hpc_hmmsearch (hpc). Whiskers
show the aggregate speedup factor of 10 different input combinations taken
from UniProtKB/TrEMBL and Pfam databases. Dotted line shows a
theoretical perfect scaling ceiling assuming 2 hardware threads per core.

VI. DISCUSSION

One important point is examination of the performance
discrepancy between running HMMER3 on Haswell vs. KNL
nodes. Optimally configured and everything else being equal, a
HMMER3 job will always run faster on a Haswell node than
on a KNL node. Haswell completes a single-thread
hmmsearch job 3.9x faster than the same single-thread job on
KNL, a well-configured split file job 1.2x faster, and an
hpc_hmmsearch job 1.45x faster. The flexibility to run
either is, however, still valuable as being able to run HMMER3
well on KNL can still benefit users when balancing allocation
charge factors, queue demand differences, and the fact that
over four times as many KNL nodes are available on Cori.

What characteristics of these systems make Haswell more
suitable to run HMMER3 than KNL? The primary suspects are
the core filter kernels implemented using SSE vector
instructions. Each KNL core operates at half the frequency of a
Haswell and only has one vector-processing unit (VPU) able to
execute legacy vector instructions. Any possible gains from the

4x wider AVX-512 vectors or the 4 hardware threads per core
can’t be realized through the VPU bottleneck as the HMMER3
core is currently implemented.

What consideration has been given to improving core
pipeline components? The ratio of effort to reward when
considering a vector modernization of HMMER3 pipeline
kernels offers an intimidating calculus. Most potential upside
for NERSC users is cut off at the knee because HMMER3 core
components use byte and word sized instructions, but KNL
silicon does not support the AVX-512BW instruction set which
implements them. Upgrading software to AVX2 (256 bit vector
width instructions) could theoretically offer up to 2x speedup
but that would break compatibility with Edison (NERSC’s
previous generation production system), KNL performance
would still be limited to the single legacy VPU per core, and
the modifications would incur an enormous labor effort to
manually convert, debug, and verify every pipeline component,
data structure, and post-processing routine in the entire
software stack. Furthermore, the HMMER4 development team
has claimed and finished implementing support for all modern
vector instruction sets; any work in that direction would be
redundant. This does not only apply to vectorization porting;
all work on HMMER3 will become obsolete when HMMER4
is released. To be successful this project needed to be
completed and enter production well before then.

A revised calculation of the estimated time needed to
search IMG against Pfam quantifies the benefit to NERSC
users since hpc_hmmsearch has entered production. I must
concede the initial 600,000 CPU hour estimate was incendiary;
a real power user would not use the naïve decomposition but
instead split Pfam into 8 parts, IMG into 2,500 fasta files, and
submit 2,500 jobs each packing 8 hmmsearch with 4 threads.
The total allocation would use approximately 60,000 CPU
hours, be throttled by the policy limit of 200 queued jobs per
user, and take 25 days to pass entirely through the queue. A
second researcher generating the same data using
hpc_hmmsearch could split 1,000 fasta files, queue 1,000
jobs, consume 23,000 CPU hours, and fully clear the queue in
10 days.

Collaboration with a FICUS JGI-NERSC [18] project
provides a detailed real world anecdote of the performance
gained using hpc_hmmsearch. A component in the project
workflow required a HMMER3 search of 2.2 billion IMG
protein sequences against 229 curated HMMs. Basic use of
hmmsearch for this task is estimated to be almost 60,000
CPU hours while split file configuration would consume
approximately 7,500 hours. These usage numbers are
overestimates because they are calculated with scaling factors
derived from our earlier experiments; the distribution of the
project’s metagenomic data contains fewer search hits and thus
spends a smaller fraction of time in deeper pipeline stages. We
worked with the project to integrate hpc_hmmsearch into
their workflow. The resulting work split the input sequence
into 184 parts of 12 million sequences each and consumed only
130 CPU hours.

The pattern of OpenMP tasking demonstrated in this
project is applicable and beneficial to a wider and more general
set of applications appearing in the bioinformatics toolbox.

245

Such applications follow a pattern of reusing one or more well-
abstracted core kernels that do not induce side effects or data
dependencies on other kernel calls. In these cases some tasks
can perform I/O and prepare future data buffers while other
tasks issue the kernel calls on prepared data or empty
completed buffers to output. Throughput limited reductions,
local filters, or all-against-all algorithms such as string or
similarity searches can directly mimic this design. The pattern
can also accommodate methods that require large and shared
read-only data structures such as an FM-index or k-mer table.
All worker tasks can trivially share a single copy of that data
structure in the OpenMP shared memory environment.

VII. CONCLUSION
This work describes in detail the process of adapting

HMMER3 to better conform to the needs of the NERSC user
community and the Cori supercomputer. Performance analysis
indicated that data processing in the top level driver of
hmmsearch was the best target for optimization efforts. Only
a modest amount of labor was necessary to refactor the
threading architecture to use OpenMP tasking, overlap I/O and
computation activity, automatically load balance between
tasks, reduce I/O overhead by buffering input sequence, and
simplify the best practice use of hmmsearch in a workflow
context. The hpc_hmmsearch driver has been in production
on NERSC systems for over a year at the time of this
publication and has cumulatively reduced system-load by
hundreds of thousands of CPU hours.

SOURCE CODE
The hpc_hmmsearch driver can be obtained at

https://github.com/Larofeticus/hpc_hmmsearch along with
instructions for installation and usage.

ACKNOWLEDGMENT
The research and development described in this writing has

been generously supported by the Joint Genome Institute, the
Intel Parallel Computing Center at Lawrence Berkeley
National Laboratory, and the NERSC Exascale Science
Applications Program.

 REFERENCES
[1] S. Eddy, “Accelerated profile HMM searches,” PLoS Computational

Biology, vol. 7, no. 10, 2011. doi:10.1371/journal.pcbi.1002195
[2] S. Eddy, “Profile hidden markov models,” Bioinformatics, vol. 14, pp.

755-763, 1998.

[3] M. Farrar, “Striped Smith-Waterman speeds database searches six times
over other SIMD implementations,” Bioinformatics, vol. 23, pp. 156-
161, 2007.

[4] D. Horn, M. Houston, and P. Hanrahan, “ClawHMMER: A streaming
HMMer-search implementation,” in Proceedings of ACM/IEEE
Supercomputing Conference, 2005.

[5] X. Li, W. Han, G. Liu, H. An, M. Xu, W. Zhou, and Q. Li, “A
speculative HMMER search implementation on GPU,” in IEEE 26th
IPDPS Workshop and PhD Forum, 2012, pp. 73-74.

[6] H. Jiang and N. Ganesan, “Fine-grained acceleration of hmmer 3.0 via
architecture-aware optimization on massively parallel processors,” in
Parallel and Distributed Processing Symposium Workshop (IPDPSW),
2015 IEEE International. IEEE, 2015, pp. 375-383.

[7] T. Oliver, L. Y. Yeow and B. Schmidt, “High Performance Database
Searching with HMMer on FPGAs,” Parallel and Distributed
Processing Symposium, Mar. 2007, pp. 1-7.
doi:10.1109/IPDPS.2007.370448

[8] S. Derrien and P. Quinton, “Parallelizing HMMER for Hardware
Acceleration on FPGAs,” in IEEE ASAP, 2007, pp. 10-17.

[9] Y. Sun, P. Li, G. Gu, Y. Wen, Y. Liu and D. Liu, “Accelerating HMMer
on FPGAs Using Systolic Array Based Architecture,” in IEEE IPDPS,
2009, pp. 1-8.

[10] T. Takagi and T. Maruyama, “Accelerating HMMER Search Using
FPGA,” in Proceedings of the 19th International Conference on Field-
Programmable Logic and Applications, No. T3C1, 2009.

[11] J. Lu, M. Perrone, K. Albayraktaroglu, and M. Franklin. “HMMer-Cell :
High Performance Protein Profile Searching on the Cell/B.E. Processor.”
IEEE International Symposium on Performance Analysis of Systems and
software, 2008, pp. 223-232.

[12] S. Isaza, E. Houtgast and G. Gaydadjiev, "HMMER Performance Model
for Multicore Architectures," 14th Euromicro Conference on Digital
System Design, Oulu, 2011, pp. 257-261.
doi: 10.1109/DSD.2011.111

[13] J. P. Walters, B. Qudah and V. Chaudhary, "Accelerating the HMMER
sequence analysis suite using conventional processors," 20th
International Conference on Advanced Information Networking and
Applications – Vol. 1, 2006, pp. 6. doi: 10.1109/AINA.2006.68

[14] J. P. Walters, R. Darole and V. Chaudhary, "Improving MPI-HMMER's
scalability with parallel I/O," 2009 IEEE International Symposium on
Parallel & Distributed Processing, Rome, 2009, pp. 1-11.
doi: 10.1109/IPDPS.2009.5161074

[15] V. M. Markowitz, I. A. Chen, K. Palaniappan, K. Chu, E. Szeto, Y.
Grechkin, and A. Ratner. “IMG: the Integrated Microbial Genomes
database and comparative analysis system.” Nucleic Acids Research,
Database Issue 40, 2012, D115-D122.

[16] R.D. Finn, P. Coggill, R.Y. Eberhardt, S.R. Eddy, J. Mistry, and
A.L. Mitchell. “The Pfam protein families database: towards a more
sustainable future.” Nucleic Acids Research, Database Issue 44, 2016,
D279-D285.

[17] The UniProt Consortium. “UniProt: the universal protein
knowledgebase.” Nucleic Acids Research, Database Issue 45, 2017,
D158-D169.

[18] https://jgi.doe.gov/user-program-info/community-science-program/how-
to-propose-a-csp-project/ficus-jgi-nersc/

246

