
Scalable FRaC Variants: Anomaly Detection
for Precision Medicine

Cyrus Cousins
Department of Computer Science

Brown University

Email: cyrus cousins@brown.edu

Christopher M. Pietras
Department of Computer Science

Tufts University

Email: christopher.pietras@tufts.edu

Donna K. Slonim
Department of Computer Science

Tufts University

Email: slonim@cs.tufts.edu

Abstract—The FRaC anomaly detection algorithm has
been previously used to identify anomalous mRNA expres-
sion patterns, and has served as the core of an approach
that characterizes individual anomalies by identifying dys-
regulated molecular functions. However, FRaC operates
by training supervised models for each feature in a data
set. Thus, scaling to substantially larger data sets, such as
those reflecting common sequence variants, would require
prohibitive amounts of computation time and memory.
Additionally, although FRaC is designed to be relatively
robust to irrelevant variables, it is not perfectly so; due
to the low sample sizes and large number of variables in
molecular data sets, substantially increasing the number of
features beyond those in gene expression data sets raises
the possibility of overwhelming the signal with noise. In this
paper, we examine the scalability of FRaC variants using
different feature reduction methods. We demonstrate that
it is possible to preserve the anomaly detection accuracy of
the original FRaC algorithm while requiring considerably
fewer computational resources, allowing these methods to
scale to handle other types of genomic data.

I. INTRODUCTION

Recent rapid technological advances have increased

the prospects for precision medicine, allowing us to tailor

medical care to individual patients or patient groups

based on underlying molecular patterns. This problem

is well-suited to the machine learning framework of

anomaly detection (1), in which predictive models are

trained on a population of either all normal or mostly

normal samples, and new samples are then individually

compared to this population to identify abnormalities

or outliers. Anomaly detection has great potential for

precision medicine applications. It can be used to detect

and explain rare medical abnormalities, such as obscure

genetic diseases, or to characterize specific instances

of molecularly heterogeneous disorders (2), for which

assembling a homogeneous data set may be challenging.

However, finding anomaly detection methods that

handle tasks of the size of most genomic classifica-

tion problems is not trivial. Among other concerns,

the chosen methods need to be relatively robust to

irrelevant variables, given that the majority of features

in most genomic data sets are likely to be irrelevant to

the chosen phenotype. The interpretability of anomaly

detection algorithms is also important. It is not enough

to determine that a sample is anomalous; we also want

to derive a molecular characterization of that specific

anomaly to yield insight into the nature of an individual

patient’s condition.

In previous work, we developed Feature Regression

and Classification (FRaC), a robust feature prediction

approach for the anomaly detection problem (3), and

we showed that it is more robust to irrelevant variables

(4) than top competing methods such as local outlier

factor (5) or one-class support vector machines (6). We

then used FRaC as a component of CSAX, a method

for identifying and interpreting anomalies in individual

gene expression samples (7). We applied this approach

to a collection of 28 public gene expression data sets,

which we refer to here as the “CSAX compendium.”

These data sets generally suffer from two characteristics

that negatively impact their amenability to learning: high

dimensionality and low sample sizes. For example, while

the classical machine learning data sets in the UCI

repository (8) typically have hundreds to hundreds of

thousands of samples yet fewer than 1,000 features, the

data sets in the CSAX compendium typically have at

most a few hundred samples and from a few thousand

to over 50,000 features.

Most anomaly detection methods struggle in such

cases. Theoretically, all of these problems could be

intractable: if an anomaly is only marked by abnormal

expression of a single gene, no computational method

could ever distinguish that signal from noise. Fortunately,

most phenotypes of interest involve large numbers of

related genes. In our previous work, we demonstrated

that anomaly detection difficulty is to a large degree

an inherent characteristic of the data set, reflecting the

number of and relationships between relevant features,

regardless of the computational method used. We also

demonstrated that FRaC and CSAX perform well on

many data sets in the CSAX compendium, and that they

are on average more effective than prior methods, which

appear to be more susceptible to the effects of irrelevant
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variables.

Although FRaC and CSAX work relatively well, they

are computationally slow, because a FRaC predictive

model is constructed for each of the features as a

function of all others, and CSAX includes bootstrapping

over multiple FRaC runs. Parallelization can help, but the

overall commitment in CPU time and memory usage is

still substantial. While the problem is tractable for data

sets the size of those in the CSAX compendium, scaling

to much larger problems will require better methods.

With the advent of high-throughput genotyping and

the decreased cost of sequencing, however, we have

reason to try to solve this problem. It has been pos-

tulated that a similar anomaly detection approach using

genotype data, in which one tries to find relationships

between multiple common sequence variants that dis-

tinguish individual patients from the healthy normal

population, might be a valuable approach to understand-

ing the heterogeneity of complex diseases. Such an

approach has potential not only to detect novel genotypic

abnormalities as a diagnostic tool, but also to identify the

underlying molecular causes of disease susceptibility.

But genotyping data sets measuring common single

nucleotide polymorphisms (SNPs) are different from

the real-valued expression data sets. Each variable is

typically a ternary categorical variable (a site is either

heterozygous, or homozygous for either the major or

minor allele). Genotyping arrays commonly include half

a million or more features, and high throughput se-

quencing now allows genotyping essentially all common

variants. (Note that rare variants are less useful in an

anomaly detection context, because a rare variant, even

an irrelevant one, will always appear to be anomalous.)

In this paper, we focus on scalability for both gene

expression data sets from the CSAX compendium and

on two public SNP data sets. Specifically, we address

the issues of computation time and sample complexity.

In FRaC, a model is trained for each feature, using

every other feature as input. Previous work has seen

most success using support vector machines (SVMs) as

the underlying model, likely because they are efficiently

trainable and through regularization can mitigate the

impact of overfitting. However, with the small sample

sizes in many biomedical experiments, the time cost of

training hundreds of thousands of SVMs is substantial,

and the memory requirement is also prohibitive. Further-

more, even with regularization, it is far too easy for even

a linear SVM to overfit on these data sets.

Specific to discrete data is the issue of representation.

Many modeling techniques, such as SVMs, assume con-

tinuous data, and exactly how to represent discrete data

in order to use the modeling techniques is a matter of

some debate. We avoid this issue by modeling discrete

features using decision trees. We further convert the

ternary SNP features to binary vectors as described

below.

An additional issue with the FRaC algorithm is that

while some patterns in data may be obvious, others may

be subtle. For instance, it may be that gene A is promoted

by gene B and less strongly by gene C. It may be that

the action of C is masked by that of B, so for instance

a decision tree may fail to identify this relationship.

As a result, if this relationship is violated in abnormal

specimens, the breakdown may go undetected. FRaC,

running on a data set with so many irrelevant variables,

may miss the impact of the weaker predictor entirely.

In this paper, we discuss techniques that filter and

project a data set in various ways to produce simpler

learning problems that are more efficiently computable

and less susceptible to overfitting. We use randomization

to solve reduced problems, which partially addresses the

issue of subtle patterns being masked by stronger ones.

A. Background

1) The FRaC Algorithm: FRaC works by computing

an anomaly criterion known as normalized surprisal
(NS). The NS score is an information-theoretic measure

of the amount of information carried by by each feature

of a data point, conditioned on the other features.

The FRaC algorithm is defined to work on data that

is real, categorical, or mixed. For a data point x of f
features, the normalized surprisal NS(�x)

.
=

f∑
i=1

p∑
j=1

{
�xi defined : - log (P(�xi|pij(�x1,...,i−1,i+1,...,f )))−H(fi)
otherwise : 0

Here P(�xi|pij(�x1,...,i−1,i+1,...,f )) is the probability

of having true feature value �xi given the prediction

produced by predictor pij given �x1, . . . , �xi−1, �xi+1, �xf ,

and H(fi) is the entropy of feature i (as calculated using

the training set).

Predictors can be any supervised learning algorithm,

and probabilities are estimated with error models, which

in the discrete case are confusion matrices, and in

the continuous case are density function estimators

for the probability density function given by �xi −
pij(�x1, . . . , �xi−1, �xi+1, �xf ).

In order to train error models, k-fold cross validation

is used, and predictions on the holdout fold, paired with

the true value, are used to construct error models. Then,

the entire data set is used to train predictors.

In this paper, all continuous features are learned with

linear support vector machines. This choice was made

because the SVM is a regularized model, and the linear

SVM has a particular constrained hypothesis class. As

such, although this model is only able to learn linear

functions, it is not highly susceptible to overfitting. This

is extremely important in learning high dimensional data
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with small sample sizes. Error models simply fit a Gaus-

sian to the error distribution, as again there is insufficient

data to accurately learn a more detailed model. Finally,

categorical features are learned using decision trees, and

their error models are simply confusion matrices.

For the data sets we consider here, where anomaly

detection problems are built from standard classification

problems, we in fact do know the right answers. We can

therefore train our models on a training set consisting

solely of control samples, and compute surprisal scores

on samples in a test set consisting of both control and

anomalous samples. We can then evaluate the perfor-

mance of anomaly detection methods by computing the

AUC (area under the Receiver Operating Curve (9)), by

ranking the anomaly scores of anomalous and control

samples in the test set, as in the FRaC and CSAX papers.

Because Normalized Surprisal is a giant sum, FRaC

is highly parallelizable. On the other hand, due to cross-

validation, each component of the sum requires the

training of multiple models, so computing the entire

sum is computationally intensive. In this paper, we

focus primarily on techniques that modify exactly what

is computed in ways that don’t negatively impact the

accuracy of the technique, while improving time and

memory efficiency.

2) The Johnson-Lindenstrauss Lemma: The Johnson-

Lindenstrauss (JL) transform is a technique by which a

point set can be projected into a low-dimensional space

while preserving key properties of the original space

(10). Using the ε-δ formulation of the transformation,

described below, the JL transform is independent of

the training set, and thus doesn’t risk preferentially

destroying the very signal FRaC detects, as might a data-

dependent transform such as PCA.

In (11), the authors give an algorithm for a storage-

and computation-efficient dimensionality-reducing

Johnson-Lindenstrauss transformation. In (12), the

authors show that, like distances, dot products are

approximately preserved by Johnson Lindenstrauss

transformations.

The Johnson-Lindenstrauss lemma proves that these

distance guarantees hold. Specifically, it states that, given

n points, there exists a projection into k-dimensional

space such that the square Euclidean distance between

any two points is perturbed by a factor no less that 1− ε
and no greater than 1+ε, so long as the following holds:

k ≥ 4 ln(n)

ε2/2− ε3/3

This formulation is actually much stronger than we

need. We really don’t need every pair of points to have

their distances preserved: it suffices to have most dis-

tances preserved. But given this strong distance preser-

vation property, it is reasonable to assume that if learning

is possible in the unprojected space, it will be almost as

effective in the projected space.

The distributional form of the lemma gives the guar-

antee that the distance between any two points is simi-

larly constrained with probability 1 − δ, so long as the

following holds:

k ≥ ln
(
2
δ

)

ε2/2− ε3/3

The distribution from which the JL transform is drawn

may then be a k×d matrix where all entries are Gaussian

distributed or Uniform(−1, 1) distributed.

We will therefore investigate whether using the JL

transform to reduce the dimensionality of the anomaly

detection problem allows us to preserve the accuracy

of an anomaly detection algorithm while reducing the

computational resources needed.

Note that, perhaps counterintuitively, neither formula-

tion of the JL lemma depends on the input dimension.

Consider that you can rotate n points in any dimensional

space into n−1 dimensional space. With this in mind, it

should not be surprising that the JL lemma is dependent

on the original number of points rather than the original

dimension. The probabilistic version of the formula

doesn’t even depend on n, because it is just a statement

about the fraction of point pairs that have their distance

preserved.

II. SCALABLE FRAC VARIANTS

Here we describe several techniques, including one

using the above lemma, for reducing the magnitude of

the FRaC learning problem. A graphical overview of

several filtering techniques is given in Figure 1.

A. Filtering

Filtering techniques can be divided into full filtering
and partial filtering. The former is a computationally

efficient but heavily lossy technique; the latter, a slower

but less lossy technique. Filter techniques identify some

property of each feature, rank the features by this prop-

erty, and remove some features from consideration. In

full filtering at a percentage p, p of these features are kept

while the rest are removed entirely, and the technique

simply runs ordinary FRaC on the remaining features.

In partial filtering, these 1 − p features aren’t removed,

but we do not construct predictive models for the filtered

features. However, these features are used to construct

models to predict non-filtered features.

In this manuscript, we evaluate simple random filter-

ing, in which we remove features from the data set at

random. For expression data sets, we know that there is

likely to be enough correlation between expression of
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Predictors

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Features

Filtering: features {2, 4, 7}.

Predictors

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Features

Partial Filtering: features {1, 3, 5, 7}.

Predictors

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Features

Diverse FRaC, p = 1
3 .

Fig. 1. Graphical depiction of FRaC variants. In this example with eight features, predictors for a subset of the features are trained on the
whole feature space except for the target feature (partial filtering), or on the chosen subset of the feature space except for the target feature (full
filtering). Diverse FRaC chooses both target features and the training features randomly. Lines in the figure indicate that a feature is considered
by a predictor.

different genes that random filtering is likely to be ef-

fective. This is not as obvious for the genotype data, but

these data sets may contain enough signal redundancy

to allow random models to preserve anomaly detection

accuracy. We considered random partial filtering as well,

but we do not present results based on this approach here

because our initial experiments found this approach to

be inferior to full filtering.

There are many possible ways, other than random

selection, to choose features for filtering. Entropy fil-

tering, where one ranks features by information content

and keeps only the highest entropy features, is one such

method. For nominal features with values v1, . . . , vk
we estimate the likelihood of each vi, pr(vi), from

its frequency fi in the training set, and define entropy

as
∑k

i=1−pr(vk) log(pr(vk)). For continuous features

distributed with density f(x), the differential entropy is

defined as − ∫∞
−∞ f(x) log(f(x)) dx. We estimate this

value by fitting a Gaussian kernel density estimator (13)

to the feature values over the training set, and computing

the differential entropy of f̂(x). Removing low entropy

features may be useful because these features are less

interesting, particularly in the discrete case, where the

features may be highly predictable but have low surprisal

if they are not relevant to the anomaly of interest. Such

features mostly contribute noise to the FRaC algorithm,

so removing them may improve performance.

B. Diverse FRaC

Similar to the filtering techniques, the Diverse FRaC

technique is intended to simplify each learning problem

by learning each feature on a subset of the remaining

features. Specifically, for some probability p, at feature

i, each feature j �= i is selected with probability p. Then,

a predictor for i is trained using only the features that

were selected.

This approach may combine some of the potential

strengths of partial filtering and full filtering, as Fig-

ure 1 illustrates. Furthermore, in addition to addressing

the computational issue with respect to memory and

time costs, this technique also addresses the sample

complexity issue, as learning in the reduced spaces is

less prone to overfitting. Notably, it also allows subtle

patterns to be detected over stronger, particularly when

features necessary to learn stronger patterns are absent.

This addresses the issue cited in the introduction where

a pattern is not learned due to the presence of a stronger

patter. To further detect these sorts of patterns, we can

train multiple predictors for each feature, each utilizing

a different feature subset, though this increases the

computational cost of the technique.

C. Ensembles

As mentioned earlier, the normalized surprisal score

for a sample is simply the summation of the surprisal

scores for all its terms. This makes implementing en-

sembles of FRaCs very easy - one simply sums all the

normalized surprisal scores over all the members of the

ensemble. If multiple members of the ensemble have a

score for one feature, one can simply combine them by

taking the median score for that feature. Ensembles of

multiple random full filtered or diverse FRaC models can

greatly increase the stability of results.
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Feature Schema: R R R R {0,1,2} {0,1,2,3}
Data: 3.4 0 −2 0.6 1 2

1-Hot Transform: — — — — 〈0,1,0〉 〈0,0,1,0〉

Vector Concatenation: 〈3.4, 0,−2, 0.6, 0, 1, 0, 0, 0, 1, 0〉
JL-transform: Apply 11× 4 random linear transform.

Possible Result: 〈2.5,−3, 1.05,−2.73〉
Fig. 2. Illustration of the 1-hot transform, vector concatenation, and
JL transformation preprocessing steps.

D. Preprojection

In this technique, we take a data set that may include

categorical variables and convert it to an entirely real

data set. This is accomplished by converting categorical

k-ary features to 1-hot1 vectors, and concatenating all of

these vectors with a vector representing any real features.

We then apply the JL transform to the entire data set,

reducing it to a low-dimensional space, and then perform

ordinary FRaC in the projected space. The process is

illustrated in Figure 2.

This projection addresses all three issues discussed in

the introduction: clearly computation time will be sub-

stantially improved, as we train fewer models in simpler

spaces. The approach also aids in sample complexity,

as low-dimensional models are less prone to overfitting.

Lastly, by performing this projection, we end up posing

a large number of similar regression problems, some of

which may be dominated by strong relationships and

others of which rely on weaker relationships.

Let us first discuss the interpretation of this technique

over real data sets with linear regressors. After perform-

ing the projection, each feature is a linear combination

of other features. The task is thus to learn a sum of

functions, given a feature space such that each feature is

a also a linear combination of features from the original

space. Of course, the very features we are trying to learn

may also be components of the features from which

we are learning, but so long as no linear combination

of features exactly matches the linear combination of

features we are trying to learn, we still must learn

something for each combination feature.

The same interpretation applies to nonlinear regression

techniques, except the linear combinations interpretation

is somewhat less relevant.

The interpretation for discrete data sets is a bit more

subtle. Each feature in the input space corresponds to one

class of one discrete feature, and features in the projected

space now represents sums of these input features.

1A 1-hot vector for a categorical feature over k categories is a k
dimensional vector, where category j maps to a vector �v such that
�vj = 1 and �vl = 0 for any l �= j. For example, categories 1 and 3
out of {1, 2, 3} would map to 〈1, 0, 0〉 and 〈0, 0, 1〉, respectively.

TABLE I
Number of features, normal samples, and anomaly samples for each

data set.

data set features normal anomaly
breast.basal 3167 56 19
biomarkers 19739 74 53
ethnic 19739 95 96
bild 20607 48 7
smokers2 19739 40 39
hematopoiesis 13322 97 91
autism 7267 317 228
schizophrenia 171763 280 54

One attractive property of the preprojection technique

is that it is very likely that there is something to learn in

each of the projected features. With the original FRaC

algorithm, it is easy for some features to be unlearnable

from the remaining features. In that case, unless the

target features are uniformly distributed in the training

data2, each such feature adds only noise to the NS score.

When a substantial number of these features exist, as

seems likely in many biological data sets, this noise may

degrade the performance of FRaC. However, because

projected FRaC features are linear combinations of the

original features, it is unlikely that any projected feature

is unlearnable, so this issue may be mitigated.

One issue with JL preprocessing is that it becomes

more difficult to identify relevant features and feature

relationships. We can however examine the output in

aggregate, and it may be possible to identify input

features that are present in many of the highly predictive

projected features.

III. EXPERIMENTS

A. Data Sets

We present results from six expression data sets and

two SNP datsets. The expression data sets are taken

from the CSAX compendium (7), and were selected

for being relatively predictable (FRaC AUCs above

approximately 0.6) and for having a range of feature and

sample sizes. One important conclusion from the original

FRaC and CSAX papers was that the difficulty of an

anomaly detection task is an inherent property of the

data set; performance of all anomaly detection methods

was highly correlated across different data sets, which

can be either ”easy” (no matter how you look at them,

the anomalous samples stand out), or ”hard” (there is

little or no signal in the data with which to predict which

samples are anomalous). We therefore selected data sets

for this study that appeared to range from “feasible” to

2Note that features that are uniformly distributed over the training set
and are predicted uniformly given any true label make no contribution
to NS, as the surprisal values are always equal to the entropy value,
thus subtractively cancelling.
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“easy,” and augmented them with two SNP data sets. We

chose publicly available anonymized SNP data to avoid

human subjects concerns.

Three of the expression data sets - biomarkers (14),

ethnic (15; 16; 17; 18; 19; 20; 21), and breast.basal (22)

- were used for initial methods development, while the

other three - bild (23), smokers2 (24), and hematopoiesis

(25) - were brought in later.

The first SNP data set is a subset of an autism data

set from GEO, GSE6754 (26). This is a small SNP data

set, with only 7267 features, so it was possible to run

FRaC on the entire data set. However, likely because of

the complexity of the molecular causes of autism, FRaC

has no predictive power on even the full data set (mean

AUC of 0.50), so insights gained here are mainly to do

with how much time improvement we can expect without

making things worse.

The second SNP data set is a schizophrenia data set

compiled from several different sources. The training

set consists of 270 normal HapMap (27) samples from

GSE5173 (28), while the test set consists of 10 normal

samples from GSE21597 (29) and 54 schizophrenic

samples from GSE12714 (30). This data set has 171763

features and is far too large to run in a reasonable amount

of time. Entropy filtering on this data set produced al-

most perfect results, with an AUC around 1.0. However,

given the difficulty of even diagnosing schizophrenia

with such accuracy, we don’t believe that the high AUC

represents true relationships between variants linked to

schizophrenia. Rather, we suspect that FRaC is instead

detecting differences in ancestry that are confounded

with disease status in this data set. Results from this

data set, therefore, though not necessarily biologically

informative, are useful for determining how to run such

algorithms on larger collections of genotyping data.

They also demonstrate that it is possible to identify

signals related to variation in SNP data sets by anomaly

detection methods.

For each data set except schizophrenia, we construct

five replicates. Each replicate consists of a training

set containing a randomly selected two-thirds of the

normal samples. The test set consists of the remaining

normal samples as well as all non-normal samples. The

schizophrenia data set consists of only a single replicate,

constructed as noted above.

B. Settings

In these experiments, we use Support Vector Machines

with a linear kernel for all six expression data sets,

exactly as in the original FRaC paper, and implemented

with libSVM (31). In initial experiments, SVMs did

not appear to work well on the discrete SNP data,

taking more time and space to compute while producing

less accurate anomaly scores compared to decision tree

models. Thus, for the SNP data sets, we train decision

trees as the predictive models, implemented with the

Waffles library (32).

1) Filtering and Filtering Ensembles: Initial exper-

iments with filtering revealed that partial filtering was

consistently worse than full filtering in time, space,

and AUC preservation across all data sets, so partial

filtering results are not presented here. Random selection

of filtered features proved to be the most effective

method, though entropy-based filtering methods proved

effective on some data sets. However, random filtering at

small values, though fast, is not particularly stable, and

results could vary wildly depending on exactly which

features were kept. On some data sets, AUCs fell within

an absolute range of up to .2, even within the same

replicate. To remove this source of variability, we moved

to ensembles of full filtered FRaC, in which FRaC was

run 10 times at a filtering value of .05 (5% of features

kept). Each sample’s final NS score is simply the median

of all NS scores generated by members of the ensemble.

Entropy filtering results for p = .05 are also presented.

2) Diverse: Diverse FRaC was run with p = 1
2 .

This value was selected as it halves the size of each

learning problem, resulting in substantially less memory

and computation time use.

We also ran experiments with ensembles of diverse

FRaC. In these experiments, we ran 10 instances of

diverse FRaC with p = 1
20 in order to fairly compare

with the full filtering ensembles.

3) JL: The JL experiments were run with a projected

dimension of 1024. This number was selected as it is a

round number, results in a computationally efficient data

set reduction, and gives the probabilistic JL guarantee

with δ = 0.05 and ε = 0.057 (in other words, 19 of every

20 pairs of points have their square distance distorted by

a factor in [0.943, 1.057]).
For the schizophrenia data set, we ran additional

JL experiments with projected dimensions of 2048 and

4096.

IV. RESULTS AND DISCUSSION

In Table II, we report the results of running the

original FRaC algorithm on each of these data sets.

The table shows the mean and standard deviation of the

AUCs across five replicates of each method. We note that

the last row, in italics, represents only an estimate for the

full Schizophrenia data set. Based on the time required

for the small autism SNP data set, we extrapolated to

determine the expected running time and memory usage.

Tables III and IV show the results for the random

filtering ensembles, JL transform, entropy filtering, di-
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TABLE II
Full run results, showing mean AUC, AUC standard deviation, CPU
time, and memory usage across all replicated for each data set. We

were not able to run full FRaC on the schizophrenia data set.
Therefore, time and memory performance for this data set were

estimated by extrapolation from the performance on the autism data.

data set AUC Time (h) Mem (GB)
breast.basal 0.73 (0.06) 1.02 4.59
biomarkers 0.88 (0.05) 58.21 152.54
ethnic 0.71 (0.03) 96.67 195.11
bild 0.84 (0.08) 36.51 106.59
smokers2 0.66 (0.04) 29.23 82.57
hematopoiesis 0.88 (0.02) 56.56 90.69
autism 0.50 (0.03) 188.40 3.39
schizophrenia N/A 44,000 148

Fig. 3. JL transform AUC performance on the schizophrenia data set
with various numbers of projected dimensions (d). Each data point is
the average AUC of ten different projections at a given (d), with error
bars representing standard deviation.

verse, and diverse ensemble FRaC algorithms on the six

expression data sets and the autism data set, presented

as a fraction of the full results from Table II. In other

words, we are no longer concerned with how well we

can do at anomaly detection, but how well we can do (or

how quickly we can do it) compared to running the full

method. Table V contains results for some methods on

the schizophrenia data set. Because we did not run the

original FRaC algorithm on the full data set, this table

contains raw AUCs, but fractional run time and memory

usages based on the estimates in Table II.

Surprisingly, we find that it is possible to perform

anomaly detection with essentially the same accuracy

as in the full runs, but much more quickly. We see in

the tables that on average, all four methods other than

entropy filtering have nearly identical performance to

running FRaC on the full data sets, but significantly

reduced time and memory usage. Entropy filtering is less

consistent; it works extremely well on some data sets but

quite poorly on others.

Across the six expression data sets, all four of the

non-entropy methods exhibit comparable levels of AUC

preservation. JL pre-projection seems to perform best in

both run time and memory usage. Its prediction accuracy

is also very good. However, the complex projected

models make it more difficult to tell which of the original

features are contributing to anomaly scores. This might

be acceptable for the simple anomaly detection task, but

in most biological applications, the goal is not only to

identify anomalous samples, but to identify the molec-

ular reasons that they are being considered anomalous.

Therefore, for the best interpretability, one should use

the random filter ensembles method, which still does a

good job of preserving accuracy while being nearly as

fast as the JL transform. Diverse filtering and diverse

ensembles, we found, also learn well, but are typically

too slow and memory intensive to use effectively on

larger data sets.

For the SNP data sets, our conclusions are a little less

clear. Random filter ensembles appear to perform as well

as full FRaC on the autism data set. On the other hand,

this is a famously genetically heterogeneous disorder, so

it is perhaps not surprising that the anomaly detection

task is essentially impossible (the full FRaC AUC hovers

around 0.50) to begin with. It seems unlikely that random

subsets could perform substantially worse than what is

already effectively random guessing. We therefore used

this data set primarily to estimate efficiency for the larger

SNP data set.

Our overall goal is to come up with recommendations

for scaling to discrete data sets. On the large schizophre-

nia data set, the true AUC, time, and memory usage

are unknown. Given the relatively high memory usage

for the diverse ensemble runs, we did not run these

on the schizophrenia data. However, we did try random

ensembles, entropy filtering, and the JL transform on the

schizophrenia data.

The JL experiments proved to be more variable than

expected on the discrete data, which might reflect the use

of decision trees rather than SVMs for the discrete data.

Initial results with 1024 dimensions suggested that there

was some signal (an AUC > 0.5) on this data set, but also

suggested that perhaps a larger number of dimensions

might be required to capture relevant patterns from

among so many features. As we increased the dimen-

sionality, we did indeed see better performance (Figure

3). Further experimentation will be required to determine

how to find the best tradeoff between AUC performance

and time/space requirements for future large SNP data

sets.

The poor performance of the JL preprocessing tech-

nique on the SNP data set, and to a lesser extent on

the autism data, may also indicate that this transform

is less effective for discrete data. The prediction task in
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TABLE III
Results for the Random Filter Ensemble, JL Projection, and Entropy Filtering techniques. AUC, Computation time, and memory usage shown

as fractions of the full run utilization. Each quantity is reported as an average across five replicates, and the average across all data sets is
reported as well. Standard deviation for the AUC fraction is reported in parentheses.

Ensemble of Random Filtering JL Entropy Filtering
data set AUC % Time % Mem % AUC % Time % Mem % AUC % Time % Mem %
breast.basal 1.01 (0.03) 0.278 0.005 0.98 (0.02) 0.258 0.078 0.97 (0.06) 0.028 0.004
biomarkers 1.09 (0.05) 0.046 0.003 1.08 (0.02) 0.003 0.003 1.01 (0.06) 0.004 0.003
ethnic 0.90 (0.03) 0.057 0.003 0.87 (0.04) 0.003 0.003 0.79 (0.06) 0.004 0.003
bild 0.97 (0.05) 0.029 0.003 0.98 (0.05) 0.003 0.003 0.93 (0.09) 0.002 0.003
smokers2 1.11 (0.07) 0.058 0.003 1.10 (0.09) 0.002 0.003 0.95 (0.06) 0.003 0.003
hematopoiesis 1.02 (0.02) 0.050 0.003 1.05 (0.02) 0.006 0.007 1.07 (0.02) 0.005 0.003
autism 1.02 (0.06) 0.030 0.028 0.94 (0.05) 0.008 0.548 0.90 (0.06) 0.005 0.043
Avg 1.02 0.078 0.007 1.00 0.040 0.092 0.95 0.007 0.009

TABLE IV
Results for the Diverse and Diverse Ensemble methods. Information is presented as in Table III.

Diverse Diverse Ensemble
data set AUC % Time % Mem % AUC % Time % Mem %
breast.basal 0.99 (0.01) 0.455 1.123 0.99 (0.01) 0.597 0.395
biomarkers 1.09 (0.05) 0.355 0.521 1.09 (0.04) 0.402 0.510
ethnic 0.91 (0.04) 0.401 0.518 0.92 (0.04) 0.372 0.518
bild 0.96 (0.05) 0.547 0.531 0.94 (0.06) 0.533 0.534
smokers2 1.12 (0.09) 0.270 0.536 1.12 (0.08) 0.290 0.540
hematopoiesis 1.02 (0.02) 0.226 0.514 1.03 (0.01) 0.259 0.517
autism 0.97 (0.06) 0.166 0.744 1.02 (0.01) 0.099 0.786
Avg 1.01 0.346 0.641 1.02 0.365 0.543

TABLE V
Results for JL Pre-projection, random filtering ensembles, and
entropy filtering on the schizophrenia data set. Information is

presented as in Table III.

method AUC % Time % Mem %
Entropy Filtering 1.00 (N/A) 0.004 0.017
Ensemble of Random Filtering 0.86 (0.01) 0.040 0.017
JL, 1024 comps 0.55 (0.08) 0.000 0.015
JL, 2048 comps 0.63 (0.09) 0.000 0.032
JL, 4096 comps 0.64 (0.08) 0.001 0.075

the transformed, discrete case is somewhat unusual, as

it is akin to predicting a weighted sum of feature values.

We may find success in future work by applying pre-

processing techniques tailored to preserve the structure

of discrete data. Additionally, using entropy-minimizing

decision trees in the transformed space may also have

negatively impacted performance, as this model is not
invariant under linear transformation. This suggests that

it is important to select a preprocessing technique that is

compatible with the learning models employed.

On the schizophrenia data set, entropy filtering at

5% of features had an AUC of 1.0, while keeping all

the performance benefits we see of random filtering.

Given the complexity of the schizophrenia diagnosis,

and the hybrid nature of the data set, we suspect that

the method is very accurately learning to distinguish

markers of ancestry or ethnicity in the control set from

ancestry in the affected patients, as they come from

different populations. Supporting this hypothesis, several

of the key features implicated in the entropy models

have allele frequencies that differ substantially across

the the HapMap populations. On the other hand, two of

the top 20 predictive SNP models for the single random

schizophrenia run (with an AUC of 0.86) are SNPs just

adjacent to the two genes PLXNA2 and GRIN2B, both

of which have been implicated in the disease (33; 34).

The hypergeometric probability of finding 2 out of the

top 100 known schizophrenia genes (35) by sampling

20 from a pool of 4173 (the number of SNP features

in our random models) is 0.011, suggesting that the

method does appear to be finding predictive SNPs and

SNP interactions on this data set.

For many data sets, random filtering is highly effec-

tive. This will likely be true in any case where there is

a strong and diffuse signal. So, for example, in data sets

measuring gene expression in cancer we would not be

surprised to see random filtering performing well. Such

data sets include breast.basal, which compares different

types of breast cancer, and biomarkers, which compares

ER positive and ER negative tumors. Smokers2, which

focuses on discriminating mucosal cells from current and

never-smokers, is again likely to contain a widespread

signal, so that random selection of features can be

expected to perform well, as observed.

For the hematopoiesis data set, which aims to iden-

tify blood cells of lymphoid origin from among those

with myeloid origins, entropy filtering is most effective.

Although the 20 most predictive genes in the random
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filtering runs show borderline enrichment for T-cell

related functional processes (in DAVID (36), unadjusted

EASE scores below 0.05), there is a stronger single

using entropy filtering, where even the more cautious GO

enrichment tool (37) highlights leukocyte and immune

related processes as significant among the most predic-

tive genes. The most influential predictive gene models

for this data set include those for MAFB, a transcription

factor that plays a well-studied role in hematopoiesis

(38), and CCR6, a gene that regulates B cell maturation

(39).

Although entropy filtering found a strong signal in

schizophrenia and performed better than other methods

on the hematopoiesis data set, it was not a top performer

on any other data set. We therefore hesitate to recom-

mend it until we can predict on which data sets it will

be most helpful.

On some data sets (smokers2 and biomarkers), most

scalable FRaC variant techniques produce significantly

better AUCs than FRaC on the full data set is able to. On

these data sets, it may be the case that the trained FRaC

models are overfitting on the full data set. However, we

also note that our reported full results here, computed

from five replicates of the original FRaC algorithm, are

different from those reported in the CSAX paper, with

20 replicates and a larger fraction of the normal samples

used in the training set. The smokers and biomarkers data

sets have the lowest performance here as compared to the

performance reported in the CSAX paper. We therefore

suspect that the large improvement over full FRaC in

these cases is because our initial estimate of the full

performance is actually a bit low.

In conclusion, we have shown that in most cases,

running a reduced FRaC variant is as good as, or possibly

even better than, running the original FRaC algorithm.

As high dimensional data and low sample sizes are

common in precision medicine, it may be that this

insight could be of great value in other analysis tasks.

Furthermore, techniques such as the JL transform, and

the idea of examining random subsets of data (as with

features in diverse FRaC) are quite broadly applicable.
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