
A memory and time scalable parallelization of the
Reptile error-correction code

Vipin Sachdeva
Computational Science Center

IBM T. J. Watson Research

Cambridge, MA

Email: vsachde@us.ibm.com

Srinivas Aluru
Georgia Institute of Technology

Atlanta, GA

Email: aluru@cc.gatech.edu

David A. Bader
Georgia Institute of Technology

Atlanta, GA

Email: bader@cc.gatech.edu

Abstract— This paper details a distributed memory implemen-
tation of Reptile, a scalable and accurate spectrum based error-
correction method. Reptile uses both k-mer and adjoining k-
mers (called tiles) information along with the quality scores of
bases to correct substitution-based errors from next generation
sequencing machines. Previous approaches to parallelize Preptile
have replicated the spectrums on each node which can be
prohibitive in terms of memory needed for huge datasets. Our
approach distributes both the k-mer and the tile spectrum
amongst the processing ranks, relying on message passing for
error correction. This allows hardware with any memory size
per node to be employed for error-correction using Reptile’s
algorithm, irrespective of the size of the dataset. As part of
our implementation, we have also implemented several heuristics
which can be used to run the algorithm optimally based on the
advantages of the hardware used. We present our results on
IBM’s BlueGene/Q architecture for the E.Coli, Drosophila and
the human datasets showing excellent scalability with increasing
number of nodes. Using 256 nodes of BlueGene/Q, we are able
to error correct E.Coli and Drosphila datasets in less than
200 seconds and 600 seconds respectively. The human dataset
consisting of 1.55 billion reads is corrected in a little more than
two hours using 1024 nodes of BlueGene/Q. All three datasets
are corrected with Reptile’s memory intensive algorithm with
less than 512 MB per process.

I. INTRODUCTION

Next-generation sequencing (NGS) technologies have

steadily replaced Sanger sequencing as the preferred method

of genome sequencing [1]. They provide far more information

than the Sanger method, at a much lower cost per DNA base.

However, NGS methods suffer from two critical disadvantages:

they produce significantly shorter pieces of genome called

reads that have to be assembled together, and are more error-

prone than the Sanger method.

Error correction for datasets from NGS technologies is one

of the most important steps for correct assembly results. The

errors associated with NGS technologies can be classified into

substitution errors which happen when a single base is altered

to a different base, and insertion-deletion errors in which the

entire region of a genome consisting of several characters has

been changed. Correction of these errors greatly enhances the

performance of many subsequent steps using this data such

as de novo genome and RNA sequencing, re-sequencing and

metagenomics besides others [2]. Error correction methods

are broadly distinguished into k-spectrum, suffix tree based

and multiple sequence alignment methods [3]. K-spectrum

methods decompose reads into the set of all k-mers. In this

approach, erroneous k-mers are converted to the consensus

k-mer (or the highest frequency k-mer). Suffix tree based

methods generalize the k-mer based approach and multiple

sequence alignment methods identify reads co located on the

unknown reference genome by using k-mers as seeds. Please

refer to [3] for a comprehensive evaluation of error correction

of reads.

Reptile [4] is a scalable substitution error correction method

that has been shown to outperform several other error cor-

rection methods [3]. Reptile is broadly based on the k-mer

spectrum approach, but also uses adjoining k-mer information

(called tiles) to reliably suggest error corrections. Since Reptile

relies on both k-mer and tile spectrum for more accurate error

correction, there are memory limits on the size of datasets it

is able to error-correct.

Previous approaches to parallelize Reptile [5] [6] have relied

on replication of k-mers and tile spectrum on every process

or node. For large datasets, the replication of spectrum on

every node leads to very high memory requirements per node.

Furthermore, with the exponential increase in the size of the

datasets from NGS technologies, replication of spectrums on

every node or process might not be feasible. Error correction

of datasets from RNA sequencing, population genetics and

metagenomics can lead to datasets in hundreds of gigabytes,

often leading to k-mer spectrum sizes of over a terabyte [7].

In such cases, replication of the k-mer and tile spectrum can

be prohibitive in terms of memory needed per node.

In this work, we detail a distributed memory approach to

parallelization of Reptile which distributes both the k-mer and

tile spectrum amongst the processing ranks. Our approach

allows hardware (with any memory size per node) to be

employed for error correction of any dataset using Reptile’s

algorithm. The only requirement is that a minimum number

of nodes is needed such that the combined memory of all

the nodes exceeds the storage of the entire k-mer and tile

spectrum.

During error correction of a read, it is expected that a rank

will need the k-mers and tiles it does not store in its own

local memory. We rely on message passing for such k-mers

and tiles. The goal of our work is to enable Reptile to run on

2016 IEEE International Parallel and Distributed Processing Symposium Workshops

/16 $31.00 © 2016 IEEE

DOI 10.1109/IPDPSW.2016.59

453

any hardware irrespective of the memory per node or the size

of the dataset. In addition, our approach also shows excellent

scalability as the number of nodes are increased (both in terms

of time and memory). Besides a distributed k-mer and tile

spectrum, our implementation also has support for numerous

heuristics that allow parallel Reptile to use the features of the

underlying hardware efficiently.

We present the results of our approach on IBM’s Blue-

Gene/Q architecture [8], where each node has 16 GB of

memory; using 32 ranks per node, we demonstrate that we can

complete error correction of E.Coli, Drosophila and human

datasets with less than 512 MB per process. Our results

show excellent scalability with increasing number of nodes

for all three datasets. Using 256 nodes of BlueGene/Q, we are

able to error correct E.Coli and Drosphila datasets with read

coverages of 96X and 75X in approximately 200 and 600

seconds respectively. The human dataset consisting of 1.55

billion reads with a read coverage of 47X is corrected in a

little more than two hours using 1024 nodes of BlueGene/Q.

In Section II, we summarize other error-correction appli-

cations and detail the algorithm behind Reptile, along with a

summary of the previous parallelization approaches of Reptile.

We also contrast our approach to the previous work in this

section. Next, in Section III we give a detailed description of

our parallelization scheme and its implementation. Results are

given in Section IV, and we conclude in Section V with an

outlook on future improvements.

II. RELATED WORK

There are several error-correction algorithms and imple-

mentations; among k-mer spectrum based methods, besides

Reptile, Quake [9] uses a maximum likelihood approach in-

corporating quality values. For suffix-tree approaches, SHREC

[10] was the first implementation to use a generalized suf-

fix trie as the data structure employed for error correction.

Among multiple sequence alignment methods, ECHO [11]

performs error correction by finding overlaps between the

reads. Several authors have published on parallelization of

error-correction approaches; many of the approaches imple-

ment shared-memory parallelization only [12] [13] [14]. Only

a few implementations exist for distributed memory architec-

tures. This includes Reptile parallelization which we discuss

in the next subsection. DecGPU [15] uses both GPUs and

distributed memory CPUs to perform error correction.

There has been prior work to use distributed hash tables with

messaging to tackle memory-intensive tasks in computational

biology such as assembly [16] [17]. A viable alternative to

message passing in assembly algorithms is to use a global

address space using Unified Parallel C [18].

A. Reptile algorithm description

Reptile is a spectrum based substitution error-correction

method; instead of only relying on the k-mer spectrum (con-

sisting of k-mers), Reptile also constructs and subsequently

uses another spectrum consisting of tiles. Tiles can be defined

as a sequence of two or more k-mers with a fixed overlap

length between the k-mers. During error correction, both the

k-mer and tile spectrum are used for error correction of a

read. Spectrum-based methods often correct k-mers in a read

with their Hamming distance neighbors; a Hamming distance

neighbor of a k-mer is defined as the number of positions the

two k-mers differ. However, this reduces exactness when an

erroneous k-mer has to be corrected since there are multiple

candidates for the k-mer. To avoid this scenario, Reptile

corrects tiles instead of k-mers. Since a tile has almost twice

the character count as the k-mer, error correction at the tile

level has far fewer candidates than at the k-mer level. Using

the tiles leads to more accuracy in error-correction [3]. The

drawback of using both the k-mer and the tile spectrum is

that Reptile’s algorithm is memory-intensive as it keeps two

spectrums in its memory. Please refer to [4] for further details.

B. Previous Reptile Parallelization Approaches

Previous approaches to parallelize Reptile have either repli-

cated k-mer and tile spectrum on each process or on each node.

Both approaches limit the hardware on which parallel Reptile

can be run; for example in the work by [5], the spectrums

were replicated per process. The approach by Jammula et

al. [6] improved upon the original existing parallel Reptile

implementation by replicating the spectrum on every node.

Since this approach is an improvement over the work by Shah

et al. [5], we contrast our approach with this work.

• The k-mer and the tile spectrum were replicated per node

compared to the previous approach of replication per

process. Multiple threads of each node share the k-mer

and tile spectrums during the error correction phase.

• K-mer and tile spectrums are stored as sorted lists with

look-up operations involving repeated binary searches

over the spectrum. A cache-aware layout of k-mer spec-

trum was presented which lowered the search time from

the original O(log2N) to O(log(B+1)N) where B rep-

resents the number of elements that can fit into a cache

line.

• A dynamic work allocation scheme that depends upon

a global master which coordinates the entire work allo-

cation mechanism and a local master that is responsible

for getting work from the global master. The actual error

correction is performed by worker threads running on

the node who fetch chunks of sequences from the work-

queue.

Our approach differs from the the previous work in the

following three respects:

• Instead of replicating the entire dataset on a node or a

rank, we distribute the k-mer and tile spectrum amongst

the processing ranks. This lowers the memory footprint

significantly and we have shown that we can perform

error correction with a memory footprint of less than 512

MB per process even for the human dataset comprising of

over 1.55 billion reads. This implementation also provides

highly scalable error-correction times. Thus, our approach

provides a memory and time scalable implementation to

454

spectrum based error correction. Besides distributing k-

mers and tiles amongst the processing ranks, our imple-

mentation also has the ability to replicate the k-mer and

tile spectrum on every node. This mode does not require

any communication between the processes during error-

correction and is designed to be run on machines where

the entire spectrum can be replicated on every node. We

have also implemented several heuristics which can be

employed based on the traits of the datasets and the

hardware.

• We store the k-mer and tile spectrum in hash tables

instead of arrays; this prevents any need for sorting the

arrays or for repeated binary searches. We use separate

hash tables for the k-mer and the tile spectrum. The

hash tables are created in parallel during the k-mer

construction phase.

• We rely on static work allocation for load-balancing. Our

approach does not rely on a master-slave policy, instead

it redistributes sequences to the processing ranks. We

present our results with and without this load balancing

policy in Section IV, and show that such a static alloca-

tion policy balances the load very effectively.

III. PARALLELIZATION OF REPTILE

Related work shows that parallel implementations of Reptile

so far have only been run in modes requiring replication of k-

mer and tile spectrum. Our approach which differs markedly is

detailed below; please note that while most of the changes are

detailed with respect to the k-mer spectrum, the same changes

also apply to the tile spectrum.

I As a first step, the file consisting of short reads is read

in parallel by each rank. The input to parallel Reptile

consists of a configuration file, which specifies the

fasta file and the quality file to be used for the error

correction. At this point, Reptile is not capable of reading

the fastq format. The fasta file consists of the sequences

along with the sequence names; the names have been

pre-processed to be sequence numbers (in ascending

order beginning with number 1). The second file to be

read is the quality score files, which has information

on the quality score associated with every base of the

sequence and the sequence number as well. Both files

are read in parallel; each rank computes its subset of

the reads whose size is simply the file size divided by

the number of ranks. The subset of reads are processed

beginning with an offset from the start of the file. The

offset is based on the rank. Each rank starts reading

the fasta file from this offset and records the starting

sequence number. It then looks up the same sequence

number in the quality score file as well to ensure that

the quality scores corresponding to the same set of reads

as the fasta file is processed. Similarly, the end sequence

number is also computed. Each rank is responsible for

the set of reads corresponding to the starting sequence

number up to the ending sequence number. This subset

of reads is read in chunks by each rank; the chunk size

is also defined in the configuration file.

II In this step, each rank builds a k-mer and a tile spectrum

from its set of reads. The k-mer spectrum is represented

by key-value pairs with k-mer ID as the key and the count

of the k-mer as the value. The k-mer ID is a number

constructed from the characters of the sequence. The tile

spectrum is similarly represented except the tile ID is a

long integer as the number of characters of the tile can

be up to 2k where k represents the number of characters

of the k-mer. The k-mer and tile spectrum are stored in

separate hash tables on each rank. With each read, the k-

mers and tiles corresponding to the reads are processed,

and added to the k-mer and tile hash tables respectively.

During the current step, the k-mer and tile spectrum

are separated into the hashKmer and readsKmer hash

tables, and the hashTile and the readsTile hash tables

respectively. Each k-mer (and tile) are defined to have an

owning rank; the owning rank in our implementation is

defined as the rank p (out of the number of ranks np) for

which hashFunction(kmer)%np == p (and similarly

for the tile). The rank adds the k-mer it has processed

to the hashKmer if it is the owning rank, else the k-mer

is inserted into the readsKmer hash table. The process

continues until the entire allocated subset of reads are

processed by the rank. Once this phase is over, the rank

stores the k-mers extracted from its reads in either a hash

table consisting of the k-mers it owns (hashKmer) or a

hash table consisting of the k-mers (readsKmer) it does

not own (and similarly for the tiles). As can be observed,

this is an embarrassingly parallel phase requiring no

communications amongst the ranks.

III After the previous phase, each rank has two hash tables,

each for the k-mer and tile spectrum. However, it can

be observed that no rank has the true global counts for

the k-mers and the tiles in their hash tables. This is

because each k-mer might exist on multiple ranks (as

part of their readsKmer hash table), besides the owning

rank. The counts of the k-mer on the owning rank thus

need to be added to the counts of the same k-mer that

exist on every other rank to get the true global count of

the k-mer. This next phase thus requires communication

such that all k-mers and tiles (along with their true

global counts) exist on only the owning rank. For this

step, each rank processes each k-mer in its readsKmer
hash table; for each k-mer, the owning rank is computed

(hashFunction(kmer)%np) and the k-mer and its local

count is placed into a vector for the owning rank. This

is then followed by an MPI alltoallv communication that

sends a vector of k-mers and their counts to their owning

ranks. Each rank then processes the k-mers it has received

from the other ranks. This step involves adding to the

count of the k-mer if the k-mer exists in the hash table,

or adding the k-mer (along with its count) if it does not

exist. Following this, each rank now has a hash table of k-

455

mers it owns, with the true global counts (or frequencies)

of these k-mers.

Finally, based on the threshold set in the configuration

file, k-mers and tiles below a threshold are subsequently

removed from their hash tables by the ranks. A memory-

efficient alternative to this step is usage of a Bloom

filter [18]. Note that the with these steps, each rank only

retains now a subset of the k-mer and tile spectrum with

their true global counts; the storage requirements of each

rank for the k-mer (and tile spectrum) now depend on

the hashing function. With the inbuilt hashing function

of the C++ standard templates library, we have found the

number of k-mers and tiles to be remarkably consistent

across the total number of ranks. The total time taken up

by the the steps I-III is printed as the k-mer construction

time in our execution; besides the error correction times,

we also show the k-mer construction times in Section IV.

Figure 1 shows the steps of the k-mer construction

including parallel reading, construction of the hash

and the reads k-mer tables followed by the collective

communications for a hypothetical execution of 128

ranks and k-mer size of 3. These steps are similarly

executed for tiles as well.

��������	�
���
���������
�	�
���������
�
�
���������
���
���������
�

�
�

�
��������
�
�
����
���������
�
����
���������
�
����
���������
�

�
�

�
�

�
�
��������
���
�
���	
�
���������
�
���	��
���������

���������	
��
����	

���
�����
��
��������
��������
��������
������	�
���

�
�
��������
�����
��
��������
��������
��������
�
�

�

�
��������
������
�
������
�
������	�
�����	��
���

�
�
��������
������
�
��������
��������
������	��
�

�

�
�
������
�
������	�
��������
���������
������	��
�

�

�
�
������	�
������	�
��������
���������
������	��
�

�

��
����	�		��
�	������	��
���	

�
�
��������
��������
��������
��������
��������
�
�

�
�
��������
��������
������	��
��������
������
��
�

�

�
�
������	�
��������
��������
���������
���������
�

�

Fig. 1. A diagram representing the steps of the k-mer construction for a
hypothetical execution of 128 ranks and a k-mer size of 3

IV After the k-mer construction steps, each rank now

has a hash table of the k-mers and tiles it owns (and

an optional hash table of k-mers and tiles that it has

processed from its reads dataset). Once all the ranks

have finished the two steps, the error correction step

can now begin. For our experiments, the short reads are

again processed from the file. This is because the total

memory consumed by storing the reads will increase the

memory footprint significantly. Most of our experiments

are run with only 512 MB per rank, thus storing the

reads is not a feasible option for us. The error correction

of each read requires a set of k-mers and tiles (and

their Hamming distance neighbors). Each rank at the

beginning of this step forks two separate threads - one

thread is responsible for the error correction of the reads

in its part of the file, while the other thread acts as a

communication thread. If a rank during error correction

does not have a k-mer (or tile), it first finds out if it is

the owning rank. In case the processing rank p is the

owning rank, this implies that the k-mer or tile does

not exist; in case the processing rank is not the owning

rank, it looks up its readsKmer hash table (in case of the

corresponding mode of execution). If the k-mer is not

found, it sends a message to the owning rank, requesting

the count of the k-mer or tile. The communication thread

of each rank probes any incoming messages – based

on the probe, it first finds out the nature of the request

(if it a k-mer or a tile lookup). The thread then looks

up the corresponding hash table (k-mer or tile) based

on the request) and sends the appropriate response. The

response is either the count of the k-mer or tile or a

response like (−1) implying that the k-mer or tile does

not exist. If a k-mer or tile does not exist at its owning

rank, it can be inferred that the k-mer or tile does not

exist at all in the entire k-mer spectrum.

Each rank can continue with the error correction of its reads

subset using the strategy above; the communication thread

of the rank responds to incoming requests, while the non-

communication thread continues with the error correction of

the rank’s subset of reads using Reptile’s algorithm. Once all

the ranks have finished their error correction step, each rank

shuts down its communication threads and outputs the reads

it has corrected.

A. Load Balance Through Randomization

One issue we faced with the strategy above is load im-

balance which Jammula et al. [6] have also explained in

their work. This issue is because in many cases, the errors

appear localized in several parts of the file. Since the reads in

the file are divided up into chunks amongst the ranks, this

leads to certain ranks having considerably more erroneous

sequences compared to the other ranks. Since the work done

with erroneous sequences is much higher than the other ranks,

this leads to load imbalance between the ranks. In Section IV

we show the variation in times between the slowest and the

fastest ranks, along with a breakdown of their times for 128

ranks processing the E.Coli dataset. While Jammula et al. [6]

have relied on a dynamic load balance approach based on a

global master, a local master and worker threads, our approach

of load balance is a static scheme. As we noticed that most

of the load imbalance is caused due to errors being localized

in parts of the file, a “randomization” of the entire file might

remedy the problem.

Our strategy is for a sequence to be processed by a rank

only if it is the owning rank; a sequence is designated to

be owned by a rank p if hashFunction(seq)%np == p
(similar to our definition for k-mers and tiles). Therefore, in

456

addition to the Step I above, we also perform additional steps

for load-balancing: after each rank has read their batch of

short reads (or sequences), they find out the owning rank for

each sequence in their batch of reads. The sequences are then

placed in separate buckets corresponding to the owning ranks.

Subsequently, a collective communication MPI Alltoallv is

performed; each rank then processes the sequences for which

they are the owning rank. This hashing of sequences has the

same effect as the ”randomization” of the file might have.

B. Heuristics for Efficient Parallelization

Besides the core steps above, we have also implemented

heuristics to be employed for efficient execution based on the

dataset and the architecture. The primary purpose of these

heuristics is to lower the runtime or memory footprint based on

the hardware being tested and the requirements of the dataset.

We show the results for all the heuristics in Section IV for the

E.Coli dataset for 32 nodes only. Since we had limited access

to higher number of nodes, we are unable to present the results

of the heuristics for higher node counts and other datasets.

However, the results for E.Coli give us an understanding of

the effectiveness of these heuristics. We give a brief description

of each the heuristics below.

• Universal: We rely on message passing between the

rank’s communication threads to get the counts of k-mers

and tiles. Based on the request (k-mer or tile), the sending

rank puts different tags on the messages. The receiving

rank probes any incoming messages (with any sending

rank or any tag) and subsequently based on the tag, looks

up the hash table corresponding to either the k-mers or

the tiles. In universal mode of execution, the message

is itself a structure with the tag included as part of the

message (and the k-mer ID and the tile ID). The receiving

rank now does not have to probe the message for the tag,

but accepts any message; once the message is received, it

looks up the tag (which is part of the message received)

to find the nature of the request and subsequently does a

lookup of its hash tables. This increases the size of the

message but makes the call to MPI Probe unwarranted.

• Read K-mers/Tiles: Each rank retains the k-mers it

owns. Besides the owned k-mers, it can also have k-mers

and tiles from its own set of reads. To implement this

heuristic, an additional collective communication step is

needed where each rank sends the k-mers it does not own

to the owning rank, requesting the global count for the

k-mer. This is again implemented as an MPI alltoallv,

where each rank creates a vector of k-mers to be sent to

the owning ranks. Thus, in this mode, each rank has two

hash tables each for k-mer and tiles (or four in total). If a

k-mer is not found in the hashKmer, it is looked up in the

readsKmer and then a message is sent to the owning rank.

This increases the local lookup time, but can potentially

decrease the time spent in communication.

• Allgather k-mers/tiles/both: This heuristic replicates the

entire k-mer spectrum and/or tile spectrum on every node.

This mode is designed to be used on machines with

enough memory to keep either or both the spectrums.

This mode does not employ any message passing between

the ranks during the error-correction step. The only

communication in the entire execution is the collective

communication calls to exchange the owned k-mers and

tiles amongst the ranks. As expected, this mode decreases

the runtime significantly, while increasing the memory

footprint.

• Add remote k-mer/tile lookups: This mode adds any

k-mer or tile lookups from the remote ranks; once a k-

mer or tile count is received from the owning rank, it

adds those k-mers to the local readsKmer hash table.

This mode can only be run with the read kmers mode as

the remote k-mers and tiles are added to the readsKmer
and the readsTile hash table. The lookup strategy follows

the read kmers heuristic; a k-mer is first looked up in

the owned k-mers hash table hashKmer, followed by the

reads hash table readsKmer and finally requested from

the owning rank. This mode will be useful if the k-mers

or tiles needed from remote ranks, will be needed in the

future.

• Batch Reads Table: In this mode, the reads table which

is maintained during the k-mer construction phase (and

optionally during the error correction phase), is kept

to a minimum size with an increased communication

overhead. Each rank reads a chunk of their subset of reads

(specified by the chunk size in the configuration file). This

mode performs Step III of the parallel algorithm after

each batch of reads instead of performing it in the end

once all the ranks have processed their set of reads. In

this mode, after all the processes have read their batches,

the processes synchronize and complete a MPI alltoallv
operation to assign the k-mers and tiles to their owning

ranks from the batch of reads just processed. Each rank

subsequently processes the set of k-mers and tiles it has

received and adds them to their hash tables for the k-

mers and the tiles. Following this, the reads hash table

is emptied out before the next batch is read. Thus, the

size of the reads hash table can be kept to a minimum

by varying the chunk size as the reads hash tables only

contain k-mers and tiles from a single chunk than from

all the chunks. One point of observation is that different

processes might have been allocated slightly different

number of batches; thus, before this step, a MPI Reduce
is carried out to find the maximum number of batches

amongst all the processes. Each process thus continues

this process for the maximum number of batches even

though it might have exhausted its set of reads. This is

because other ranks might still be continuing to process

their set of reads and require every rank participation in

the MPI alltoallv operation. This mode lowers the mem-

ory consumed with an increase in the communication

overhead. However, since the k-mer and tile construction

time is a negligible percentage of the total time for error

correction, the overhead is not substantial.

457

Genome Number of reads Length Genome Read
(millions) (chars) Size Coverage

E.Coli 8874761 102 4.6 ∗ 106 96X

Drosophila 95674872 96 1.22 ∗ 108 75X

Human 1549111800 102 3.3 ∗ 109 47X

TABLE I

E.COLI, DROSOPHILA AND HUMAN DATASETS USED FOR

EXPERIMENTATION

IV. RESULTS

In this Section, we discuss the results of our implementation

for 3 datasets - E.Coli, Drosophila and human dataset. We

have followed exactly the same methodology of preparing the

datasets as [6]; our datasets are very similar to Jammula et al.

with minor differences being introduced in the conversion of

the downloaded fastq file format to separate fasta and quality

score files which are needed by Reptile. Table I shows the

details for the datasets including the number of the reads

and the length of the reads. The smallest dataset is the

E.Coli dataset with less than 9 million reads, with the human

dataset roughly 1500 times the size of the E.Coli dataset. The

read coverages for all the genomes have been calculated as

(Length*Number of Reads)/(Genome Size)

We have tested our implementation on IBM’s BlueGene/Q

architecture. Blue Gene/Q (BG/Q) is the third generation of

highly scalable, power efficient supercomputers in the IBM

BlueGene line, following Blue Gene/L and Blue Gene/P. The

BG/Q SoC has 16 cores for user code, and a 17th core is

reserved for use by the system software. Each core has four

hardware threads. The 4 threads are simultaneously multi-

threaded (SMT) threads. Each node has a wake-up unit that

allows SMT threads to “sleep” waiting for an event; this

allows faster OpenMP work handoff and lowers messaging

latency. The 64-bit, in-order, PowerPC cores run at 1.6 GHz.

32 compute nodes are electrically interconnected to form a

2x2x2x2x2 grid on a node card. 16 node cards comprise a

512-node midplane and two midplanes stack vertically to form

a 1024-node rack, with electrical links within midplanes and

optical links between midplanes.

Our BlueGene/Q hardware has 16 GB of memory per node.

For most of our experiments, we have decided to run 32 ranks

per node, with each rank running 2 threads (communication

and error correction) during the error correction phase. During

error correction for most of our experiments, we run 64 threads

per node which is the maximum possible number of threads

on the BG/Q node. Using 32 ranks only allows each rank to

have 512 MB per process; this includes memory for both the

messaging buffers and the application’s data structures. Using

multiple ranks per node also gives us a benefit: it allows any

communication between the ranks on the same node to use

the shared memory on the node (and not use the messaging

interface). Considering the nature of the problem, most of our

effort has been to lower memory footprint per process. We

have not made an extra effort to optimize the communication

between the ranks; this has been done purposefully to observe

if we can get good results without any tuning that may be

specific to the datasets.

To find the effect of running multiple ranks per node on

runtime, we varied the number of ranks per node from 8 to

32. Figure 2 shows the results for the E.coli dataset using 128

ranks for this run; the number of ranks per node are varied

from 8 to 32. Thus, the number of nodes are varied from

16 to 4 for this experiment. As can be seen from Figure 2,

the time taken using 32 processes per node is slower than

using 8 or 16 processes per node by almost 30%. Most of

the increase comes from slowdown in communication. This

slowdown is expected as each node of BlueGene/Q only has

16 physical cores per node; with 8 processes per rank and 2

threads per rank, the cores are fully occupied. Increasing the

number of threads beyond 16 per node leads to usage of the

hardware threads. The setting for least run time is 8 ranks per

node; however our primary focus is to minimize the number

of nodes (and not necessarily the runtime) for execution, and

all our experiments for the E.Coli, Drosophilla and the human

datasets are run with 32 ranks per node. The runtimes will

further reduce if the number of processes are reduced to 8 or

16 per node for our experiments.

Figure 2 also provided some observations about the appli-

cation overall; looking at the times in k-mer construction and

error correction, it can be seen that the k-mer construction

time is a negligible percentage of the error correction time.

Most of the error-correction time is spent in communication

as expected; it can also be observed that the majority of

the communication time is spent in communication of tiles

especially tiles which are not part of the tile spectrum (non-

existent on any rank).

Fig. 2. Execution time of 128 ranks for the E.Coli dataset varying the number
of nodes from 4 to 16 nodes.

For our implementation, it is key to keep the memory

footprint of the processes uniform. This implies no particular

458

rank has a substantially higher count of k-mers and/or tiles

that could become a bottleneck; if a rank has a much higher

count of k-mers or tiles, that could lead to more messaging

overhead for that rank during error correction. Figure 3 shows

the total number of the k-mer and tiles for all 128 ranks of the

E.Coli dataset. For this run, the variation between the ranks

having the highest and the lowest number of k-mers is less

than 1%, with the variation in the number of tiles slightly

less than 2%. This shows that the distribution of the k-mers

and tiles is uniform across all the ranks, making the memory

footprint and the messaging overhead of each rank consistent.

Fig. 3. K-mer and tile count of each rank for 128 processes

Figure 4 shows the effect of load balance on our results

for the E.Coli dataset for 128 ranks on 4 nodes; our static

load balancing algorithm reduces the total runtime almost by

a factor of 2. Without load balance, there is a huge variation

in the number of errors corrected per rank. The lowest number

of errors corrected amongst all the ranks is 33886, while the

highest number of errors corrected are almost 50% higher to

47927. This leads to the load imbalance; the fastest rank in this

case takes 4948 seconds, while the slowest rank takes more

than triple that time to more than 16000 seconds. The majority

of the time is taken up in the communication time varying from

2891 seconds for the fastest rank to more than 10800 seconds

for the slowest rank. Most of the communication time is taken

up in the communication for tiles. The breakdown of the

communication time shows that while the fastest rank needs

almost 31 million remote tile lookups, the slowest rank needs

more than 118 million tile lookups (not shown in Figure 4).

The load balancing strategy makes a major difference in the

results; almost all the ranks uniformly take 8886 seconds. The

number of errors corrected per rank only vary from 39127

to 39997 (only 2%), with the range of the communication

time from 5073 seconds to 5268 seconds (less than 4%).

The remote tile lookups needed per rank stays remarkably

consistent with 64 million lookups per rank. Since there

is a considerable improvement with load balancing, all of

our future experiments are also completed with static load

balancing.

Fig. 4. Time taken (total and communication) and errors corrected for 128
processes

As detailed in Section III, our implementation also has

support for various heuristics for optimal execution. For all the

heuristics, we only show results for 1024 ranks running on 32

nodes for the E.Coli dataset. It is possible that other datasets

might show different results for the heuristics, but since we

had limited access to the BlueGene/Q for node counts higher

than 32, we only experimented with these heuristics for the

E.Coli dataset.
Figure 5 shows the results for all the heuristics in terms

of time taken and the highest memory footprint rank after

the k-mer construction and the error correction steps. We can

make several observations from Figure 5 about the effect of

the heuristics on the runtime and the memory footprint. We

detail the observations of each heuristic below:

• Universal mode is faster than non-universal mode by

8.8%. The increase in performance doesn’t consume any

extra memory, and thus this mode is advantageous to the

non-universal mode.

• Replicating the k-mer spectrum on every process leads

to a deterioration in performance; these runs were com-

pleted with 8 ranks per node (or 256 total ranks) as the

memory footprint was noticeably higher. Due to the lower

number of ranks, the improvement by replicating the k-

mer spectrum on every rank is offset by the increased

workload of the ranks. The memory footprint increases

to 928 MB per rank as well.

• Replicating the tile spectrum on every process reduces the

runtime of the error-correction step to 975 seconds (from

1178 seconds of the base mode). With the replication

of tile spectrum, no communication is needed for the

459

Fig. 5. Time of execution and memory footprint with different heuristics

tiles; since the runtime is dominated by the communi-

cation time of tiles, the runtime decreases even with the

lower number of ranks. The replication also increases the

memory footprint to 948 MB per rank. Thus, instead

of replicating both the k-mer and the tile spectrum on

every rank, it is highly advantageous to replicate only

the tile spectrum, relying on communication for the k-mer

spectrum. This run was also completed with 256 ranks

only.

• The effect of adding remote k-mers (both the ones which

are on other nodes and the ones which are non-existent)

does not improve the runtime of the error-correction step.

The memory footprint increases to 199 MB from 119 MB

for this heuristic.

• Batch reads table is useful in lowering the memory

footprint further by keeping the size of the reads hash

table to a minimum. This run was completed with a

chunk size of 2000 reads; the reads table is processed and

cleared after each rank has finished their chunk of reads.

Since the number of sequences processed by each rank

is 8657, each rank does this step 5 times. This heuristic

is highly advantageous as it was used for the runs for the

human dataset.

• Adding the k-mers and tiles belonging to the reads of the

rank does not improve the performance of the error cor-

rection step. This is because most of the communication

time is spent in remote tile lookups.

• Finally, with the k-mers and tiles replicated on every

node, the error-correction time is only 58 seconds. The

memory footprint of this mode is almost 1648 MB per

rank. This run was completed with only 1 rank per node

and 64 threads per rank.

For our purposes, the advantageous heuristics are universal
which reduces the runtime, and batch reads table which re-

duces the memory footprint of collective communications. We

did not use any of the replication settings in our experiments.

Figure 6 shows the results for the E.Coli dataset as the

number of ranks are increased from 1024 to 8192; since each

node is running 32 ranks, this translates into an increase in

the number of nodes from 32 to 256. No heuristics were

employed in this scalability graph. Figure 6 shows that our

implementation is scalable both in k-mer construction and er-

ror correction times. The parallel efficiency for E.Coli dataset

at 8192 ranks when the error-correction time is approximately

180 seconds is 0.81. Figure 6 also shows the improvement over

imbalanced run; there is a marked improvement in runtimes

especially at lower node counts. For example for 32 nodes, the

runtime more than halves due to our strategy of redistribution

of sequences for load balance. At 256 nodes, the total time

taken to correct the dataset is less than 200 seconds using the

load-balancing approach.

Figure 7 shows similar scalability results for the Drosophila

dataset as the number of ranks are increased from 128 to 512

BlueGene/Q nodes. This figure also shows excellent scalability

from 1024 ranks to 8192 ranks. In this graph as well, each node

is running 32 ranks per node. The load balancing improves

the performance significantly; the runtime improves by more

than a factor of seven at 8192 ranks (or 256 nodes). The

runs using the imbalanced approach for node counts 1024

and 2048 did not finish in a reasonable time. Also, it can be

460

Fig. 6. Scaling graphs for E.Coli dataset varying the number of nodes from
32 to 256

seen that for 1024 ranks, the K-mer construction time takes

981 seconds. This run was completed with the heuristic batch
reads table, which reduces the memory footprint of the k-

mer construction stage, but leads to an increase in runtime.

The parallel efficiency at 8192 ranks for Drosophilla dataset

is 0.64.

Fig. 7. Scaling graphs for Drosophila dataset varying the number of nodes
from 128 to 512

Finally, Figure 8 shows the runtimes for the human dataset

consisting of over 1.55 billion reads varying the number of

nodes from 128 to 1024. The runs were completed with 32

ranks per node, so the total number of ranks are varied from

4096 to 32768. All the runs were completed with the heuristic

batch reads and the load balancing strategy enabled; the

reason for the batch reads heuristic being employed is the size

of communication buffers for the collective communication in

Step II of the k-mer construction time exceeds the memory

available on each process. As explained before, this heuristic

leads to multiple collective communication calls in the k-mer

construction; each call is executed after all the processes have

processed a batch of reads. For the 128 and the 256 nodes run,

the batch size was only set to 5000 reads, while for the 512

and 1024 node runs, the batch size was set to 10000 reads. A

BlueGene/Q specific environmental flag to lower the memory

requirements for collective communication by implementing

the collective calls as multiple point to point communication

was also used. This result shows we can complete error
correction of the human dataset in less than 2.5 hours
using a single rack of BlueGene/Q.

Fig. 8. Scaling graphs for human dataset varying the number of nodes from
256 to 1024

V. CONCLUSIONS AND FUTURE WORK

This paper detailed a time and memory scalable paral-

lelization of Preptile, a popular and accurate code used in

error-correction of short reads from next-generation sequenc-

ing machines. Our approach allowed error-correction to be

completed on IBM’s BlueGene/Q with only 512 MB per

process for all datasets including the human dataset with

over 1.55 billion reads. Using 256 nodes of BlueGene/Q,

we are able to error correct E.Coli and Drosphila datasets in

approximately 200 and 600 seconds respectively. We achieve

a parallel efficiency of 0.81 and 0.64 for the two experiments

at 8192 ranks. The human dataset consisting of 1.55 billion

reads is corrected in a little more than two hours using 1024

nodes of BlueGene/Q. We have also experimented with many

heuristics that can be employed based on the advantages of the

underlying hardware. For load-balancing, we relied on a static

strategy that considerably improved the load balance between

the ranks. This strategy does not depend on a master-slave;

461

instead it redistributes the reads amongst the processing ranks.

Our approach can be employed on hardware regardless of the

memory size per node and the dataset being error-corrected.

Besides the low memory footprint, we also achieved excellent

scalability both in terms of memory and time with increasing

number of nodes.

An area of further improvement is experimentation with

partial replication: as the number of nodes is increased, the

number of k-mers and tiles per rank also decreases. This leads

to very low memory footprints at the highest node counts for

all three datasets, for example, the footprint of E.Coli dataset at

256 nodes is less than 50 MB per rank and the footprint of the

Drosophila is close to 80 MB at 512 nodes. The footprint of

the billion plus reads human dataset at 1024 nodes is about 120

MB per process (with the batch reads dataset). However, one

of the approaches could be to only lower the memory footprint

as much as needed. One potential strategy is for each rank to

store the k-mers and tiles of a subset of other ranks, besides

the k-mers and the tiles the rank owns. This would allow the

memory footprint to be low enough for a complete execution

and reduce the communication overhead, which could enable

a faster runtime. Another idea we plan to further explore is to

keep the k-mers and tiles belonging to the reads of the rank;

while it was not advantageous for Reptile’s performance, we

believe other algorithms might benefit from this approach.

ACKNOWLEDGMENT

We would like to thank Sriram Chockalingam for providing

us the original parallel Reptile implementation and the instruc-

tions for the datasets used in this paper. We also wish to thank

IBM T. J. Watson Research Center facilities especially Karen

Bard for providing us access to BlueGene/Q.

REFERENCES

[1] S. C. Schuster, “Next-generation sequencing transforms today’s biology,”
Nature, vol. 5, pp. 16–18, 2008.

[2] M. D. Macmanes and M. B. Eisen, “Improving transcriptome assembly
through error correction of high-throughput sequence reads,” PeerJ, p.
e113, 2013, https://peerj.com/articles/113/.

[3] X. Yang, S. P. Chockalingam, and S. Aluru, “A survey of error-correction
methods for next-generation sequencing,” Briefings in Bioinformatics,
vol. 14, no. 1, pp. 56–66, 2013.

[4] X. Yang, K. S. Dorman, and S. Aluru, “Reptile: representative tiling for
short read error correction,” Bioinformatics, vol. 26, no. 20, pp. 2526–
2533, 2010.

[5] A. R. Shah, S. Chockalingam, and S. Aluru, “A parallel algorithm for
spectrum-based short read error correction,” in Proc. 16th Int’l Parallel
and Distributed Processing Symp. (IPDPS), Shanghai, CN, May 2012,
pp. 60–70.

[6] N. Jammula, S. Chockalingam, and S. Aluru, “Parallel Read Error
Correction for Big Genomic Datasets,” in Proc. Int’l Conf. High-
Performance Computing (HiPC). Bengaluru, India: IEEE Press, Dec.
2015.

[7] C. S. Kim, V. Sachdeva, M. Winn, K. Jordan, and K. Hassani-Pak, “de
novo transcriptome assembly using Trinity for large RNA-Seq datasets,”
in Proc. High Throughput Sequencing Algorithms and Applications
(HitSeq 2014), Boston, MA, 2014, poster session.

[8] R. A. Haring, M. A. Ohmacht, T. W. Fox, M. K. Gschwind, D. L. Sat-
terfield, K. Sugavanam, P. W. Coteus, P. Heidelberger, M. A. Blumrich,
R. W. Wisniewski, A. Gara, G. L.-T. Chiu, P. A. Boyle, N. H. Chist, and
C. Kim, “The IBM Blue Gene/Q Compute Chip,” IEEE Micro, vol. 32,
no. 2, pp. 48–60, 2012.

[9] D. R. Kelley, M. C. Schatz, and S. L. Salzberg, “Quake: quality-aware
detection and correction of sequencing errors,” Genome Biology, vol. 11,
no. 11, 2010, http://www.genomebiology.com/2010/11/11/R116.

[10] J. Schrder, H. Schrder, S. J. Puglisi, R. Sinha, and B. Schmidt, “SHREC:
a short-read error correction method,” Bioinformatics, vol. 25, pp. 2157–
2163, 2009.

[11] W.-C. Kao, A. H. Chan, and Y. S. Song, “ECHO: A reference-free
short-read error correction algorithm,” Genome Research, vol. 21, pp.
1181–1192, 2011.

[12] M. H. Schulz, D. Weese, M. Holtgrewe, V. Dimitrova, S. Niu, K. Reinert,
and H. Richard, “Fiona: a parallel and automatic strategy for read error
correction,” Bioinformatics, vol. 30, pp. 356–363, 2014.

[13] A. Wirawan, R. S. Harris, Y. Liu, B. Schmidt, and J. Schrder, “HECTOR:
a parallel multistage homopolymer spectrum based error corrector for
454 sequencing data,” BMC Bioinformatics, vol. 15, 2014.

[14] L. Illie and M. Molnar, “RACER: Rapid and accurate correction of errors
in reads,” Bioinformatics, vol. 29, no. 19, pp. 2490–2493, 2013.

[15] Y. Liu, B. Schmidt, and D. L. Maskell, “DecGPU: distributed error
correction on massively parallel graphics processing units using CUDA
and MPI,” BMC Bioinformatics, vol. 12, 2011.

[16] S. Boisvert, F. Raymond, E. Godzaridis, F. Laviolette, and
J. Corbeil, “Ray Meta: scalable de novo metagenome assembly
and profiling,” Genome Biology, vol. 13, no. 12, 2012,
http://genomebiology.biomedcentral.com/articles/10.1186/gb-2012-
13-12-r122.

[17] P. Carrier, B. Long, R. Walsh, J. Dawson, B. Haas, T. Trickle, C. P.
Sosa, and T. William, “The impact of high-performance comput-
ing best practice applied to next-generation sequencing workflows,”
http://biorxiv.org/content/biorxiv/early/2015/04/07/017665.full.pdf.

[18] E. Georganas, A. Buluç, J. Chapman, L. Oliker, D. Rokhsar, and
K. Yelick, “Parallel de bruijn graph construction and traversal for de
novo genome assembly,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis (SC
2014), New Orleans, LA, Nov. 2014.

462

