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Abstract—We introduce a pilot-based approach with which
scalable data analytics essential for a large RNA-seq data set
are efficiently carried out. Major development mechanisms,
designed in order to achieve the required scalability, in particular,
targeting cloud environments with on-demand computing, are
presented. With an example of Amazon EC2, by harnessing dis-
tributed and parallel computing implementations, our pipeline is
able to allocate optimally computing resources to tasks of a target
workflow in an efficient manner. Consequently, decreasing time-
to-completion (TTC) or cost, avoiding failures due to a limited
resource of a single node, and enabling scalable data analysis with
multiple options can be achieved. Our developed pipeline benefits
from the underlying pilot system, Radical Pilot, being readily
amenable to scalable solutions over distributed heterogeneous
computing resources and suitable for advanced workflows of
dynamically adaptive executions. In order to provide insights on
such features, benchmark experiments, using two real data sets,
were carried out. The benchmark experiments focus on the most
computationally expensive transcript assembly step. Evaluation
and comparison of transcript assembly accuracy using a single
de novo assembler or the combination of multiple assemblers
are also presented, underscoring its potential as a platform to
support multi-assembler multi-parameter methods or ensemble
methods which are statistically attractive and easily feasible with
our scalable pipeline. The developed pipeline, as manifested by
results presented in this work, is built upon effective strategies
that address major challenging issues and viable solutions toward
an integrative and scalable method for large-scale RNA-seq data
analysis, particularly maximizing merits of Infrastructure as a

Service (IaaS) clouds.

I. INTRODUCTION

RNA-seq is one of the most widely adopted methods em-

ploying the high-throughput DNA sequencing technology (aka

Next-Generation Sequencing and NGS in short)[1]. In spite of

its remarkable successes in various applications for virtually

all areas of life sciences, outstanding challenges still remain as

roadblocks. Data analytics of this revolutionary approach are

complicated. For example, the task of an accurate transcript as-

sembly is non-trivial, significantly limiting its usages for non-

model organisms[2, 3]. Also, many challenges are largely asso-

ciated with technical aspects with NGS such as the short read

length and various artifacts arising from sequencing errors,

unknown sample heterogeneity, and unknown variations in

data sets[4]. Interestingly, the rapid increase of the sequencing

data volume propelled by the falling sequencing cost as well as

the widespread utilization, along with those challenges in data

analytics, have been increasingly garnering intensive interests

on NGS data analytics as one of Big Data problems. Indeed,

the main motivation of this study is to develop effective

strategies for a viable solution in the transcriptome profiling

* Corresponding author

2016 IEEE International Parallel and Distributed Processing Symposium Workshops

/16 $31.00 © 2016 IEEE

DOI 10.1109/IPDPSW.2016.129

443



task challenged by volume, heterogeneity, and complexity of

both sequencing data and intermediate data generated in the

middle of an analysis pipeline.

RNA-seq data analysis requires multiple different compu-

tational tasks, favoring increasingly an integrative approach

composed of multiple underlying pipelines[5, 6]. Our main

goal is to develop a new pipeline based on the existing tool,

Rnnotator[5]. Rnnotator was originally designed as a perl-

based tool for RNA-seq. The basic workflow of Rnnotator

is to run multiple steps, corresponding to pre-processing of

sequencing reads, transcript assembly, transcript quantification

and differential gene expression (only optional for cases when

multiple sample conditions are provided)(see Fig. 1). While

the majority of tools in RNA-seq employ a reference-based

method, Rnnotator, developed even in relatively early days

in this field, is one of few tools that put the transcript

assembly as a key strategy. The transcript assembly step is

implemented with the multiple k-mer approach for which

each k-mer calculation is conducted with an existing de novo

assembler among Velvet, Oases, IDBA, Minia, and Ray as

of this writing. Whereas many projects including those from

Joint Genomic Institute (JGI) have been utilizing the tool

successfully[2], the original architecture is primarily intended

with the use of large-scale HPC systems such as those avail-

able from the National Energy Research Scientific Computing

Center (NERSC). Consequently, the usability of the original

Rnnotator is, so far somehow, limited with the requirement

of the use of specific types of HPC systems in which the

local scheduler like Sun Grid Engine (SGE) plays a key role

for parallelization. Its perl-based design has also limitations in

scalability for growing data sets and for its performance due to

the lack of supporting distributed tasks and flexible execution

scenarios.

To address such limitations, our new approach changed

the core architecture of Rnnotator with the pilot framework,

Radical Pilot. The pilot framework is developed by Jha and his

coworkers, with which an efficient management of sub tasks

constituting an entire workflow is readily achieved over dis-

tributed computing systems[7]. Previously, we demonstrated

various workflow scenarios driven by the pilot framework for

a variety of scientific applications including sequencing data

analytics[8–10].

Facilitated by RP, the developed pipeline adds novel features

which are not easily feasible with non-scalable conventional

approaches. Specifically, we aim to improve the transcript

assembly task which is the major computationally demanding

one in RNA-seq pipelines including the original Rnnotator

tool. This task is not only complicated algorithmically, but

also difficult to be scalable. Since we focused on the solution

for large sequencing data, we exploit the current Rnnotator

strategy, the use of scalable de novo assemblers that runs on

distributed resources. Note that among all assemblers avail-

able, Ray is the only assembler that supports scalable tasks

with its Message Passing Interface (MPI) support. First, we

added the support of the two other assemblers, ABySS, another

MPI-based assembler, and Contrail, a Hadoop MapReduce-

based assembler. We conducted benchmark experiments for

the performance of the transcript assembly with these assem-

blers. The benchmark results highlight underlying factors for

optimal solutions of the assembly step with the multi-node

capable tools based on MPI and Hadoop.

The need of a scalable solution is also associated with

the complexity of NGS data analytics. Considering artifacts

and errors, a single tool is unlikely to manage all unknown

factors buried or uncertain among observed or processed data

sets. Indeed, there exists strong consensus to defy a common

practice relying upon a single tool across numerous compar-

ative studies, including those for sequence assembly[11–13].

However, due to the requirement of complex computation and

costs, the better option that utilizes multiple analyses with

multiple tools or different parameters is not practically favored.

Interestingly, combining all results from such multiple tools

and parameters with a statistically sounding method seems

to be attractive. For example, recent studies exploiting the

ensemble or the consensus method for assembly suggested

better outcomes[13–15]. In fact, a large number of studies

in many areas including statistical learning manifested that

ensemble methods often outperformed methods based on the

single model or parameter[16].

Overall, motivated by the need of scalable solutions, a new

type of a pipeline has been developed for RNA-seq and we

present its details below.

The paper is organized as follows. In the following section,

related works are summarized underscoring key common

interests between them and our work. Then, we describe back-

grounds of our pipeline introducing the Rnnotator workflow,

Radical Pilot, and EC2, the main focused transcript assembly,

and data sets used. The section for results and discussion

follows. The paper ends with concluding remarks containing

future plans.

II. RELATED WORKS

Among a plethora of tools relevant to our work, we focus

on tools specifically related with the two aspects. The first

aspect is whether a tool provides an integrative approach for

RNA-seq data analysis, specifically with cloud computing. The

second aspect is whether a tool employs a software framework

for distributed computing. It is not an easy task to survey all

related tools, and thus our list is somehow intended to provide

a general overview on related works.

A growing evidence for increasing interest on cloud-based

applications for RNA-seq has been seen as described in the

recent article[6]. Myrna is a tool to use cloud computing for

RNA-seq analysis[17]. FX is a tool for RNA-seq that employs

Hadoop with which the estimation of gene expression levels

is possible[18]. RAP is a pipeline for RNA-seq using cloud

computing and web techniques[19]. Stormbow was introduced

for large scale expression quantification on Amazon cloud[20].

Compared to an effort to develop a standalone tool, utilizing

a distributed computing framework has many benefits as

summarized in the article[21] For example, a framework for

distributed genome assembly was introduced and demonstrated
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Fig. 1. The workflow of the Rnnotator pipeline is schematically
shown.

the speed up with various computer resources from cluster,

clouds, and grids[22]. GATK[23] is a widely known tool for

which the framework based on cloud-friendly MapReduce

constitutes its core part. In fact, MapReduce and related

programming models have been utilized for achieving scalable

goals with clouds. Examples include a Hadoop-based genome

assembler, Contrail[24] and other numerous applications in-

cluding SparkSeq[25] built upon SPARK[26].

Finally, iMetAMOS[13] is not a cloud-based tool and is not

scalable over multiple nodes, but is similar to our pipeline,

providing an integrated platform to support multiple assembly

programs and validation tools together.

III. BACKGROUND AND METHODS

A. Rnnotator

Rnnotator[5] is a software suite mostly written in Perl, and

its main workflow is basically composed of the four steps as

shown in Fig. 1.

The primary feature is the transcript assembly that utilizes

the multiple k-mer strategy, and an existing De Bruijn Graph

(DBG) assembler is used for each k-mer assembly. Assembled

contigs from different k-mer assemblies are then processed

for identifying overlaps and merged with VMATCH[27]

and Minimus2[28]. Currently, assemblers such as Velvet[29],

Oases[30], Ray[31], IDBA[32], and Minia[33] can be used.

Among them, Ray is the only assembler that can process a

large size sequencing data owing to its implementation with

MPI.

The original structure of Rnnotator is principally limited

for scalable analysis to deal with large sequencing data.

Distributed computation is only supported in a limited manner.

Again, de novo assemblers except Ray are not scalable,

implying that the entire pipeline fails if a computing node

running an assembly task has no sufficient memory footprint

for dealing with the data set. The parallelization is limited

in multi-threading in a single node or by the local scheduler,

SGE if available. Not surprisingly, Rnnotator is not cloud-

friendly, either. Likely, it has no option to effectively run on a

heterogeneous cluster architecture or cloud environments with

on-demand computing in which different types of instances or

Virtual Machine (VM) can be utilized.

However, the overall architecture of Rnnotator is modular

and well structured for possible extensions. Our long-term

project plan is to develop Rnnotator-based service for tran-

scriptome analysis that can be offered via the community-wide

mechanism such as science gateways, with multiple flexible

choice options and improved performance and scalability[34].

In this work, more specifically, we focus the support of

large scale transcript assembly in the main pipeline allowing

multiple assemblers to run on distributed resources. This new

feature is systematically achieved by changing its underlying

architecture from the Perl-based pipeline tool to the pilot-based

pipeline architecture as described in details below.

B. Amazon EC2

Amazon EC2 is a commercial cloud and categorized as a

Infrastructure-as-a-service (IaaS) cloud. On-demand comput-

ing provided by IaaS clouds such as EC2 or OpenStack has

various merits as a computing environment for bioinformatics.

For example, its virtualization mechanism permits to reuse

an existing machine image in which all required tools and

environmental variables are set up, resulting in efficient tool

management and development. A cluster with multiple nodes

is also easily built and thus can take advantages of existing ex-

periences with High-performance Computing (HPC) clusters.

EC2 also provides multiple instance types for individual nodes

varying their computing power, memory, storage, accelerators

such as GPU and networking performance, leveraging benefits

from a heterogeneous system.

For the entire experiments reported in this work, we used

two instance types, r3.2xlarge and c3.2xlarge. Both have 8

cores, and the cost of r3.2xlarge is 0.7 USD per hour and

c3.2xlarge is 0.42 USD per hour. The memory of the former

is 61 GB, while the latter is equipped with 16 GB.

C. Pilot-based workflow patterns

A distributed application is a class of scientific applications

intrinsically composed of multiple sub-tasks whose execution

is conducted over distributed computing resources and storage

system. A pilot-based framework, Radical Pilot (RP), previ-

ously called as SAGA Pilot or BigJob, is a powerful means

to develop an efficient pipeline tool with distributed resources

which is a good example of distributed applications[35, 36].

The core properties of RP are designed for pilot resources and

deployment, and workload semantics, binding, and execution,

which is altogether capable of effective executions of tasks on

heterogeneous distributed resources.

There are advantages with the use of the pilot framework for

distributed applications. They include i) that multiple heteroge-

neous resource utilization and distributed job management are

fully and effectively capable, ii) that an extensive solution for
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Fig. 2. Three different workflow patterns are illustrated. These
workflows represent the execution patterns supported by the Radical
Pilot system.

task-level and data-level parallelization for scale-out and scale-

across scenarios can be achievable, and iii) that the utilization

of accumulated experiences with previous pipeline develop-

ment projects is rapidly applied for a new target application

even requiring specifically customized options. Later, when

we detail our main pipeline, it becomes apparent how these

advantages are realized with the implementation.

Such major advantages are, in fact, related to the capacity of

the pilot paradigm that identifies and support common work-

flow patterns. As shown in Fig. 2, we consider three scenarios

of workflows for pipelines. They are distinctively different

in task-resource mapping as well as parallel task execution

for each stage of a pipeline. Generally, an entire pipeline for

a target application is assumed to be composed of multiple

separate stages and each stage needs to execute multiple tasks

that are often concurrently conducted. To execute each stage

of a pipeline, we run pilots and each pilot, denoted as P1, P2,

... , is responsible for assigned multiple sub-tasks by starting,

monitoring, and restarting them. If needed, configurations of

pilots could be dynamically made to improve further the

computational efficiency. This is feasible since all pilot jobs

are controlled and monitored via the back-end database system

that updates run-time information on the fly.

Starting with a simple pattern (Conventional Workflow) for

which all pilot jobs are executed on a single system, the

next pattern is to utilize distributed systems as it is beneficial

for decreasing overall Time-To-Completion (TTC) with more

resources. The initial choice for the pilot-based workflow

with distributed resources is the static workflow in which

the distributed job management with pilots are pre-defined

(Distributed Static Workflow). This static workflow can be

extended to support a dynamically adaptive workflow pattern

(Distributed Dynamic Workflow). In this third scenario, the

matching of pilot jobs for sub-tasks with computing resources

could be decided just before each stage starts. This means

that the decision is made with the dynamic information on

TABLE I
DE NOVO ASSEMBLERS INTEGRATED FOR THE RNA-SEQ PIPELINE

Name Type Distributed Impl. Version Ref

Ray DBG MPI 2.3.1 [31]
ABySS DBG MPI 1.9.0 [39]
Contrail DBG Hadoop MapReduce 0.8.2 [24]

computing environment as well as configuration of each stage

of the pipeline which is likely to be unknown until the previous

stage finishes.

D. Transcript assembly with de novo assemblers and tran-
script assembly quality evaluation

As summarized In Table I, three de novo assemblers, includ-

ing the newly supported two tools by us, ABySS and Contrail,

were of interest for benchmarking scalable options. Owing to

their capabilities for multi-node distributed nothing systems,

any size of data sets can be processed. Ray and ABySS

are implemented with MPI and Contrail is based on Hadoop

MapReduce. In fact, initially, the two other assemblers, MPI-

based SWAP[37] and Hadoop-based CloudBrush[38] were

also tested, but not included in this work since we found that

SWAP was incapable of assemblies with k-mer more than 31

and no support for CloudBrush from developers.

E. Data Sets

In Table II, the datasets we used for the benchmark exper-

iments are summarized. The sizes of these data sets indicate

approximately data volumes for a typical prokaryote and a

fungal system, respectively. By comparing results with the

two data sets, it is also informative for an understanding of

characteristic changes in computational requirement as the

data size increases. It is worth stating that the size of the

P. Crispa sequencing data set is already too large to use

c3.2xlarge in which the memory is 16 GB.

When DBG assemblers are utilized, Rnnotator needs multi-

ple k-mer assemblies due to its DBG-based assembly strategy.

In our case, the sequencing data with B. Glumae needs 7

assembly calculations with k= 35,37, 39,41,43, 45, and 47,

and P. Crispa needs 4 assemblies, i.e. k=51,55,59, and 63. Note

that the number of k-mer calculations required is not known

until the end of the pre-processing step, consequently implying

the need of a dynamical workflow to efficiently manage the

number of independent assembly calculations.

IV. RESULTS AND DISCUSSION

A. Scalable adaptive pipeline on EC2 for large-scale tran-
scriptome analysis

Here, the three major aspects of the development we aim

to achieve with the pipeline are briefed. Overall, the pipeline

is built upon a hierarchical architecture; RP provides the

low level functionality with its Application Programming

Interfaces (APIs), the framework for distributed application

built upon RP is developed for transcriptome analysis and

reusable for similar execution patterns, and finally the pipeline,
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TABLE II
DATA SETS FOR BENCHMARK EXPERIMENTS. THE B. GLUMAE RNA-SEQ

DATA IS FROM THE GEO DATABASE (SRA ID: SRX129586). THE DATA

FOR P. CRISPA IS FROM THE PREVIOUS STUDY[2]

Organism B. Glumae P. Crispa

Description Bacteria Fungus
Genome Size 6.7 Mb 34.5 Mb

Number of Protein Genes 5,223 13617
Seq. Data Size (fastq) 3.8 GB 26.2 GB

Read length (bp) 50 100
Num. of reads 16,263,310 54,168,576 x 2
Seq. Platform Illumina GAII Illumina HiSeq

Paired end No Yes
Memory for Pre-Processing ≤ 15 GB ≈ 40 GB

Data size after pre-processing 175 MB 9.4 GB
k-mer for transcript assembly 35, 37, 39, 41, 51, 55, 59, and 63

43, 45, and 47

built upon the two low level software stacks, is developed

for operating a target application of transcriptome profiling

with Rnnotator and other available features, over distributed

resources (see Fig. 5).

i. Support of parallel executions with the distributed ap-
plication framework The use of RP for our purpose is pri-

marily useful for the effective optimization of coarse-grained

parallelism. By developing the framework, the main goals are

twofold; the support of massive parallel tasks and the effective

multiple tool integration. Specifically, the transcript assembly

step of the Rnnotator workflow is significantly enhanced with

these enhancements. By effectively coordinating executions

of de novo assemblers capable of running on shared-nothing

distributed memory systems with the RP-based framework,

any size of large data sets can be processed while enabling

a concurrent employment of multiple tools.

ii. Seamless utilization of multiple heterogeneous resources
Effectively accessing multiple heterogeneous resources is par-

ticularly beneficial for the pipeline development including

the support of scale-across that increases the scalability over

multiple computing resources. Facilitated by this feature, the

four different stages in our pipeline can be executed in

different computing systems or on multiple machines con-

currently. In coming years, more extreme-scale tasks of the

transcript assembly need to be conducted, and our pipeline

is intrinsically capable with a little amount of changes. In

a single cluster system, like HPC, the scale-out execution is

mostly made with a local scheduler such as SGE or PBS.

RP provides an easy way to work with such schedulers.

Since the original architecture for Rnnotator is designed for

such HPC environments, our pipeline creates a cluster using

multiple VMs and thus MPI-based or Hadoop-based appli-

cations are executed with such a local scheduler. We utilize

StarCluster[40] for creating a cluster system that contains

SGE. Since the available Amazon Machine Images (AMI) of

StarCluster is not compatible with the latest Ubuntu required

by other software tools for our purpose for the pipeline, we

created a new customized StarCluster script.

iii. Support of dynamic workflow The static workflow-based

implementation was developed initially and then a further

TABLE III
BASELINE PERFORMANCE OF THE THREE DE NOVO ASSEMBLERS FOR

TRANSCRIPT ASSEMBLY. TIME-TO-COMPLETION IS MEASURED WITH A

TWO-NODE CLUSTER USING B. GLUMAE DATA. K-MER SIZE IS 47. EC2
INSTANCE TYPE USED IS C3.2XLARGE.

Assembler TTC (sec)

Ray 1,721
ABySS 882
Contrail 6,720

TABLE IV
THE TWO INSTANCE TYPES, C3.2XLARGE AND R3.2XLARGE, ARE

COMPARED WITH RESPECT TO THEIR CAPACITY FOR THE TWO DIFFERENT

DATA SETS. X MEANS ”NOT SUPPORTED”.

Task Dataset c3.2xlarge r3.2xlarge

Pre-Processing B. Glumae O O
P.Crispa X O

Transcript Assembly B. Glumae O O
with Ray P. Crispa X O

Transcript Assembly B. Glumae O O
with ABySS P. Crispa X O

Transcript Assembly B. Glumae O O
with Contrail P. Crispa X O

Post-Processing B. Glumae O O
P. Crispa O O

optimization for a dynamic scheme was attempted. The fully

dynamically adaptive workflow is not implemented yet, how-

ever, at this time. Rather, we describe the current development

efforts. Specifically, as an example of dynamically adaptive

schemes, the pilot-based transcript assembly is implemented,

for which the information retrieved from the output of the

pre-processing step is utilized.

B. Benchmark experiments

First of all, the baseline performance of the de novo as-

semblers is measured and compared in Table III. This can be

useful information for evaluating the performance gain with

scalable solutions based on the utilization of distributed re-

sources. Starting with this reference performance, benchmark

results, as hinted in Table II, emphasize required changes in

computational costs and other requirements as sequencing data

volume, the required number of k-mer assembly, and therefore

optimized conditions with the three assemblers become differ-

ent. For example, as highlighted in Table IV, the bigger data

set of P. Crispa suffers a failure with less powerful instance

types.

Our benchmark results also contain an example of potential

benefits with an efficient multiple tool integration. Our new

pipeline can carry out the transcript assembly with the avail-

able assemblers, separately or together. We present a simple

comparative study on the transcript assembly quality for those

cases. To this end, we utilize DETONATE[41].

i. Scale-out performance of assemblers
An understanding of the potential performance of de novo

assemblers implemented with MPI or Hadoop MapReduce

with respect to scale-out is important for searching optimal

options for the pipeline and thus supported by the pilot frame-

work. First of all, three de novo assemblers were observed
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to show different performance in scale-out conditions. Note

that our comparison is for RNA-seq data sets, and thus could

be different from other prior works focusing on genome

assembly. In Fig. 3, results with the P. Crispa data set is shown.

Results with B. Glumae was found to show a similar pattern

(unpublished). For this, the original RNA-seq data sets were

provided as input without pre-processing. The exception is the

P. Crispa data set with Contrail for which the pre-processed

data are used in order to avoid the failure due to the reads

containing nucleotides with N.

Noticeably, Contrail is very slow and inefficient until the

sufficient number of nodes are used (see also Table III). This is

understandable since Hadoop-based tools are primarily favored

for large-scale distributed tasks and not optimized with a

small number of workers . When more nodes are added, TTC

is becoming close. Regarding the scale-out performance, on

the other hand, when additional nodes are utilized, ABySS

does not show any significant gain in TTC compared to Ray

showing a marginal gain.

Therefore, the main reason for the use of two MPI-based

assemblers for large sequencing data should be because of

the total distributed memory increased for more data sets,

not because of the scalability. The observed scalability among

MPI-based tools is less encouraging, indicating that, in spite

of studies showing the notable scalability of MPI-based

assemblers[37], the difficulty of such implementations seems

to be non-trivial. Interestingly, we believe that Hadoop-based

approaches still have potentials. For example, it is intriguing to

see whether the better scalability, in spite of the relatively low

performance with the MapReduce-based tool, can be achieved

if other programming models and software stacks such as

SPARK, HAMA, and many others are employed. This is

because it is now well-known that MapReduce is less effective

for iterations of distributed parallel in-memory tasks, which is

in fact the case with the transcript assembly.

ii. Task-level parallelization for multiple k-mer assembly
In addition to the scale-out performance of individual as-

semblers, an understanding of possible options for parallel

tasks required for the transcript assembly step is crucial for the

pipeline. In Fig. 4, the performance of the transcript assembly

step is investigated using the assembly with Ray. The data set

is from P. Crispa, but we used a partial data set due to the

computational cost with the entire data set. The number of k-

mer calculations needed are 4, and these 4 different tasks for

which each task corresponding to a single k-mer assembly

show the similar scale-out behavior as already seen with

unprocessed data sets in Fig. 3. Here, we confirm that such

a behavior is uniformly expected regardless of the data size.

Results shown in the low panel of Fig. 4, shed lights on another

aspect that additional gains could be obtained if an efficient

task management scheme is supported for parallelizing the

number of assembly tasks. Interestingly, it is found that the

assembly with 3 nodes (24 cores) still shows a slight gain

from a case with 2 nodes, indicating the benefits using more

nodes in TTC. This is basically the optimization problem for

heterogeneous tasks arising from different k-mer assemblies

Fig. 3. Scale-out performance of the three assemblers that are
integrated for transcript assembly. The data set of P. Crispa is used.
The EC2 instance type used is c3.2xlarge that has 8 cores in a single
node. k-mer size is set to 51.

as well as assembly tasks with multiple assemblers. Note

that the pilot framework was utilized in our previous work

for a similar goal on EC2[42]. More complicated situations

were also examined for influential factors deciding TTCs or

expenses. Examples include the number of nodes for each MPI

job vs. the number of k-mer assemblies, but not presented here

due to its complexity for the interpretation.

iii. Transcript assembly with multiple assemblers
Since our pilot-based pipeline is effectively scalable for

running multiple assemblers for the transcript assembly, we

evaluate the accuracy of results using multiple options corre-

sponding to a single assembler or a combination of assemblers.

The latter approach that combines results from multiple assem-

blers is indeed the Multi-assembler Multi-parameter (MAMP)

method. For an evaluation of transcript assembly, we used

the scores suggested from the tool, DETONATE[41]. These

metrics are recall, precision, and F1 values calculated in

the nucleotide level, and the weighted k-mer recall and the

kc score among those from the reference-based measures of

DETONATE. The RNA-seq data from B. Glumae was used for

this comparison and the reference transcript sequences used

as the ground truth are 6234 gene sequences from the NCBI

GenBank database (http://ncbi.nlm.nih.gov). Note that our

results do not necessarily represent the real transcript quality

accurately, due to multiple factors. For example, the ground

truth sequences are not the entire mRNA transcripts, rather

they are protein gene sequences predicted by the annotation

programs using the whole genome sequences. Therefore, our

results should be considered as an initial attempt to explore

potential benefits and future directions for major objectives of

the pipeline .

Nonetheless, the results summarized in Table V suggest

many intriguing findings. First of all, all transcript assembly
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Fig. 4. In the upper panel, the scalability of Ray assembler is
shown with respect to the size of the input and the number of
cores. In the lower panel, the scalability of the assembly step using
Ray that requires to run multiple k-mer calculation is shown. These
results collectively indicate that there exist the two different types of
parallelisms for sub-tasks in the transcript assembly step. For these
benchmark results, the instance used is r3.2xlarge offered with 8
cores.

results with our pipeline, regardless of different options, are

better than (w.r.t. nucleotide level) or comparable to (weighted

score) the result with Trinity, one of the most popular pro-

grams. Note that the pre-processing step of Trinity is different

from our pipeline, and thus the direct comparison needs to be

scrutinized. Nonetheless, the results indicate the robust per-

formance of the main workflow adopted from Rnnotator. The

favorable performance is further indicated by the improved

results for recall when the weighted scheme is used. According

to DETONATE, the weighted scheme considers the abundance

of reads supporting assembled transcript sequences, and thus

increased recall values suggest a good quality of transcripts

for cases strongly supported by read data.

TABLE V
COMPARISON OF TRANSCRIPT ASSEMBLY QUALITY. THE DATA SET OF B.

GLUMAE IS USED. THE SCORE CALCULATION IS OBTAINED USING

REFERENCE-BASED METRICS IN DETONATE V1.10. FOR THE

COMPARISON, THE EVALUATION RESULT OF ASSEMBLY CONTIGS

OBTAINED WITH TRINITY[3] (V 2.1.1) IS ALSO SHOWN.

Assembler Nucleotide-level (weighted k-mer recall,
Used ( precision, recall, F1) kc score)

Ray 0.84, 0.26, 0.40 0.86, 0.86
ABySS 0.82, 0.42, 0.55 0.79, 0.78
Contrail 0.78, 0.43, 0.56 0.84, 0.83

Ray + Contrail 0.78, 0.43, 0.56 0.78, 0.77
Ray+Contrail+ABySS 0.79, 0.44, 0.57 0.77, 0.76

Trinity 0.51, 0.35, 0.42 0.84, 0.83

Importantly, the scalable capacity of our pipeline that can

carry out multiple options at the same time allows end users

to simply choose their best option if he/she can use an inde-

pendent metric for the comparison. On the other hand, the two

options of the MAMP strategy are not apparently better than

options with a single assembler, even though their performance

seems to be optimal to the average values. In spite of this

initial result, our exploration favoring this kind of ensemble

approaches is encouraged by the success of ensemble methods

which are fairly well known in the fields of statistical learning

and inference. In many cases, they were shown to outperform

other approaches utilizing a single model or classifier[16]. It

is worth stating that our current implementation for merging

the information of contigs generated from multiple assemblers

employs the default setting of Rnnotator. While this default

approach is thought to be appropriate for merging multiple

k-mer assemblies with a single assembler, there seems to be

higher opportunities to show better performing MAMP-based

methods in the future with novel ideas for validating transcripts

and properly merging them.

C. Toward dynamic adaptive workflow

The ultimate goal of our project with the pipeline is to

develop the public research resource supporting a fully dy-

namically adaptive workflow, which will be served via a web-

based science gateway to the research community. To this

end, we need the logic with which a workflow is created

and executed in an efficiently adaptive manner reflecting

dynamically changing environmental conditions as well as

parameters generated on the fly. As proposed in the previous

work[42], for such a goal, factors and conditions affecting the

performance of a workflow should be known, along with a

means for a rough estimate on TTCs of sub tasks a priori. In

this work, our focus is to understand such aspects, particularly,

by exploiting benchmark experiments primarily designed for

such purposes.

Here, we describe the entire workflow in details, highlight-

ing our current development level toward the goal. At the

end, to offer a closer look from the end user perspective,

a sample run of the pipeline, using the B.Glumae data set

and the option for three assemblers together in the transcript

assembly, is presented. For this sample run, a reasonably pre-
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Fig. 5. The two schemes (S1 and S2) for on-demand computing
environments like EC2 are illustrated. They differ in how to match a
pilot with corresponding VMs. Details are explained in the text. The
overall system architecture serving a pipeline is also schematically
shown. JMS represents Job Management System which submits and
orchestrates a workflow.

defined configuration is used and observed cost and TTC are

reported.

First of all, an entire workflow needs to choose one of

two different options in the beginning. The main reason for

the need of such options is because of the unique computing

environment of on-demand clouds. Unlike a conventional HPC

environment, on-demand computing clouds require a user to

choose types of instances and to be responsible for starting

and stopping VMs. In order to deal with such a situation, we

decided to support the pilot-matching schemes in two different

ways as shown in Fig. 5. The first option, the matching scheme

1 (S1), couples a pilot and the lifetime of VM such that a new

pilot always starts with the creation of VMs needed and ends

with the termination of VMs when the role of the pilot finishes.

On the other hand, the other option, denoted as the matching

scheme 2 (S2), allows to reuse currently running VMs for

a new pilot, resulting in a decoupling mechanism between a

pilot and a lifespan of VMs for it.

S2 represents somehow a common scenario in traditional

HPC environments, and thus conveniently reusable for the

future extension of our pipeline incorporating distributed HPC

resources. S1 is notably beneficial for an optimal execution

since appropriate resource types can be chosen among EC2

instances for each pilot, lowering TTC or cost depending upon

the priority goal of the target execution. However, it cannot

avoid overheads stemming from extra tasks for starting and

terminating VMs as well as the data transfer between VMs of

newly created and those that are going to be terminated. On

the contrary, S2 has no such overheads, but is likely to be less

efficient in cases when the mandatory reuse of existing VMs

for the next step constrains a better utilization of resources.

For example, the large input size of the P. Crispa data set

prohibits the pre-processing step with an instance equipped

with less than 40 GB memory, implying r3.2xlarge should be

used. This ends up with forcing the transcript step to keep

unnecessarily this expensive instance.

Once the decision between S1 and S2 is made, the pre-

processing step is started with the pilot PA. While the sizes

of two data sets for this work do not require changes in the

original implementation of Rnnotator, in order to deal with

much bigger data sets, the future implementation needs to

support distributed data-level parallelization for this step. Cur-

rently, depending upon the size of input data, an appropriate

type of instance equipped with sufficiently large memory is

chosen. c3.2xlarge is fine with B. Glumae but inappropriate

for P. Crispa (see Table IV).

After pre-processing, PB , starts with the required number

of VMs for the transcript assembly. The two parameters such

as the number of nodes for each k-mer and the required

number of k-mer assemblies, need to be decided before PB .

Note that the latter parameter should be known by using the

information obtained from the pre-processing step. As already

shown with the benchmark results, each assembler behaves

with the different scalability for each k-mer and the overall

performance varies with different configurations of parallel

execution of multiple k-mer assemblies. Considering these

factors, the optimal number of nodes could be found. For the

cluster set up in this step, our customized StarCluster using

version 0.95.6 was used. MPI jobs for ABySS and Ray, or

Hadoop jobs for Contrail are submitted to Sun Grid Engine

(SGE) scheduler available with the StarCluster AMI. For the

multiple assembler options, it is possible to submit multiple

k-mer jobs for each assembler together to SGE or separately.

Finally, the following post-processing step and the step for

gene expression level calculation (with optional differential

gene expression) are carried out by PC using a single VM.

In general, the data size for these steps is a lot less than the

original sequencing read data, and thus a single VM is fine for

our data sets. In this step, our new developmental contribution

for the support of multi assembler options is implemented in

the post-processing task.
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In the following, the example run is summarized, along with

specific conditions and configurations chosen for the multiple

assembly option. The matching scheme, S2, is chosen and

c3.2xlarge is the choice for the pre-processing as well as for

all following steps. We used the unpublished real sequencing

data set for B. Glumae. The used data set is paired-end and

the total size is 4.4 GB. The k-mers needed for the transcript

assembly are 2. Once one VM was launched for pre-processing

as PA, the input data is sent from the local server to the VM,

taking about 3 min 35 sec. The pre-processing step takes 44

min. After pre-processing, 35 VMs are needed to be created

additionally, resulting in a cluster of 36 nodes, which belongs

to PB . The total 6 jobs, corresponding to two k-mer assemblies

for each assembler, are submitted to the SGE scheduler of the

created cluster. This configuration corresponds to 4 MPI jobs

for Ray and ABySS and 2 MapReduce-based Contrail jobs.

MPI jobs are configured to run on a single node with 8 slots,

and MapReduce-based jobs use 16 nodes. This decision is

based on the preliminary benchmark finding that there is no

significant benefit with MPI jobs with more than a single node

for the two MPI assemblers, whereas the results with Contrail

suggest that at least 16 nodes are needed to match TTCs of

the MPI assemblers in the case of B. Glumae. Overall, the

assembly step with PB takes 1 hour 18 min. Note that this

TTC is in fact the longest one required for the Contrail-based

assembly of two k-mer calculations. For tasks of Contrail,

1 min is additionally needed for the file format conversion

to SFA from Fastq. After this step, the post-processing step

starts with a single VM, corresponding to PC . Again, this VM

is the one having existed from the beginning (i.e. the same

resource for PA and one of nodes for PB). Other 35 VMs,

which are not necessary for PC , are terminated. PC takes 41

min. Again, the overall workflow has no need of file movement

among resources allocated for different pilots since the same

VM serves for all three pilots. Overall, we can finish this run

in 2 hours 47 min, and the cost is about 20.28 USD.

V. FUTURE WORKS AND CONCLUDING REMARKS

Genome-wide transcriptome analysis is a complex process.

The ongoing revolution in sequencing technology deepens the

gap between analysis tasks and ever-growing data. This gap

is more widen as many outstanding roadblocks are likely to

arise from new progresses in metatranscriptome, use cases of

multi-platform methods, single cell sequencing, and more se-

quencing data with non-model species. This strongly suggests

the need of an integrative tool that can support massive data

processing as well as computational tasks in an efficient way.

In this work, we present our developmental outcomes to

address outstanding challenges toward such an integrative tool.

Based on the Rnnotator pipeline tool, our strategy is to provide

the scalability framework using the pilot system, Radical Pilot.

Specifically, as demonstrated with examples, the use of de

novo assemblers implemented with MPI or Hadoop resolves

the immediate concern to deal with bigger data sets without a

failure. Additionally, the support of multiple assembler options

is not only useful to find the best one among different results,

but also is an attractive platform for more advanced meth-

ods based on ensemble and Multi-assembler Multi-parameter

(MAMP) methods without worrying a required computational

burden.

Continuing our effort to enhance the capacity of the

pipeline, the following directions are prioritized. Firstly, other

steps such as pre-processing and post-processing are also to

be more pilot-powered by supporting efficient data and task-

level parallelization over distributed systems. Secondly, the

main component for driving the dynamic adaptive workflow

will be implemented. Thirdly, the pipeline will be fully

tested for OpenStack. Eventually, it is possible to support

the scale-across execution of Rnnotator that supports multiple

heterogeneous distributed computing resources comprising of

HPC systems and on-demand computing clouds. Other di-

rections include algorithmic development, for example, such

as new implementations for better transcript assembly using

an ensemble-based method. Finally, the pipeline will be soon

available to the research community via the science gateway

project (http:dare.cct.lsu.edu).
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