
Towards Context-Aware DNA Sequence
Compression for Efficient Data Exchange

Wajeeta Lohana, Jawwad A. Shamsi, Tahir Q. Syed, Farrukh Hasan
Systems Research Laboratory, Computer Science, National University of Computer and Emerging Sciences, Pakistan

wajeeta@gmail.com,{ jawwad.shamsi, tahir.syed, farrukh.hassan}@nu.edu.pk

Abstract— DNA sequencing has emerged as one of the principal
research directions in systems biology because of its usefulness in
predicting the provenance of disease but also has profound
impact in other fields like biotechnology, biological systematic
and forensic medicine. The experiments in high throughput DNA
sequencing technology are notorious for generating DNA
sequences in huge quantities, and this poses a challenge in the
computation, storage and exchange of sequence data. Computing
on the Cloud helps mitigate the first two challenges because it
gives on-demand machines through which we are able to save
cost and it gives flexibility to balance the load, both computation-
and storage- wise. The problem with data exchange could be
mitigated to an extent through the use of data compression. This
work proposes a context-aware framework that decides the
compression algorithm which can minimize the time-to-
completion and efficiently utilize the resources by performing
experiments on different Cloud and algorithm combinations and
configurations. The results obtained from this framework and
experimental setup shows that DNAX is better than rest of the
algorithms in any context, but if the file size is less than 50kb
then one can go for CTW or Gencompress. The Gzip algorithm
which is used in the NCBI repository to store the sequences has
the worst compression ratio and time.

Keywords—Bioinformatics; DNA; Gene Compression; Context-
aware Compression.

I. INTRODUCTION
Understanding the basic variation within species and

between species is a fundamental question bioinformatics
addresses. It requires encoding of the nucleotides sequences,
collectively called the genome, and encoding genetic
information in DNA/RNA (Human_genome n.d.). This
sequence can help us diagnose diseases, identify individuals,
and develop such tools which can be used to detect if the
function of a cell is normal etc. (DNA_sequencing n.d.)

High throughput sequencing techniques are responsible for
generating large amount of data. It has been observed that the
first genome took roughly 12 years to encode and cost up to a
billion USD. The second generation sequencing took a week
with 1000 USD cost. If we talk about 3G, it has reduced the
cost down to 100 USD and time to days instead of months and
years [1].The old techniques like Sanger-based Capillary
Sequencing which was used in Human genome project
generated data up to 4GB, but now the emerging technologies
with massive parallel sequencing are generating data in
Terabytes (TB) [2]. The labs where sequencing techniques are
being used submit these sequences to archival institutes like
INSDC, NCBI, EMBL and DDBJ [3]. Due to this

exponentially growing data, the problem of storing and
performing analysis on this data is a major concern for the
bioinformatics research community.

Efficient disk array are required to store this data, while
very powerful machines are required to perform the analysis.
We pose ourselves the following research questions, and then
investigate their answers through this work:

• While uploading DNA sequences for analysis on
cloud, which algorithm is good and can minimize the overall
time in given context?

• Can general purpose algorithms like Gzip which are
based on LZ and Huffman encoding techniques save overall
time better than DNA-based algorithm? Are they also
beneficial in terms of memory?

To answer these questions, a framework is proposed which
decides

1. Whether it is crucial to compress DNA sequences?

2. Which algorithm should be used?

 The algorithms selected for the experiments include:
CTW, DNAX, Gencompress, and Gzip

These algorithms are freely available with guidelines on
how to use them. The framework utilizes the rules (model)
generated from the training data. This training data was
generated by performing experiments over different machines
by varying the context. The context basically comprises of
available RAM, CPU speed, bandwidth, file size, and
algorithm. The label is then assigned to training data based on
the equation in which four important parameters are included
with equal weights. These parameters are time to compress,
time to decompress, time to upload, and download. The
algorithm which minimizes the overall time is the winner and
labels will be assigned accordingly. Then that model is applied
on testing data which comprises 25% of the overall
experiments performed.

Our research makes the following contributions:

• Hypothesis of compressing DNA sequences based on
context (cloud architecture, algorithm, data size, etc.)

• Study of the change of context on the behavior of the
DNA sequences' compression.

• Overall time variation with respect to context

2015 IEEE International Parallel and Distributed Processing Symposium Workshops

/15 $31.00 © 2015 IEEE

DOI 10.1109/IPDPSW.2015.89

357

Figure 1 - General Structure of Context aware Compression

• Identifying the fact that uploading on a storage
account not only depends on bandwidth but RAM and CPU is
also significant.

• Impact of using a general-purpose algorithm like
GZip on overall time, RAM usage, and compression ratio.

Context-aware compression is an unexplored area of
bioinformatics research. One straightforward challenge it poses
is that the behavior of these algorithms is different for a given
file size. The file with a small size can take more time than a
larger file. This anomaly varies with algorithm to algorithm
and the contents in the files because some algorithms look for
the exact repeats while others for approximate repeats.

In the related work the compression ratio and compression
time has been the main focus while we additionally include the
infrastructural cost of analyzing overall compression,
decompression, uploading and downloading time on Azure
Cloud.

II. BACKGROUND

A. Context Aware Compression
Context Aware compression or Context based compression is
basically the technique to compress data based on the context
provided. The context can be the available RAM, CPU speed,
CPU utilization, bandwidth (in case of uploading and
downloading) etc. Using context-aware compression we can
determine which algorithm works better compared to others in
a given context. This procedure involves the inquiry of current
resources available and analysis on historical data to choose
the better algorithm.

Figure 1 shows the general process of distributed sequencing
computation using a compressed query. The context aware
compression framework looks at the current resources and the
rules available. These rules can be obtained by analyzing
historical data. Using the rules, the framework will come up
with the optimum solution. In [4], the authors provide the
information regarding the context awareness for handheld
devices, where the location and other things are the context. In
our case the location of compression is the VM’s specification
like RAM, CPU and Bandwidth which are simulated by
VMware workstation.

B. Bioinformatics Sequences
The DNA (Deoxyribonucleic acid) structure consists of
Nucleotides. The arrangement of Nucleotides within the DNA
structure has impact on how the cell can function properly.
Besides this, it also constitutes the genetic information
(DNA_Sequence n.d.). Using DNA sequencing technology we
get this information in the form of a string, the particular
arrangement of which helps identify how it impacts the cell
functioning and which leads towards the cure or identification
of a disease[2]. These sequences consist of four bases:
adenine, cytosine, guanine, and thymine, usually abbreviated
using the symbols A, C, G and T respectively [5]. It has been
observed that there is only 0.1% variation among DNA
sequences of same species [3][6] .There are three kinds of
repetitions found in these biological sequences. The first are
the repeats in Long sequence itself, the second is the repetition
based on reverse complement like ‘A’ always having a pair
with ‘T’, and ‘C’ with ‘G’. By using this characteristic we can
identify such repeats. The third kind of repeat is based on
mutation because sequences belonging to same species are
99.9% the same [6].

III. RELATED WORK
The compression of DNA sequences due to its specific

characteristics is found to be the critical task in the data
compression field [7]. There are many algorithms for text
compression but they do not give good compression ratio for
DNA sequences. Among the tools which compress text, such
as bzip2 which uses burrows-Wheeler
transform+Huffman+Move-to-Front for compression, gzip
which utilizes huffman+ Lz and others have failed to give good
compression ratio [3].The Huffman which is based on
calculating the frequency of symbols does not give good results
because the four symbols (A, G, T, C) do not have different
probabilities [8]. CTW is well known for compression of DNA
sequence but it has been observed through experiments that
although it has good compression ratio compared to few other
DNA sequence specific algorithms like DNAX, it consumes
more time in decompression procedure than other algorithms
[9] like DNAX and GenCompress.

 Thus in the field of bio-informatics different algorithms
have been proposed, based on both greedy and dynamic
approaches [10].

The compression technique refers to the method of
transferring the data load from network to CPU and memory.
Using compression techniques one can save the memory but
these techniques require computational cost which involves
RAM too. This space saving procedure follows the basic
concept of how possibly to write the next substring in such a
way that it refers to the existing substring with minimum bytes.
With this basic concept many categories of compression were
introduced, both for general purpose and DNA-Sequence based
data.

Broadly speaking about the DNA-Sequence based
compression techniques there are basically two modes;

358

Table 1 - Algorithms: Encoding techniques and Methodology

Algo Name Methodolog
y

Encoding
(Repeats)

Encoding(NonRepeats)

BioCompress Detects exact
and reverse
complement

repeats

Fibonacci
coding to

encode the
length and

position of it
is previous

location

2bpc

Bio-
compress2

 Same as
BioCompress

Order-2 arithmetic
coding

Cfact Searches
longest exact

repeats in
two passes.
First pass
suffix tree

second pass
encoding

Lz 2bpc

Gencompress For
Approximate
repeats uses
edit distance

operation
and 2 integer

Hamming
distance in

gencompress1
and edit

distance in
gencompress2

Edit distance operation
for mutation and pair or

integers

DNAcompre
ss

Two pass
algo, uses

Pattern
hunter

approximate
Repeats

including
complement
palindrome

(l,i,j)
(e,i,j)
For

Approximate
repeat

encoding

Lz

DNAC Four phase
algorithm

Fibonacci
encoding

DNAPack Dynamic
programmin
g to search

repeats

Hamming
distance

Order-2 arithmetic
coding or context tree

weighting or naïve 2-bits

CTW+LZ Context tree
weighting

DNAX Exact
Repeats and

Reverse
Complement

Uses
information in
Approximate

repeats

Arithmetic coding

XM Statistics

horizontal mode and vertical mode [11]. In Horizontal mode
there is only one sequence which is compressed by referring to
substring within the same sequence. In vertical mode, another
sequence is used for the reference to compress.

A. Overview of Horizontal mode algorithms
Horizontal mode is further divided into categories based on

substitution, statistics, grammar and table comparisons [3]
[12].

The first algorithm to compress the DNA sequence which
was introduced was “BioCompress” [11]. It first finds the exact
repeating sequence and then reverse complement of the
sequence and then stores them in a tree. Afterwards it encodes
these repeats by their frequency and preposition of the previous
occurrence. It then uses 2 bits to encode the remaining region.
A revised version of Biocompresss “BioCompress2” uses the
same technique except it encodes the remaining string using

order-2 arithmetic coding [11]. [13], another algorithm which
searches for the long repeats in first pass and builds suffix tree
while in second pass it performs encoding using lz.

Gencompress [14], is also one of the well-known
substitution algorithms. It searches the optimal prefix of
unprocessed substring which has approximate match in
processed substring to encode it efficiently. It limits the search
by putting constraint at the edit operation using a threshold
value. It uses edit operation to refer the approximate repeats.
These edit operations are basically insert, delete and replace.
Gencompress has also two versions. Gencomrpess-1 uses
hamming distance to encode while in Gencompress-2 the
edition distance is being used [3]. DNA Compress [15]
achieves average 13.7% compression which is faster than other
algorithms [16]. It finds all approximate repeats by using
Software Pattern Hunter. To encode both approximate and
exact repeats it uses LZ.

We have also used DNAX [17] algorithm in our work.
DNAX unlike Gencompess works on the exact repeats. The
RAM usage of the Gencomrpess is high due to the fact that it
looks for the approximate repeats and eventually has good
compression ratio than others. If we talk about the time taken
for compression, DNAX performs better than Gencompress. It
follows the strategy of encoding the exact repeats only, but to
encode them it uses the information from approximate repeats.
When no match is found, arithmetic coding is utilized.

In 2004, a revised algorithm based on DNAX was
published by the name of DNAC [3]. It is four phases based
algorithm. It constructs suffix tree in first phase to find exact
repeats, in second phase, using dynamic programming, exact
repeats are approximated to partial repeats. In third phase the
optimal non-overlapping repeats are extracted. In fourth phase
it uses Fibonacci ending to encode repeats. DNAPACK [18]
gives better results than Gencompress, Ctw and
DNACompress. It uses hamming distance for repeating
substrings while for non-repeats it uses one of three methods
(order-2 arithmetic, context tree weighting, and naïve 2bits per
symbol). Li et al.'s DNA-COMPACT [2], which can compress
DNA with or without reference, improves the compression
ratio. It is a two pass algorithm. In the first pass it finds the
repeats and complementary palindromes while in the second
pass the remaining sequence is coded. In that the contextual
model is improved over the XM [19] as XM uses Bayesian
averaging which can generate biased results. Instead they use
logistic regression.

The other category of horizontal compression is statistics
based, where encoding is based on predicting the probability
distribution of the symbol to be encoded. The model of
sequence is generated based on this distribution. Good
compression can be obtained if the model provides high
probability of the next symbol’s actual value. The algorithms
in these categories are XM [19], CDNA [20] and ARM [21].
Among these three, XM is the popular one and it has
competitive compression ratio. These three techniques require
more computation due to the models that need to be generated,
therefore, practically these are usable for small sequences only
[3].

359

In the substitution-statistics based category, algorithms
such as Ctw+lz [22], offline [7] have been developed.
Grammar-based algorithms construct context free grammar to
represent input data. That CFG is then encoded to binary after
converting into streams. One algorithm in this category is
DNASequitur [23]. Table 1 contains the summary of
algorithms and includes the encoding techniques used by them
in case there are repeats within the sequence and if no repeats
are found. It also shows how each algorithm works.

Unfortunately, the source codes of all algorithms are not
available. Therefore, many researchers have used standard
benchmark files to relate their work. We were able to get code
of DNAX and Gencompress and started our work with that.
Besides, we incorporated Gzip Deutsch et al. [24] and CTW
willems et al. [25] to give comparative analysis over both
general text and DNA specific algorithms.

While work regarding context aware compression of DNA
sequences is not forthcoming in literature, it exists for simple
text algorithms. For DNA compression, the related work that
analyzes the trade-off between compression time and memory
does exist. It is summarized as follows:

In Wandelt et al. [1], a reference genome is used for
compression with fine-tuning the trade-off between
compression time and memory. The idea is to find out longest
prefix-suffix match by mapping with reference genome and
place entries for reference in the file to be compressed.
Following are the three methods used by them to achieve better
compression.

• Block-change entry BC(i): next entries are encoded
with respect to reference block i.

• Relative match entry RM(i,j): The input matches the
reference block at position i for j characters.

• Raw entry R(s): A string s is encoded raw (for
instance if there is no good matching block).

The 1000 genome project is compressed using this
approach. It has been observed that compression ratio is 1:400
and by increasing block size more efficient results are
achieved.

In Krintz et al. [26], the authors have proposed an Adaptive
Compression Environment (ACE), which automatically and
transparently applies compression on stream at TCP/IP level to
improve transfer performance. ACE uses two technologies,
Open Runtime platform (ORP) [27] from Intel Microprocessor
Research Lab (MRL) and Network Weather Service (NWS)
[28]. ORP is used for the decision purpose while NWS for
monitoring resources and measurement in timely manner.
Network sensors are the light weight processes which execute
on client device to forecast the impact of last decision made for
compression. When user wants to know the future impact of
compression then ACE uses these values to decide whether to
compress by using Bzip, LZO and Zlib or not to compress.
ACE decides on last samples of compression ratios and if those
are unavailable because compression was not applied due to
some reason (like CPU load is not enough and Bandwidth is
high) ACE will consider CPU load and bandwidth for its
estimation.

In Wiseman et al. [29], the authors have considered the
network transmission rate and processor resources to assess
compression effectiveness. The algorithm and techniques have
been incorporated in a middleware ECho (Eisenhauer n.d.).
This middleware is based on Message Passing Interface (MPI).

 “Reducing speed” is measured when blocks are
compressed while “receiving speed” is measured when
compressed blocks are received. The middleware has been
tested for commercial and scientific dataset. A dataset is
transferred within 29.138 seconds without compression. On the
contrary compressed database takes 10 second (Compression
takes 60% of total time).

B. Overview of Vertical mode algorithms
The algorithm/tool included in this category is; DNAZip

[30].The goal of this tool is to compress database to 4MB so
that it can be attached in email. It needs reference genome
(~3GB) and reference SNP map (�1.2GB). Another Approach
G-SQZ Tembe et al. [31] uses Huffman-coding to compress
data without altering the sequence. In Daily et al. [32], a data-
structure is purposed to efficiently compress data by mapping
on reference sequence. In kuruppu et al. [6] COMRAD is
modified with iterative dictionary. Coil [21] is another
algorithm based on idea of edit-tree coding, it has high
compression ratio but not good timings.

IV. EXPERIMENTAL SETUP AND FRAMEWORK DESIGN

A. Experimental Setup
Framework is based on deciding which algorithm can be

chosen based on the current resources available. The decision
is taken from the model learnt from the experiments
performed. The experiments have been conducted at different
machines. There were mainly three machines; an i5 with 6 GB
RAM and 2.4GHz processor, a core 2 duo machine with
2.0GHz Processor and 3GB RAM, a VM at Windows Azure
cloud with 2.1GHz AMD processor with 3.5GB RAM. The
first two machines were used for experiments by installing
VMware workstation in order to create controlled environment.
The parameters for context such as RAM and Bandwidth were
simulated on these machines. Besides this, a storage account
(SAAS) was used to store the uploaded files in the form of
Blobs (Binary large object). A container is created and these
files are uploaded as BLOBs.

The compression along with uploading is performed at
VMs on these two machines while downloading from storage
account and decompression is performed at cloud. By doing
this, we were able to find out which algorithm was good for a
given scenario. From experiments, it was clear that uploading
data at cloud was not only dependent on bandwidth but the
processor speed and RAM also mattered, while the size of the
compressed file remains unchanged.

For experiments, we downloaded sequences from NCBI,
and uploaded to cloud via ftp [33]. These are compressed with
gz and most of the sequences are of bacteria. After
decompression, the file contains multiple sequences along with
text. We separated the sequences and removed the extra text so
that single sequence experiments can be carried out smoothly.
The seven files from benchmark standard dataset are used by

360

Figure 2 - Graphical Representation of Uploading Time in different

Context

Figure 3- Graphical Representation of RAM used

Figure 4 - Graphical Representation of Compressed File Size

Figure 5 - Graphical Representation of Compression time based on Context

Figure 6- Graphical representation of Download Time

Figure 7 - Bioinformatics framework

most of the authors in their work [18]. A total of 132 files are
used in the experiments with different file sizes.

B. Experiments
In this section we going to discuss about the experiments

performed on different machines for dependent variables

(Compressed file Size (bytes), RAM used (In bytes), and Time
(Uploading, downloading, Compress, Decompress)
(Milliseconds)) with different context is given which shows
how algorithms are behaving when context changes. In Figure
2, the uploading time is depicted. On average, it has been

U
pl

oa
di

ng
 T

im
e

(m
s)

Context
CPU & RAM

R
A

M
 U

se
d

(k
bs

)

Fi
le

 S
iz

e
(k

bs
)

C
om

pr
es

si
on

 T
im

e
(m

s)

D
ow

nl
oa

d
Ti

m
e

(m
s)

Algorithms

Algorithms Algorithms

Algorithms

361

observed that by increasing all the three pa
contexts i.e. RAM, Bandwidth and CPU spee
time can be improved in general.

Figure 3 shows that when DNAX and G
compared, then DNAX is good when RAM a
while for the rest of cases Gencompress
variation in these results exists, as RAM u
predicted easily based on the context. Figure 4
that DNAX is fine in compression ratio after G
CTW with benefit over the time variable. The
change the compression ratio because the
according to their logics which are based on c
The threshold is what changes the RAM consu
of compression.

In Figure 5, we can analyze that comp
Gencompress is bad due to its edit distance
the approximate repeats in order to minimize
ratio. While looking at the given context it can
the change in RAM only does not change the c
for Gencompress while change in CPU bring
For CTW, Gzip and DNAX CPU are importan
DNAX is taking less time than others.

Figure 6 shows the download time for
There is a slight difference between these algo
CPU usage and RAM availability of Cloud. T
are nearly 27 Ms to 45Ms between a
decompression time were also observed it
DNAX has foremost least decompression tim
algorithms.

C. Labeling of the Training data
In this step the training data is which ha

from experiments is going to be used for lab
different variables with weights are listed. Lab
deciding which algorithm is good in a given
there are in same context there were four alg
best if we consider Time only (100% weight,
any combination of TIME and RAM listed in T
the equation that were used for this labeling.

� � � � ��	
��
��	������ � � � ��
�	

� � � ����	������� � �
� ��	���	������� � � �

Using above equation, label were assigned
algorithm is giving less value for this equation
the algorithm which is utilizing the less resour
label. After this labeling, rules are generate
model that learn such pattern.

D. Bio-informatics compression Framework
The proposed framework in figure 7,

different components. These components w
provide an optimal solution based on differe
parameters which build the context for c
include: Size of file, Algorithm, Bandwidth,
Memory Available.

The above mentioned factors affect the RA
an algorithm and the time taken by it f

arameters of the
ed, the uploading

Gencompress are
and CPU are low,

is better. Slight
usage cannot be

4, we can observe
Gencompress and
e context doesn’t
algorithms work
ertain thresholds.
umption and time

pression time for
operation to find
the compression

n be observed that
compression time
gs a little change.
nt to some extent.

each algorithm.
orithms based on
These differences
algorithms. The

was noted that
me than rest of the

as been gathered
beling. In table 2,
beling is actually
context. Let say

gorithm which is
or RAM only or

Table 2. Below is

��
���	������

���� !"#$�

d based on which
n. Given a context
rces is selected to
ed so that create

is composed of
work together to
ent contexts. The
ompressing data
CPU Speed, and

AM utilization of
for compression,

decompression, uploading and
components of this framework are
decides which algorithm should be c
Compressor, which uses that algorith
Context gatherer that collects the
resources available and applies th
generated through Decision tree
CHAID (Chi-squared Automatic
CART (Classification and Regressi
supposed to be model which gener
applied on training data. Above in
the inference engine to decide the al
is cleansed by the Cleanser. At the
downloaded and decompressed.

V. RESULT
In this section the main results r

CART are going to be discussed.
methods give approximately the sa
found to be more effective as th
algorithm is basically that of the pre
on continuous or categorical varia
phase it was observed that there w
was used as label, which means th
considering the overall time.

Once the rules are generated,
framework for testing. As mention
was separated in the starting. Thes
these rules have been applied. W
33*32 (with different context) =105

Figure 8 – File Size w.r.t Row Id

Figure 8, showing the relationsh
number of rows. The below relatio
sections to show the time consum
different contexts.

A. Result with rules generated by C
The training data which is train

weights was assigned to CHAID f
these rules were applied to the testin
the form of chart were observed.

Fi
le

 si
ze

 (k
bs

)

downloading. Different
e: Inference engine, which
chosen for compression, the
hm to compress the file, the
information regarding the

he rules. These rules are
induction using methods
Interaction Detector) and

ion Trees). These rules are
rated by learning algorithm
nformation will be used by
lgorithm. Extra information
cloud VM that file is then

TS
regarding both CHAID and
 It has been observed that

ame results but CART was
he problem to predict the
edication of category based
ables. During the learning

were no records where Gzip
hat Gzip is not good while

they are incorporated in
ned earlier, this testing data
se are 1056 rows on which

Which includes 33 files so
6 rows.

d / Number of Records

hip between the file size and
onship will be used in next

mption and RAM usages in

CHAID for time
ned by equation with equal
for rules generation. When
ng data, following results in

362

Figure 9 – CHAID Results for time (100%
applying rules (Validation)

 Figure 9 shows the results obtain by CHAI
the chart with gaps were found which show
rules fail on a given file size. In above resul
that when the file is less than 50kb and RAM
with CPU speed less than or equal to 2393, th
be validated. As per training, the gaps actually
label of Gencompress is missing. As CH
methodology based on the variable which sp
majority of splits labeled the rows with DNAX
a fraction of CTW. Here is the accuracy given

Accuracy= Cases Matched/TotalCases

Accuracy=0.946

The detail analysis over the RAM and CPU
given which shows how the results are varyi
rules generated.

Figure 10 – CHAID Analysis based on

 In Figure 10, by using the normalized
TotalRAM, file size and results are being
observation shown is for the file size less
different RAM and CPU. The yellow line repr
If it is less than 0, it specifies that the case was
above zero indicates it was labeled as per train
clear from results that in the starting when t
very small then CHAID method failed to pr
algorithm. Gradually when the file size in
methodology found DNAX is the best for com

C
as

es
 M

at
ch

ed
 (%

)

No. of records

La
be

le
d

Cases

% weight) after
)

ID. By doing this
ws when CHAID
lts it is indicated
is less than 2GB

he rules could not
y indicate that the
HAID uses the
plits more so the
X algorithm with
for CHAID;

U with file size is
ing based on the

n Context

values for CPU,
g depicted. The
than 50kb with

resents the result.
s mismatch while
ning. Further it is
the size of file is
redict the correct
ncreases CHAID

mpression.

B. Result with rules generated by C
In this section the results regard

CART are going to be described. L
method gives priority to the DNA
discussed, CART is used when the
because it identifies the resembla
generates binary tree accordingly.
were obtained because the cases
algorithms were also identified.

Figure 11 - CART Results for tota
applying rules (V

 In Figure 11 the rules are ident
less than 50kb. These were missing
gaps are there because of the slight
between CTW and Gencompress. H
for CART;

Accuracy= Cases Matched/Tota

Accuracy= 0.962

The detailed analysis over the R
is given for CART.

Figure 12 – CART Analys

In Figure 12 the normalized res
records. The results line in yellow
files it was fine but when the sudden
low it preferred Gencompress as la
CTW. The model overall indicates
less than 30kb the Gencompress sh
again results shows the DNAX is
compromise at compression ratio. G
timing is not included in the trainin
not considered in results also.

C
as

es
 M

at
ch

ed
 (%

)

No. of record

La
be

le
d

Cases

CART for time
ding the rules generated by

Like CHAID method CART
AX on the whole. But as
ere is predication involved
ance within the class and

By doing so good results
related with Gencompress

al time (100% weight) after
alidation)

tified for files with file size
in the CHAID results. Still
difference of overall timing
Here is the accuracy given

alCases

RAM and CPU with file size

sis based on context

sults are shown for first 86
w indicates that for first 17
nly CPU and RAM both get
abel while originally it was
s that when the file size is
hould be preferred. Overall

good in timing with little
Gzip because of overall bad
ng data so eventually is it is

ds

363

C. Result with rules generated by CHAID for
In this section results are given based on th

for RAM using CHAID. It has been observ
method is found to be better than CART for
unfortunately the results are not good.

Figure 13 - CHAID Results for RAM (100%
applying rules (Validation)

 Figure 13, the gaps show that the file
correct labels that were assigned using rul
training data for RAM usages. These gaps are
found in compression time may be due to
RAM consumption also depends on CPU us
consistent.

The Accuracy for this model is given as un

Accuracy= Cases Matched/TotalCases

Accuracy= 0.3614

The detail analysis over the RAM and CPU
given for CHAID.

In Figure 14, the analysis on CHAID base
is graphed. For the first 87 records the graph
files size along with CPU and RAM is als
again the results gets poor. The change in resu
as such logical as in case of compression tim
the accuracy is 36% when the rules are applied

Figure 15 – CHAID Analysis based on c

-1.5

-1

-0.5

0

0.5

1

1.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 6

CHAID Analysis

CPU Total_RAM FileSize Results

La
be

le
d

C
as

es
 M

at
ch

ed
 (

%
)

No. of records

Cases

r RAM
he rules generated
ved that CHAID
RAM usage. But

% weight) after

es didn’t get the
les generated on
e more than those
the fact that the
age which is not

nder:

with file size is

ed on the context
shows that when

so increases then
ults doesn’t seem

me. As mentioned
d on testing data.

D. Result with rules generated by C
In this section the results on

CART are analyzed. As discussed,
results same as CHAID and there
Overall the classification for RAM
good that is the reason why rules th

data doesn’t produced effective resu

In Figure 15, the gaps indicate t
the label at the start which was don
gaps get large when size is greater
this model is given below;

Accuracy= Cases Matched/Tot

Accuracy= 0.3342

In Figure 16, the analysis is give
shows that at the start CART meth
and suddenly when CPU and RAM
poor results. On average it is notic
when CPU speed is increased an
RAM utilization is high.

E. Overall Results with accuracy
In this section the overall results

Table 2. It gives the summarize

context

67 69 71 73 75 77 79 81 83 85 87

Figure 16 - CART Results for RA
applying rules (Va

Figure 14 – CART Analysis

C
as

es
 M

at
ch

ed
 (%

)
La

be
le

d

No. of recor

Cases

CART for RAM
the rules generated using

, CART doesn’t give good
is only difference of 3%.

M usage is not found to be
hat were applied to training

ults for testing data.

that rules could not identify
ne by CHAID method. The

than 200Kb. Accuracy for

talCases

en for first 88 records which
hod couldn’t find the label

M get low, somehow it gives
ced from experiments also

nd RAM is increased then

s with accuracy are given in
ed accuracy based on the

AM (100% weight) after
alidation)

s based on context

rds

364

combinations tried for dependent variables like RAM, and
Time with different weights.

Table 2 – Accuracy of generated Rules

Method Weight Var1 Var 2 Var 3 Accuracy

CRT 100

RAM N/A N/A
33.50

CHAID RAM N/A N/A 36.14
CRT 100 TIME N/A N/A 96.20

CHAID TIME N/A N/A 94.60
CRT 100 Compression

Time
N/A N/A

98.48
CHAID 100 Compression

Time
N/A N/A

98.48
CART 60:40

RAM TIME N/A

35.23
CHAID RAM TIME N/A 35.42
CART 40:60 RAM TIME N/A 44.32

CHAID RAM TIME N/A 39.77
CRT 70:30

RAM TIME N/A

35.23
CHAID RAM TIME N/A 35.42

CRT 30:70

RAM TIME N/A
42.80

CHAID RAM TIME N/A 41.29
CRT 80:20

RAM TIME N/A

30.11
CHAID RAM TIME N/A 35.42

CRT 20:80

RAM TIME N/A
42.80

CHAID RAM TIME N/A 38.64
CRT 90:10

RAM TIME N/A

33.90
CHAID RAM TIME N/A 33.90

CRT 10:90

RAM TIME N/A
45.83

CHAID RAM TIME N/A 36.55
CRT 50:50 RAM Compression

Time
N/A

38.64
CHAID 50:50 RAM Compression

Time
N/A

35.23
CRT 33:33:33 RAM Compression

Time
Upload
Time 22.54

CHAID RAM Compression
Time

Upload
Time 27.65

CRT 20:40:40 RAM Compression
Time

Upload
Time 43.94

CHAID RAM Compression
Time

Upload
Time 37.50

CRT 40:40:20 RAM Compression
Time

Upload
Time 45.45

CHAID RAM Compression
Time

Upload
Time 38.26

CRT 40:50:10 RAM Compression
Time

Upload
Time 42.61

CHAID RAM Compression
Time

Upload
Time 39.77

In Table 2, the different combination were tried to find out
the relationship between RAM usage and Time. Overall the
results are not good when both RAM usage and Time are
considered because overall if the accuracy of RAM usage is

considered it goes up to 36% only, which eventually means
that RAM used cannot be predicted based on given context.
The learning model should consider other parameters such as
CPU usage. It has been observed too that when CPU usage is
high then RAM usage also gets high.

We observe that on the whole DNAX is the winner with
respect to RAM usage and compression time. The strategy it
uses is to find the exact repeats instead of approximate due to
this fact it consumes less time than Gencompress which looks
for the approximate repeats and find edit operation. On the
other hand Gzip uses the dictionary based approach while
CTW uses the statistics based approach. The statistics based
approach on Markov models is also utilized in the XM
algorithm for DNA. But we found that although CTW is good
for compression ratio and its compression takes less time than
Gencompress but when it comes to decompressing the
sequence, on average CTW performs the worst.

Regarding context aware compression, RAM usage for
GZip is low on average and CTW consumes more memory.
The RAM used by the algorithms also depends on CPU usage
which we have observed through experiments. We observed
that in multiple cases when CPU usage is greater than 30% the
RAM usage got double. The classification for RAM usage is
not so good due to the fact that it is nearly same for all
algorithms. Ideally the general purpose algorithms take less
memory when RAM and CPU get increased but for DNA
specific algorithms the RAM usage is dependent upon CPU
speed. So their behavior in terms of RAM usage is slightly
different which generates poor classification.

The compression time is although predictable and
discriminative as a classification variable. On the whole it
suggests DNAX but the overall time for DNAX is low whether
it is Decompression or Download or Compression. For upload
Gencompress on average is good with nearly difference of
5000 ms as compared to DNAX because of the compression
ratio of DNAX. It has been observed also that when RAM get
increased for same CPU, all algorithms are providing good
upload and compression time but increase in CPU yields better
results.

Using classification, the generated rules indicate that for
small size Gencompress or CTW can be used but not otherwise
because when file size increases the impact of overall time is
also increased. It has been also analyzed that with compromise
on RAM, time can be saved using compression. For large files
up to MBs DNAX provides good results in terms of timing
while Gencompress for small files can provide significant
results. If file size is large then Gencompress and CTW are not
good because CTW has poor decompression time. Gzip can be
used by compromising on space saving.

VI. CONCLUSION
A DNA sequence is different from general text and

therefore requires different compression strategies than text.
Due to the limitations of code and the software development
practices followed for these algorithms only the algorithms
listed in Table 1 were found which suited to DNA sequences.
The other two algorithms are general purpose text algorithm,
i.e. CTW and Gzip. It has been observed in DNA compression

365

research that CTW is giving good compression ratio. So we
also included it in our research.

From the results we can conclude that context-aware
compression of DNA sequences is not deterministic because of
several reasons. If we train data over individual dependent
variables (TIME, and RAM_USED) separately and test over
the testing data then we get results up to 95%. On the contrary,
training by assigning different weights like 40 /60 or 70/30 or
90/10 and so on provides results up to max 45%. The reason
both dependent variable yields poor results is, the RAM used
for algorithms CTW and GenCompress is approximately same
and RAM usage varies based on the CPU Usage also which is
not deterministic because of sudden background processes.
Besides the time to upload also depends upon the CPU because
to upload the file at Azure storage account it first requires the
file to be converted into a continuous stream and then uploaded
as BLOB.

Directions for future work could be to improve the Eq. 1, to
identify the impact with CPU usage also with different
combination as mentioned in Table 8. In this research File size
were restricted to 10MB but for future work even more long
sequences will be targeted. Along with we will work on how
vertical sequences can be compress using horizontal algorithms
by measuring their tradeoffs. The context at cloud could be
changed to analyze the impact at decompression and download
time as in current research only client context was changed.
Besides the compression of multiple sequences, that is, vertical
sequences using horizontal algorithm vs. the vertical
algorithms can also be considered in future research.

REFERENCES

[1] G. Eason, B. Noble, and I. N. Sneddon, “On certain integrals of
Lipschitz-Hankel type involving products of Bessel functions,” Phil.
Trans. Roy. Soc. London, vol. A247, pp. 529–551, April 1955.
(references)

[2] Wandelt, Sebastian , and ulf Leser. "Adaptive efficient compression of
genomes." Algorithms for Molecular Biology, 2012.

[3] Pinghao Li, Shuang Wang,Jihoon Kim,Hongkai Xiong,Lucila Ohno-
Machado,Xiaoqian Jiang. "DNA-COMPACT: DNA COMpression
Based on a Pattern-Aware Contextual Modeling Technique." PLoS ONE
, 2013.

[4] S. Bakr, Nour, and Amr A. Sharawi. "DNA Lossless Compression
Algorithms: Review." American Journal of Bioinformatics Research,
2013.

[5] Abowd, Gregory D., Anind K. Dey, Peter J. Brown, Nigel Davies, Mark
Smith, and Pete Steggles. "Towards a better understanding of context
and context-awareness." In Handheld and ubiquitous computing
Springer Berlin Heidelberg, 1999: 304-307.

[6] Adjeroh, Don , Yong Zhang, Amar Mukherjee, Matt Powell, and Tim
Bell. "DNA Sequence Compression using the Burrows-Wheeler
Transform." Bioinformatics Conference, 2002. Proceedings. IEEE
Computer Society . 2002. 303 - 313.

[7] kuruppu, Shanika, Bryan Beresford-smith, Thomas Conway , and Justin
Zobel. "Iterative Dictionary Construction for compression of large DNA
Data Sets." Computational Biology and Bioinformatics, IEEE/ACM
Transactions on, 2011

[8] A. Apostolico, S. Lonardi. "Compression of Biological Sequences by
Greedy Off-line Textual Substitution." Proceedings Data Compression
Conference, 2000: 143–152.

[9] Toshiko Matsum, Kihiko Sadakane,Hiroshi Imai,Takumi Okazaki. "Can
General-Purpose Compression Schemes Really Compress DNA
Sequences?" Currents in Computational Molecular Biology, 2000: 76-77

[10] Sato, Hisahiko, Takashi Yoshioka, Akihiko Konagaya, Tetsuro Toyoda.
"DNA data compression in the post genome era." Genome Informatics
Series, 2001: 512-514.

[11] Minh Duc Cao, Trevor I. Dix,loyd Allison,Chris Mears. "A Simple
Statistical Algorithm for Biological Sequence Compression." Data
Compression Conference, 2007. DCC '07 , 2007: 43 - 52.

[12] Grumbach , Stéphane , and Fariza Tahi. "Compression of DNA
sequences." CiteSeer, 1994.

[13] Giancarlo, Raffaele, Davide Scaturro, Filippo Utro. "Textual data
compression in computational biology: a synopsis." Bioinformatics 25,
no. 13, 2009: 1575-1586.

[14] Rivals, Eric, Max Dauchet, Jean-Paul Delahaye, Olivier Delgrange.
"Fast discerning repeats in DNA sequences with a compression
algorithm." In Proc. Genome Informatics Workshop, 1997: 215-226.

[15] Xin, Chen, Sam Kwong, and Ming Li. "A compression algorithm for
DNA sequences." Engineering in Medicine and Biology Magazine,
IEEE, 2001.

[16] Chen, Xin, Mang Li, Bin Ma, and John Tromp. "DNACompress: fast
and effective DNA sequence compression." Bioinformatics, 2002.

[17] Timothy , W, J White, and Michael D Hendy. "Compressing DNA
sequence databases with coil." BMC Bioinformatics, 2008.

[18] Rastero, Giovanni Manzini and Marcella. "A simple and fast DNA
compressor." Software: Practice and Experience, 2004: 1397–1411.

[19] Behzadi, Behshad, and Fabrice Le Fessant. "DNA Compression
Challenge Revisited: A Dynamic Programming Approach." In
Combinatorial Pattern Matching, 190-200. Springer Berlin Heidelberg,
2005.

[20] Cao, Minh Duc, Trevor I. Dix, Lloyd Allison, and Chris Mears. " simple
statistical algorithm for biological sequence compression." In Data
Compression Conference, 2007: 43-52.

[21] Lewicki, Thomas Hill and Paul. Statistics: Methods and Applications.
2006.

[22] Allison, Lloyd, Timothy Edgoose, and Trevor I. Dix. "Compression of
strings with approximate repeats." In ISMB, 1998: 8-16.

[23] Matsumoto, Toshiko, Kunihiko Sadakane, and Hiroshi Imai. "Biological
sequence compression algorithms." GENOME INFORMATICS
SERIES (2000), 2000: 43-52.

[24] Cherniavsky, Neva, and Richard Ladner. "Grammar-based compression
of DNA sequences." DIMACS Working Group on The Burrows-
Wheeler Transform 21, 2004.

[25] Deutsch, L. Peter. "GZIP file format specification version 4.3." 1993.
[26] Willems, Frans MJ, Yuri M. Shtarkov, and Tjalling J. Tjalkens. "The

context-tree weighting method: Basic properties." Information Theory,
IEEE Transactions , 1995: 653-664.

[27] Krintz, Chandra, and Sezgin Sucu. "Adaptive on-the-fly compression ."
Parallel and Distributed Systems, IEEE Transactions on , 2006.

[28] Cierniak, Micha�, Guei-Yuan Lueh, and James M Stichnoth. "Practicing
JUDO: Java under dynamic optimizations." PLDI '00 Proceedings of the
ACM SIGPLAN 2000 conference on Programming language design and
implementation . 2000. 13 - 26.

[29] Wolski, Rich, Neil T Spring, and Jim Hayes. "The network weather
service: a distributed resource performance forecasting service for
metacomputing." Future Generation Computer Systems, 1999: 757–768.

[30] Wiseman, Yair , Karsten Schwan, and Patrick Widener. "Efficient end to
end data exchange using configurable compression." ACM SIGOPS
Operating Systems Review, 2005.

[31] Christley, Scott, Yiming Lu, Chen Li, and Xiaohui Xie. "Human
genomes as email attachments." Bioinformatics, 2009.

[32] Tembe , Waibhav , James Lowey, and Edward Suth. "G-SQZ: compact
encoding of genomic sequence and quality data." Bioinformatics, 2010.

[33] Daily , Kenny, Paul Rigor, Scott Chirstley, Xiaohui Xie, and Pierre
Baldi. "Data structures and compression algorithms for high-throughput
sequencing technologies." BMC Bioinformatics, 2010.

[34] NCBI. n.d. ftp://ftp.ncbi.nlm.nih.gov/genbank/ (accessed 6 2014).

366

