
Handling heterogeneity for efficient implementations
A case study on sequence comparison

Denis Trystram†
† Univ. Grenoble-Alpes and Institut Universitaire de France

trystram@imag.fr

Abstract—The focus of this talk is to present and
discuss scheduling strategies in the context of hybrid
parallel multi-core platforms composed of multicores with
accelerators (GPUs). We put emphasis on general purpose
policies developed at the middleware level (by opposition to
codes tuned by the expert users for specific applications).
We survey several recent results in various situations
(off-line/on-line scheduling, for both independent tasks
and precedence relations). These results are illustrated
by actual experiments on the comparison of biological
sequences in large databases.

I. INTRODUCTION

As it can be observed in the few last TOP500 rank-

ings, the largest parallel and distributed platforms are

composed of hundreds thousands cores and more, with

a sustained PetaFlop/s performance (1015 floating point

operations per second). Reaching good efficiency in such

large scale supercomputers is becoming a major issue

and a big challenge. The situation is expected to worsen

even more at exascale and beyond [3]. The profusion of

flops available will likely be underused due to a much

higher complexity.

Hybrid architectures have a growing impact on perfor-

mances in High Performance Computing (HPC) and par-

ticularly for large bio-computing applications. Such ar-

chitectures often use accelerators such as GPUs (Graphi-

cal Processing Units) [11] that are grouped with multiple

CPUs on the same chip sharing the same common mem-

ory. Obviously, the efficiency of the implementations of

parallel applications greatly depends on the quality of the

organization of the elementary instructions at the finest

level. This optimization is done by the users who are

specialists of their codes.

The next generation of HPC platforms will be in-

creasingly heterogeneous [10]. First, the number of cores

within a node will increase to reach several hundreds and

second, the nodes will be more diverse than today: fast

compute nodes, hybrid compute nodes mixing general

purpose units with accelerators, I/O nodes, nodes special-

ized in analytics or fault-tolerant, etc.. The interconnect

of such a huge number of nodes will also lead to more

heterogeneity. Such a diversity will give the opportunity

to the application developers to use new features. For

instance, the comparison of biological sequences may

be extended with interactive visualization, introduce hu-

mans in the loop or couple the code with data analytics.

Using hybrid platforms would potentially lead to bet-

ter performances through the use of more appropriate

resources depending on the target computations, but it

has a cost in term of code development and mai induce

erratic behaviors.

We will show in this talk that it is possible to de-

sign efficient algorithms for dealing with heterogeneity,

whatever its form, at the system level. Such high level

optimizations should be more considered by the appli-

cation designers. They are not contradictory with fine

grain ad hoc optimizations done within the applications

and some studies should be developed at the interface of

applications and the batch scheduler.

II. DESCRIPTION OF THE PROBLEMS

A. Application, Platform, Resource manager

We consider a multi-core parallel platform with m
identical CPUs and k identical GPUs. It can be hierarchi-

cal (in this case, the interconnection network is a logical

tree) or there is a specific underlying topology (like a

multi-dimensional torus). For the sake of simplicity, we

restrict this presentation to one level of hierarchy (which

is equivalent to a complete interconnection network),

this allows us to avoid all the problems linked with

communications or congestion. Of course, from the

practical point of view this is an important issue, which

has a strong influence on performances. There are several

ways to take topological constraints into account. They

will be discussed briefly during the talk.

An application is composed of n tasks that are inde-

pendent or linked by precedence relations. For instance,

2015 IEEE International Parallel and Distributed Processing Symposium Workshops

/15 $31.00 © 2015 IEEE

DOI 10.1109/IPDPSW.2015.123

346

in the sequence comparison problem, the elementary

tasks correspond to pairwise comparisons using classical

dynamic programming. The granularity of the tasks can

be larger: they can be themselves executed on several

processors in parallel in the case where a group of

sequences are compared to a part or the whole database.

Each task has two processing times depending on which

type of processor it is assigned to. Usually, both process-

ing times of a task are known in advance (or at least can

be rather well estimated for structured applications like

sequence comparisons).

As the application developers are mainly looking for

performance, the objective of a schedule is to minimize

the maximum completion time of the last finishing

task (called the makespan). Minimizing the makespan

in an heterogeneous context corresponds to minimize

the maximum between the makespan on the CPUs and

the makespan on the GPUs. Other objectives may be

considered like minimizing the stretch (maximum or

average), but they will not be discussed here.

B. Specialized or generalized scheduling?

The common algorithm for comparing biological se-

quences has been introduced by Smith and Water-

man [12]. It is based on classical dynamic programming

(which is quadratic in both space and time in term of

sequence lengths). Using GPUs or other accelerators for

improving the execution of such structured algorithms

has been extensively studied. Notice here that using a

GPU is well-suited for SW since it mainly consists in

matrix operations. Several variants have been proposed

for parallelizing this algorithm, mainly for static (off-

line) computations. It is worth noticing here that a good

algorithm can be obtaining while mixing both classical

processors with accelerators (a part of the computations

done in the CPUs and the rest on GPUs) [1].

We are interested here in designing generic approaches

for efficiently implementing parallel applications where

the scheduling is not explicitly part of the application.

This way, the code is portable and can be easily adapted

to the next generation of platforms.

C. New computational paradigms

The expected pressure on I/Os for the new require-

ments on applications is not sustainable at exascale

and call for new approaches. Instead of saving raw

data to disks for post-processing afterwards, the in-situ
analytics proposes to perform data processing as closely

as possible to where and when they are produced [15].

This paradigm becomes a whole including the execution

of the applications, the processing for the analysis of

results and I/O movements. New adequate scheduling

strategies should be developed. In the first hand, this

problem can also be reduced to an allocation problem

of extra asynchronous tasks to idle computing units. But

in the second hand, embedding analytics in applications

brings extra difficulties by making the application more

heterogeneous and imposing more constraints on the

required resources. Thus, the main point here is to

develop efficient scheduling algorithms for dealing with

heterogeneity without increasing too much the global

computational cost (or even, reducing it).

III. ANALYSIS OF THE PROBLEM

Scheduling tasks on parallel identical machines has

been extensively studied [4]. The basic problem is NP-

hard, however, many variants lead to practical algorithms

that are included into actual systems (communication

delays, uniform speeds, etc.). Such solutions are either

purely heuristics or sometimes provide approximations

with constant performance guaranties (this means that

the worst case scenario is kept bounded from the opti-

mal). We are looking for low cost algorithms that deliver

good approximations of the solution, typically with a

ratio 3/2 or 2 for the minimization of the makespan.

Scheduling on hybrid platforms is more complex

than the classical problem of scheduling on uniform

machines [6]. However, it is easier than scheduling with

unrelated machines since there are only limited values

for the processing times (one per type of processing

units). More details on identical, uniform, related and

dedicated machines can be found in [4]. Very few papers

deal with generic scheduling approaches of the hybrid

problem, and none of them considers precedences con-

straints with performance guaranties. As we will present

in the next section, this problem has efficient solutions

in most practical situations.

IV. APPROXIMATION ALGORITHMS

A. Using existing solutions

There exist several practical generic scheduling algo-

rithms for hybrid platforms like HEFT (Heterogeneous

Earliest Finishing Time) [13] . However, such heuristic

algorithms do not provide performance guaranties and

thus, may lead to very bad executions for some instances.

The first attempt to implement an application is to use

simple algorithms like list scheduling [5], which provides

bounded performance guaranty. In list scheduling, a

computing resource is never idle if one of the available

347

tasks could be started on the resource at that time.

This algorithmic scheme has been extensively used and

many variants have been analyzed. Most of them lead to

small constant approximation ratio (2-1/m for the case

of m identical machines). However, the use of the same

strategy in a hybrid system, leads to arbitrary large values

of the worst case performance ratio, even when there

are no precedence constraints. Consider simply one task

with a very large speed-up on GPU, which is misplaced.

Moreover, the same situation also holds if we introduce

some priority (like sorting the tasks by non-increasing

speed-ups on GPUs). This becomes even worse for the

case with precedence relations.

Such analysis of the problem of scheduling in hybrid

platforms leads to the conclusion that the crucial point

is to obtain the right assignment, or at least a reasonable

one.

B. A Generic Principle

We propose to address the problem by a two-phases

algorithm, where we determine first an assignment of

the tasks, followed by a local schedule on each type

of resources (CPU or GPU). There are several ways

for solving the assignment problem, but in any case

the method should be sophisticated enough to avoid

unbounded approximation in the second phase. It is pos-

sible to solve this problem by an exact algorithm (which

can easily be expressed as an integer linear program).

If the size of the instance is too large, we can solve the

corresponding fractional Linear Program and then, round

the solution, or use an adequate direct approximation

based for instance on global load arguments.

The same idea of using two successive phases may be

used for the on-line case. In [2], the authors considered

the scheduling of sequential tasks in mixed CPU/GPU

platforms where the tasks arrive on-line one after the

other. They introduced two smart rules for determining

an assignment. Their analysis is based again on Gra-

ham’s list scheduling leading to a 4-approximation, with

improved ratio in some specific situations. An interesting

point here was to be able to also provide a lower bound

for this problem.

This principle also holds for the case of precedence

relations (off-line). The assignment here is more com-

plicated. However, we were able recently to propose a

good assignment in [9]. This solution was obtained by a

Linear Program, which is rounded to a feasible solution.

In the second phase, an extension of list scheduling has

been done to generate a feasible schedule.

The 2-phases principle can be applied on more so-

phisticated algorithms than list scheduling. For instance,

this idea has been used with a dual approximation

technique [7] for an off-line version of scheduling inde-

pendent sequential tasks [1], leading to an approximation

algorithm with a ratio equal to 4/3 + 1
3k . Since the

assignment to the GPUs is done by a costly dynamic

programming algorithm, a fast relaxed version with a

ratio 2 has been derived.

Finally, it can also be adapted for dealing with parallel

tasks [4] and may be very relevant in case of malleable

tasks [14] (here, the number of machines allotted to a

task in not fixed as an input of the problem, and the

assignment will also determine it).

V. CASE STUDY OF BIOLOGICAL SEQUENCE

COMPARISON

Most of the algorithms presented above have been

used for implementing the problem of comparing bio-

logical sequences in large databases [8]. Various parallel

algorithms have been proposed for solving this clas-

sical problem. This problem corresponds to schedule

independent tasks whose durations can be determined

a priori. Many experiments have been run on actual

databases of various species (humans, mice, dogs). The

main result was that all the tested variants of the 2-phases

algorithms overperformed the reference algorithm HEFT.

on many instances. The obtained solutions provided non

straightforward assignments on a mix of both GPUs and

GPUs.

VI. SOME CONCLUDING REMARKS

In this talk, we surveyed various methods for schedul-

ing efficiently a set of tasks on hybrid parallel platforms.

We presented a generic 2-phases approach where the

key point is to avoid misplaced tasks that may lead

to arbitrary bad solutions (typically putting a task with

a very large acceleration at the wrong place). Thus,

we proposed an approach that first provides a selection

of the tasks between the CPUs and the GPUs, then,

schedules them on each type of resources. This way, as

we have shown, it was possible obtain efficient imple-

mentations with (low) bounded performance guaranties.

There are several ways to do both assignments and local

scheduling, leading to several variants. We are currently

implementing such algorithmic approaches into actual

systems.

348

REFERENCES

[1] R. Bleuse, S. Kedad-Sidhoum, F. Monna and G. Mounié and
D. Trystram, Scheduling Independent Tasks on Multi-Cores with
GPU Accelerators, Concurrency and Computations: practice and
experience, 2014.

[2] L. Chen, D. Ye and G. Zhang, Online Scheduling of mixed CPU-
GPU jobs, Int. Journal Foundations of Computer Science, Vol. 25,
no 6, 2014.

[3] J. Dongarra et al. The international exascale software project
roadmap. International Journal of High Performance Computing
Applications, 25(1), 2011.

[4] M. Drozdowski, Scheduling for Parallel Processing, Springer,
2009.

[5] M. Garey and R. Graham, Bounds for multiprocessor scheduling
with resource constraints, SIAM journal of Computing, vol. 4.
1975.

[6] A. Gupta, S. Im, R. Krishnaswamy, B. Moseley and K. Pruhs.
Scheduling heterogeneous processors isn’t as easy as you think,
Proceedings of SODA 2012, pp. 1242-1253, 2012.

[7] D. Hochbaum and D. Shmoys. Using Dual Approximation
Algorithms for Scheduling Problems: Theoretical and Practical
Results, J. of ACM vol.34, 1987.

[8] S. Kedad-Sidhoum, F. Mendonca, F. Monna, G. Mounié and
D.Trystram. Fast Biological Sequence comparison on Hybrid
Platforms, Proceedings of ICPP, Minneapolis, USA, 2014.

[9] S. Kedad-Sidhoum, F. Monna and D.Trystram. Scheduling tasks
with precedence constraints on hybrid multi-core machines, Pro-
ceedings of HCW, Hyderabad, India, 2015.

[10] P. Kogge et al., Exascale computing study: technology and
challenges in achieving exascale systems, DARPA report, 2008.

[11] W. Lee et al., Debunking the 100x GPU vs. CPU myth: an eval-
uation of throughput computing on CPU and GPU. Proceedings
of ISCA, Seznec, Weiser and Ronen editors, ACM, 2010.

[12] T. Smith and M. Waterman, Identification of common molecular
sequences, Journal of Molecular biology, vol. 147, no 1, 1981.

[13] H. Topcuoglu, S. Hariri and M. Wu, Performance-effective
and low-complexity task scheduling for heterogeneous computing,
IEEE TPDS; 13(3):260-274, 2002.

[14] D. Trystram. Scheduling Parallel Applications using Malleable
Tasks on Clusters, Workshop on Scheduling and Communication,
IPDPS, San Francisco, 2001.

[15] F. Zheng et al. FlexIO: I/O middleware for Location-Flexible
Scientific Data Analytics, proceedings of IPDPS, Boston, 2013.

349

