
Design and Optimization of a Metagenomics Analysis Workflow for NVRAM

Sasha Ames, Jonathan E. Allen, David A. Hysom, G. Scott Lloyd and Maya B. Gokhale
Lawrence Livermore National Laboratory

Contact: ames4@llnl.gov

Abstract—Metagenomic analysis, the study of microbial com-
munities found in environmental samples, presents considerable
challenges in quantity of data and computational cost. We
present a novel metagenomic analysis pipeline that leverages
emerging large address space compute nodes with NVRAM
to hold a searchable, memory-mapped “k-mer” database of all
known genomes and their taxonomic lineage. We describe chal-
lenges to creating the many hundred gigabytes-sized databases
and describe database organization optimizations that enable
our Livermore Metagenomic Analysis Toolkit (LMAT) software
to effectively query the k-mer key-value store, which resides
in high performance flash storage, as if fully in memory.

To make database creation tractable, we have designed,
implemented, and evaluated an optimized ingest pipeline. To
optimize query performance for the database, we present a two-
level index scheme that yields speedups of 8.4 ⇥ �74⇥ over
a conventional hash table index. LMAT, including the ingest
pipeline, is available as open source at SourceForge.

I. INTRODUCTION

Metagenomics is concerned with characterizing and an-
alyzing microbial communities present in diverse natural
environments. Metagenomics sequencing has emerged as a
powerful genetic survey tool used in research for generating
a far more unbiased and detailed description of a biological
sample than has ever been possible. It is the nature of a
metagenomic input set that the organisms it contains are
diverse and largely unknown, and analysis of such data sets
represents a data intensive analysis problem that challenges
conventional computing approaches. Present approaches to
metagenomic analysis rely on sequence alignment tools
that match each genetic fragment (“read”) to a part of
each reference sequence and report a summary of the top
reference matches. However, with rapidly growing sequencer
throughput, alignment-based approaches are facing severe
scaling limitations, even with high CPU core counts. Even
within approximately optimal algorithms there is a quadratic
complexity of Q⇤R, where Q is the number of query bases
and R is the number of searched reference bases. The size
of Q has increased by several orders of magnitude in recent
years and R, while not increasing at nearly the same rate,
is also growing in size.

To enable near real-time analysis of metagenomic datasets
at field sites co-located with the sequencer, we have de-
veloped a novel alignment-free approach, the Livermore
Metagenomic Analysis Toolkit (LMAT) that exploits large
(persistent) memory to store a searchable database of k-mers,

all k-length sequences from a reference set of genomes [1].
By transferring the computational load to an offline database
generation phase, we transform the analysis problem to
parallel search of a read-only database. Our approach has
been shown to perform favorably in accuracy and speed to
competing alignment-based techniques. The source code is
available on SourceForge [2].

Our approach leverages emerging large address space
compute nodes with NVRAM to hold a searchable k-mer
database of all known genomes and their taxonomic lineage.
The database resides in a file in NVRAM, which is mapped
into the address space of the application, allowing the
application to access data structures directly as if in mem-
ory. This approach anticipates future memory hierarchies
incorporating NVRAM as a high capacity, high latency last-
level memory. We show that even with today’s NAND flash
arrays, we achieve excellent query processing rates: in some
cases more than 1 million base pairs processed per second
(Mbp/s). We believe this is a practical approach for analysis
co-located with sequencing because NVRAM is becoming
ubiquitous in emerging architectures and the price of it is
falling.

In this paper we describe the workflow pipeline to
generate the searchable k-mer database, evaluate database
organization optimizations, and analyze speed performance
for database query using real metagenomic query sets. The
full LMAT database reaches almost 500GB in size. It is
organized as a key-value store in which the data stored
with each k-mer key records alternative taxonomic lineage
for the k-mer. To make database creation tractable for our
reference database, we parallelize generating the k-mers
of reference genomes. We evaluate alternative key-value
store organizations, and have developed a two level index
optimized for flash storage. During query, the database
is memory-mapped into the address space of the query
process, and we use a custom mmap handler optimized for
data intensive applications [3]. The optimized index gives a
8.4⇥�74⇥ speedup over a conventional hash table index.
The speed performance of our approach is evaluated using
0.5-2.5 GB query sets.

Our contributions are as follows:
• demonstrate a scalable new approach to generating

large, memory-mapped searchable k-mer databases,
starting from NCBI reference genome sets,

• evaluate alternative approaches to the database ingest

2014 IEEE 28th International Parallel & Distributed Processing Symposium Workshops

978-1-4799-4116-2/14 $31.00 © 2014 IEEE

DOI 10.1109/IPDPSW.2014.200

556



pipeline, including parallelization on a conventional
cluster, on a small ScaleMP cluster, and on a single
large memory node,

• design a two-level index data structure uniquely tuned
to flash array access,

• demonstrate speed improvement on query of more than
an order of magnitude over conventional key-value
store organizations.

II. LMAT SEARCH AND CLASSIFICATION

LMAT identifies organisms in a metagenomic sample by
matching k-mers in the reads in the sample with k-mers in
a searchable database. If a set of k-mers from a read match
k-mers from a particular reference sequence, then there is
some likelihood that the read may come from the species or
strain of the reference. On the other hand, a read may contain
k-mers that map to a diverse group of organisms that have a
common ancestor in the biological taxonomy at the level of
genus, family, or higher. The LMAT classification algorithm
is rank-flexible, attempting to classify a read at the lowest
level possible of the taxonomy tree. LMAT classification
uses threshold values for the classifier, so there must be
a strong enough signal for a particular match to make a
“call” for a particular taxonomy. For rank flexibility, for
instance, if there is a match for a particular strain (lowest
rank) but it is not enough to pass the threshold, it might
be that there is enough for a species (next rank up the
NCBI taxonomy hierarchy) level match, and so on. LMAT
uses a searchable index of k-mers that map to constituent
taxonomic identifiers for the organisms and higher common
ranks when appropriate.

Other approaches that map reads to reference sequences
using k-mers rely on a small subset of k-mers to represent
the database in order to minimize the challenges of searching
a large reference database [4], [5]. A unique feature of
LMAT is its use of all k-mers in the reference database
to improve detection sensitivity. Since the number of 20-
mers in the current reference database is approaching 25
billion and will continue to grow as new organisms are
sequenced, new approaches are needed to efficiently manage
and retrieve information from the reference database. One
key challenge is to identify, store and manage the billions
of k-mers in a way that avoids duplicates, allows for adding
genomes, and can be written out to store for use in subse-
quent workload stages. The second challenge is choosing an
index structure that works well on flash storage. For LMAT
to achieve useful performance, it must make use of multicore
architectures, in which the application processes many input
reads concurrently for classification. Flash has orders of
magnitude higher latency than DRAM, requiring the design
of latency-tolerant algorithms and data structures for k-
mer search. Since our classification algorithm has compute
intensive phases in addition to the data-intensive database
lookups, the goal is to gain latency-hiding between the two

parts of the query application process by running a large
workload of query processes in parallel, ideally resulting in
higher LMAT application throughput.

This paper focuses on speed performance and scalability
aspects of the LMAT workflow. Discussion of accuracy and
in-depth comparison with other techniques for metagenomic
sample analysis can be found in [1]. We include a new
speed performance comparison with two alignment tools
using an updated reference database in Section IV-E. The
choice of k was selected to store k-length sequences that
uniquely identify a small number of reference genomes to
improve runtime speed while maintaining accuracy with
inexact matching between the query reads and the refer-
ence genomes. Longer values of k generate more k-length
sequences that map to fewer reference sequences and limit
the scope of the search. With longer values of k there can
be fewer differences between the read and the matched
reference genome. As k decreases, each k-length sequence
is associated with more genomes increasing the difficulty to
efficiently identify the best reference match. In developing
LMAT, we experimented with several values of k in the
range 17 . . . 21 to maximize classification accuracy and
performance. In this paper we report performance primarily
with 20-mers, which were previously found [1] to support
accurate classification.

The following sections discuss the workflow to create the
index, the optimizations to several workflow components,
and the evaluation of those optimizations.

III. DATABASE PREPARATION

The LMAT classifier depends on a searchable k-mer
database. In our implementation, the k-mer database is a
key-value store in which the key is a 64-bit binary encoded
form of the k-mer and the value is the list of genomes and/or
higher level taxonomy classification (strain, species, genus,
family, . . ..) that contain the k-mer, called the taxonomy
identifiers (tax IDs). Figures 1(a) and 1(b) contrast two
workflows we have used for generating the database. The
first phase is k-mer extraction, performed by the program
Jellylist (see Section III-A) in Figure 1(a) and K-mer Prefix
Counter in Figure 1(b). The k-mer extraction phase takes
a preprocessed genome reference database and enumerates
all the canonical k-mers. In canonical form, a k-mer and its
reverse complement1 are considered equivalent, and the k-
mer with a lower value internal representation (64-bit ID) is
used.

All LMAT applications that convert Fasta ascii to integer-
encoded k-mers use the following procedure. Each base is
encoded as the following two bits: A=00, C=01, G=10,T=11.
We read the first base, encode using the above formulae
to our placeholder. For the subsequent base, we shift left

1The reverse complement is the reverse of the k-length sequence with
each nucleic acid base replaced by its complement: A $ T and C $ G.

557



Jellylist
Partition 
K-mer 
data

Taxonomy
Annotation

Index
Creation

(hash table)Input:
Genome

Reference
Data

Output:
Memory
mapped
database

Runtime:
48+ hours

Runtime:
4 hours

Runtime:
1 hour

Runtime:
3.5 hours

K-mer
Extraction

(a) Original Ingest

K-mer
Prefix

Counter

Taxonomy
Annotation

Index
Creation

(two-level)

Input:
Genome

Reference
Data

Output:
Memory
mapped
database

Runtime:
8 hours

Runtime:
1 hour

Runtime:
1.5 hours

K-mer
Extraction

(b) Optimized Ingest

Memory
mapped
database

DNA
Sequencer

Environmental
Sample

LMAT
Classifier

Input:
metagenome 
reads (query)

Output:
Classified

reads

(c) Query

Figure 1. LMAT ingest and query workflows. The original workflow has four stages. The optimized LMAT workflow improves the runtimes of the k-mer
extraction (K-mer Prefix Counter vs. Jellylist), database ingest stages, and removes the partitioning stage. Example times assume 19 GB reference sequence
input.

the placeholder and bitwise OR with the encoded base,
performed k times. For subsequent k-mers within a sequence
or read, we can shift and mask by 2 ⇤ k bits rather than re-
encode the entire k-mer.

Then, each extracted k-mer is annotated with a list of
tax IDs that contain the k-mer. Tax IDs are stored as 32-
bit integers. The two workflows accomplish this task in
different ways. In the first workflow (Figure 1(a)), the output
from Jellylist is so large that it must be partitioned for the
Taxonomy Annotation phase. In the optimized workflow
of Figure 1(b), the output of k-mer extraction is already
partitioned. The partitioned k-mer sets are annotated with
the taxonomy lists. Finally, the annotated k-mers are indexed
into a searchable form. The final phase of both workflows
reduces the many partitions into one single output database.

The workflow makes use of large and fast scratch storage
for the intermediate storage of all the files generated by
the first two phases. These files can be stored on any
conventional file system, though use of a parallel file system
is suitable for the workflow stages running parallel tasks.
The k-mer extraction phase produces output file(s) roughly
10 times larger than the original input files. An equivalent
amount of temporary storage is needed for the partitions,
given the workflow in Figure 1(a) where we have a single
output from the k-mer extraction phase. Output from the
taxonomy annotation phase takes 2.15 times more storage
than its input (for k = 20). For example, a 19 GB input
set, produces 190 GB of files with the extracted k-mers and
genome identifiers. Partitioning requires an additional 190
GB. The data size after taxonomy annotation is 400 GB.

A. K-mer extraction

The software program Jellylist was initially selected to do
the k-mer extraction phase since it was an existing k-mer
analysis tool with an early software variant, Jellyfish [6],
which was previously shown to enable fast multithreaded k-
mer counting. (The Jellylist code is not published but freely
available from the Jellyfish authors.) Jellylist uses lock-free
hashing techniques and creates lists of k-mers and genome
identifiers using an in-memory data structure. Thus, the
application requires a large shared-memory to process a set
of genome reference sequences. Jellylist includes the feature
of storing positions for each k-mer within the containing

genomes. Although we chose not to use this feature, as the
positions are not required for LMAT, the feature remains a
key part of the application and may impact its performance
even when not in use. Unfortunately, Jellylist processing
resulted in excessively long runtimes (including the final
writing of k-mers to storage). For instance, to extract 20-
mers from a 19 GB input reference set took close to 48
hours on a single server with 1 TB DRAM. The addition of
the human genome to that input set, 3 additional GiB, added
unforeseen complexity, and the run could not complete
within our seven day allocation on the server.

The first approach we considered to addressing the prob-
lem of intractable Jellylist runtimes was to partition the
input reference set of sequences. This approach is problem-
atic as well. Ultimately the partitions need to be merged.
The challenge in the merge is accounting for the k-mers
extracted from several genomes in multiple partitions. For
these repeated k-mers, the merge step must combine the lists
of constituent genome identifiers. Moreover, all partitions
require sorting in order to facilitate efficient merging. We
went through this process to merge the set of k-mers
extracted from a human genome with those extracted from
our microbial genome data set. The process was problematic
due to operator error and machine failure and required days
of machine time due to out-of-core sort and merge steps.
These issues made the merge process not realistic for a batch
scheduling environment, and therefore, it was eventually
eliminated from the pipeline.

We instead designed an alternative approach to parti-
tioning. Rather than partitioning the input sequences, we
partition the k-mers as they are extracted. We call our
application kmerPrefixCounter. Given that nucleic acids are
comprised of four bases, every k-mer has a “prefix” of n
bases, so there are 4n possible prefixes. We can pick the
desired number of partitions. Based on picking a prefix
length n we can determine the number of partitions that fits
our resources. For instance if we want to have four partitions,
n = 1, each partition extracts k-mers of a particular initial
base (A, C, G, T). Each process works independently and no
inter-process communication is required. For example, with
sixteen partitions, the prefixes are AA, AC . . . TT. The prefix
identifiers are assigned to processes via a command-line

558



argument. All partitions’ processes see the same sequence
information, but based on the prefix, each process chooses
whether or not to include a particular extracted k-mer within
its own k-mer set. The output files do not require additional
sorting and merging because each partition has a non-
overlapping set of k-mers.

Our implementation of kmerPrefixCounter uses C++ STL
data structures, the std::map for recording the k-mers (one
per partition) and the gnu hash set for managing each list
of genome identifiers per k-mer. The execution of kmer-
PrefixCounter creates a set of output files with each file
being already sorted by k-mer key, as enabled by the use
of the std::map data structure. The sorted output becomes
important because it is needed to create the two-level index,
which is optimized for sorted input. Sorted output is also
useful because it facilitates merges of sorted sequences if
the user chooses to add extracted k-mers from an additional
set of organisms at a later date.

Each partition is started as its own single-threaded process
with the input reference sequence file, the prefix value n, and
the partition ID to identify which prefix the process handles.
A drawback of this method is that all partitions must read the
entire reference sequence file and parse individual k-mers,
but the creation of many independent partitions allows for
flexibility in using job schedulers within cluster computing
systems.

B. Taxonomic Annotation

The output from k-mer extractions contains k-mers, each
with a list of genome identifiers. The genome identifiers refer
to individual sequences rather than particular organisms. In
the taxonomic annotation process, we map the genomes to an
NCBI taxonomy identifier for the organism. At the level of
the genome, this is typically a species or strain identification.
K-mers that map to more than one organism have a common
taxonomic ancestor within the NCBI taxonomy tree. The
second part of the taxonomy annotation computes the lowest
common ancestor (LCA). The procedure is embarrassingly
parallel, as it is performed on a per-k-mer basis. We process
each partition of extracted k-mers and their corresponding
genome lists as separate processes. Each writes its own
output file. Additionally, this stage allows us to collect
counts of total k-mers and taxonomy identifiers for use in
sizing the final indexed database.

C. Index Creation

A primary requirement to running the LMAT classification
application is efficient k-mer lookup. The k-mer database
index must be organized for very fast lookup as opposed
to insert or delete. For the purpose of classification only,
the indices will not be updated, as they serve in a write-
once, read-many usage model. Thus, use of an off-the-shelf
RDBMS database package for the index is not appropriate,

TAGCGTTA 51644

1111001100101110

Input K-Mer

111100

001010

111110

Integer Key

First Level - Table

Second Level
Lists Value data: taxonomy information

0

0

000001
001010
010011

n

000101

m

offset into 
second-level3

64 48 0
count

48 0

...0111110

suffix offset to
value storage

64

000011    

Figure 2. Design of the two-level index. Each k-mer is split. The prefix is
the index of the first level. Lists of the suffixes with offsets into the Value
Data store are in the second level.

and other available key-value stores incur unnecessary trans-
actional overhead.

Given that our lookup requirement for LMAT does not
include range queries, we determined that a hash table would
be an appropriate fit. The keys specific to our application
are 64-bit integer values: the encoded k-mer. To begin
rapid prototyping for the LMAT classifier, we selected the
gnu hash map data structure. We performed some simple
performance tests of the data structure in comparison with
Google’s SparseHash and C++ std::map (a “baseline” for a
tree-based map for a point of comparison) and found that
gnu hash had the best performance. We manage the storage
of the taxonomy identifier lists in a byte array, written to
in an append-only “log-like” manner; thus, their storage is
compact without additional compression. Offsets into this
byte array are stored as the values of the hash map.

The hash table is built in a persistent heap as a memory-
mapped file. The use of memory map presents a convenient
programming abstraction for performing out-of core data
access without the overhead of application buffer manage-
ment and mix of standard I/O and in-core data structure
access. To enable the index to be persistent after ingest
and be used afterward for classification, we configure gnu
hash with a custom memory allocator that is backed by
storage. Previous work at LLNL, “perm-je” has modified the
Jemalloc memory management library [7] to enable memory
allocation from an address range memory-mapped to a file
residing on a storage device. Jemalloc is a drop-in replace-
ment for regular malloc routines for allocating memory. Our
modification to jemalloc allows for an additional step to
specify the database filename (jemalloc memory-maps to
temporary files). Our “perm-je” library is available as open
source and distributed with LMAT at SourceForge.

To meet the goal of running LMAT using flash storage
for indexing, it became necessary to consider an alternative
index to gnu hash. Our preliminary work with the index
showed poor query performance when reading the data

559



structure from flash. In designing such an index, we focus
on the goals of improving page reuse and locality of access.

We have collected some statistics on our use of the gnu
hash table. The maximum bucket count hard coded into gnu
hash is 4,294,967,291. Thus, on average, regardless of hash
function, the chain length for each lookup is 2.15 for the
9.21 billion items of a 19 GB reference sequence set. The
chaining becomes problematic when the hash table resides
on flash storage: each pointer dereference to traverse the
linked lists potentially forces additional page faults. For
this reason, we focus on improving locality when handling
collisions.
Two-level index Our alternative data structure to the gnu
hash map is a “two-level” index. For this approach, we
split the 64-bit k-mer into a prefix and suffix. (Note that
this “prefix” is different from the kmerPrefixCounter prefix
used to partition the reference database.) The first level maps
every prefix into an array of the suffixes stored in the second
level. This structure resembles a hash table in that the first
level is similar to the hash table structure; in our case the
“hash function” returns the prefix of the key, which is the
index into the first-level array. The second level manages
the collisions that occur — as we expect many matching
prefixes — by maintaining array-based lists containing the
suffix. These lists are maintained in sorted order so they
can be quickly binary searched during lookup operations. It
is unnecessary to store the entire key (the encoded k-mer)
because once the prefix is used within the first level lookup,
it is no longer needed. In contrast, chaining within a hash
table stores the entire key.

Figure 2 illustrates the structure of the index, where n is
the length of the first-level array (corresponding to selected
k-mer prefix size), and m is the length of the second-level
array of lists. Note that m is equal to the total number of
k-mers in the database. In our implementation of the index,
both the first and second levels are 64-bit integer arrays. The
boxes at the bottom of each table show the fields within
each 64-bit value from each of the tables. For each 64-bit
value in the first-level array, the 16 most-significant bits store
the count of items in the corresponding second-level list of
suffixes for k-mers that share that common prefix (the index
into the first-level array). The remaining least-significant
48 bits store the offset into the second level, pointing to
the sorted list of k-mer suffixes. In the second-level array,
the k-mer suffix is stored in the most-significant 16 bits of
the 64-bit value. The remaining 48 bits of the second-level
array value are used to store the offset to find the taxonomy
identifier lists in the value data array, equivalent to the gnu
hash map value field.

Note that this data structure is specific for integer keys.
While we apply it in this work to integer-encoded k-
mers, it can potentially be applied to other integer-specific
workloads. It is not suitable for general purpose key-value
storage that typically performs a hash-function calculation

on variable-length strings of ascii characters.
An important determination needed to use the index is

how to split the input k-mer between the first and second
level. The split parameter determines both the size of the
first level table and the maximum length of each second level
list. The average length of each list and distribution of such
lengths depends on the particular integer key data indexed.
Our goals in considering specific split parameter are to: (1)
try to keep the second level lists on a single page of memory
so as to incur fewer page faults; (2) keep the first level
table size small enough to remain cached in DRAM. An
additional consideration (implementation specific) is that the
16-bit count field limits second level list lengths to integers
of that size. Thus, we must balance the tradeoff of optimizing
for each of these goals.

We select split factors where the prefix sizes range from
24 to 31 bits with suffixes ranging from 16 down to 9
bits respectively, each pair a total of 40 bits for the k-
mer length of 20 base pairs. At one extreme of these
parameters, we have a 128 MB table for 224 possible k-
mer prefixes with maximum second level list lengths of
216 � 1 spanning up to 128 4K pages for the longest lists.
Note that this configuration fits the constraint of the largest
possible list length based on a 16-bit integer count value.
At the other extreme of the range, a 9-bit suffix guarantees
that the maximum list fits on a 4K page, given 512 64-
bit values. However, the first level is 16 GB (231 prefixes)
using this configuration, which may not remain fully in the
mmap handler’s buffer cache when memory is limited. Our
evaluation considers LMAT classification performance given
this range of settings.

The ingest procedure for the two-level index assumes
that input data is sorted by the k-mer key. The output of
the kmerPrefixCounter code produces sorted k-mers, which
facilitates this process in our workflow. This enables the
second level list values to be added in sorted order, so no
additional sorting is needed. The ingest procedure is very
straightforward. The ingest code initializes the first-level
array to zero values. The second-level is written in a log-
like fashion, so the procedure must maintain and increment
the offset pointing to the last value written. For each k-mer
in the input set, the procedure first splits the k-mer into the
prefix and suffix. For the first-level, it checks if the value in
the array for that prefix has been written. If not, it writes the
current second-level last value offset to the lower 48 bits of
the value and sets the count field to an initial value of 1 for
that prefix. If the location in the array has been written, the
count is incremented, but the offset into the second level for
that particular prefix has already been set. For each input k-
mer, the suffix and offset to taxonomy storage are written to
the second-level array at that last-value offset, maintaining
the sorted order of suffixes for common prefixes as they are
written. To additionally contrast the two-level index with gnu
hash (considering ingest), despite the disadvantages of gnu

560



Input size (GB)
0.84 1.5 3.5

R
un

tim
e 

(s
)

50000

10000

1000

100

10

43
68 77

65 23
56

8

23
79

.5
9

40
31 11

42
9

78
4.

55

15
12

.4
8

39
10

31
7 58

0 14
41

43
5.

66 78
6

17
01

.8
612

12
0

18
27

9 47
57

0

kPC−1
kPC−4
kPC−16
kPC−64a
kPC−64b
Jellylist

Application−Num. Partitions

Figure 3. Performance of methods for k-mer extraction using 1 TB node(s).
kpC-64a (kmerPrefixCounter, 64 concurrent partitions) ran on two nodes
(32 processes on each) and kPC-64b ran on a single node with hyper-
threading enabled (80 hardware threads). All other series ran on single node
with hyper-threading disabled. Jellylist set to use 32 threads. The sizes on
the x-axis represent collections with 500, 1000 and 2000 individual genome
sequences respectively.

Method Partitions Node-hours
1 TB 16 jobs 64 23.5

ScaleMP 4 TB 40 jobs 64 130
Cluster 32 GB 512 nodes 2 jobs 1024 950

Table I
KMERPREFIXCOUNTER RUNTIME ON THREE COMPUTE PLATFORMS.

THE CLUSTER PLATFORM REQUIRED 1024 PARTITIONS, WHICH WERE
RUN ON A MAXIMUM OF 512 NODES (AS ALLOCATED BY CLUSTER JOB
SCHEDULER). THE FIRST COLUMN INDICATES THE MEMORY PER NODE

AND NUMBER OF JOBS PER NODE.

hash that we observe, an advantage of the gnu hash index
is that it accepts unsorted k-mer input to build the index.

IV. EVALUATION

Our evaluation of the LMAT workflow considers three
aspects. First, we examine the performance of our cluster
k-mer extraction application in comparison to the Jellylist
application. Second we profile the build of the index, com-
paring the performance of gnu hash map with the two-level
approach. Third, we compare the two index techniques when
used for query in LMAT classification and examine the
performance of the two-level index under varying amounts
of memory and configurations.

Single node measurements are run on a 4 socket 2 GHz
Intel E7 4850 CPU with 1TB of memory. Index creation
and database query experiments use this hardware. K-mer
extraction is evaluated on large memory nodes and on con-
ventional cluster nodes. The latter are Infiniband-connected
2.6 GHz Intel E5-2670 CPUs with 32 GB of DRAM each.
All query experiments use PCIe attached flash memory. We
use a software RAID with 2 FusionIO 1.2 TB ioDrive cards.
Our experiments run in a standard supercomputing center
environment in which input and output files are read from
or written to a 1.5 PB Lustre file system.

A. K-mer extraction

Figure IV plots the runtime for k-mer extraction com-
paring Jellylist with the kmerPrefixCounter (labeled kPC).
We consider three input sizes (X-axis) and for kmerPrefix-
Counter, five configurations from 1 to 64 partitions (powers
of 4). The three input sizes represent collections with 500,
1000 and 2000 individual genome sequences respectively.
The number following the label indicates the number of
partitions run concurrently. For 64 partitions, we consider
two variations: (kPC-64a) use of two nodes with all pro-
cesses running on physical cores or (kPc-64b) use of a single
node with hyper-threading enabled; with hyper-threading the
64 processes run concurrently on the 80 available hardware
threads (with 40 underlying physical cores).

The results show that using the kPc-64b configuration
(single node with hyper-threading) incurs an 18% perfor-
mance penalty (for the largest workload shown) over kPc-
64a, which uses 64 CPUs (on two nodes) without hyper-
threading. In other words, using two CPUs without hyper-
threading reduces runtime by only 18% compared to a single
hyper-threading-enabled CPU. To run separate kmerPrefi-
Counter processes in parallel we use the “gnu parallel”
tool. In all, we observe a range of speedups of 4.17⇥ for
kmerPrefixCounter over Jellylist when using four processes
and 27⇥ when using 64 processes and hyper-threading
enabled. Experience with Jellylist has shown that hyper-
threading does not improve the application’s performance.

We compare the use of a cluster to extract k-mers from
a larger (55 GiB) set of sequence data with (1) a ScaleMP
(version 5.1) 4 1TB node configuration ( 3.8TB in vSMP)
and (2) running the same workload split into groups of
partitions on a single 1 TB node. For the single node, we had
to limit the number of partitions to 16 running concurrently
in order to not exceed the 1 TB memory limit on the node.
For the cluster run, we require 1024 partitions so the largest
does not exceed the 32 GiB available DRAM per node
group. However, we pair each job with a complementary job
so we may run on 512 nodes, and each pair of jobs will not
exceed the limit. The higher number partitions use much less
memory than lower numbers due to the canonicalization of
k-mers, which allows us to find the pairings. For this group,
we report total node-hours (wall clock-time for each job).
For the 1 TB node run each group is 16 partitions out of
64, run in four batches, and we report total wall-clock time,
as we also do for the single-job ScaleMP run. Additionally
for these runs, we attempt load balancing by interleaving
partitions we expect to produce larger, average and smaller
quantities of system DRAM for the 40 out 64 or 16 out
of 64 concurrent processes on the ScaleMP and 1 TB runs
respectively.

If 512 nodes were simultaneously available, the cluster
job could complete in slightly under two hours but as shown
in Table I we require 950 node-hours to complete. We also

561



Ti
m

e 
to

 p
ro

ce
ss

 (s
)

0

100

200

300

400

500

Input file number
0 5 10 15 20 25 30 35 40

gnu−hash/ramdisk
two−level/ramdisk
two−level/flash

Indexing method / storage

Figure 4. Comparison of indexing approaches measuring ingest timings.
For the two-level index we consider performance of both ramdisk and flash.
Gnu hash performance on flash was too poor for consideration. Each point
on the x-axis represents a roughly equal number of k-mers along the x-axis.

observe that it takes 5.5⇥ longer to complete the entire batch
of 64 partitions on the 40-core 4 TB scaleMP system over
the 1 TB system where the task must run as four batches
of 16 concurrent processes. On the ScaleMP system, the
processes use close to 3 TB of the available DRAM.

B. Index Creation

We discuss the performance of the ingest process that
builds the index from files containing k-mers and taxonomy
information, comparing use of gnu hash with the two-level
index. Figure 4 shows timings of the processing of input
files on a 1 TB node. For this experiment we use input
data derived from 22 GB data set, which includes microbial
organisms and a human genome. Each partition (x-axis) is a
single file, containing roughly the same number of k-mers,
and they are processed sequentially. The ingest application
measures the time to process each input file.

For the gnu hash index, the time to ingest each successive
partition increases with elapsed runtime. We attribute the
increase to the growth of chaining as the hash table fills up.
In contrast, the processing time for each partition file for the
two-level varies slightly between successive files, but does
not appear to progressively increase. The total times (ap-
proximate) for gnu hash and two level hash are respectively
3.5 hours and 1.5 hours. For the two-level index, we have
included timings from both a memory mapped ramdisk and
memory-mapped flash array with memory available for the
application and buffer cache limited to 16 GiB. The overhead
for using flash over ramdisk in this case is 6.2%. This small
overhead suggests that the working set size for the two-level
index ingest is smaller than 16 GiB.

Previous experiments with the gnu hash map ingest have
shown that using flash storage and a limited amount of

memory for buffer cache produces considerable increases in
time. Therefore, we choose not to show those as well, as they
are not comparable and would not complete in a reasonable
time for this input data set. For this data set, the total storage
used by the gnu hash map index was 522 GB, including the
taxonomy information. In contrast, the two-level index used
320 GB. Based on the the size of the hash table, we have
measured 27.3 bytes per k-mer. In contrast, the two-level
index uses 8.012 to 9.53 bytes per k-mer for this workload.
The two-level index is fixed to 8 bytes per k-mer from the
second level plus the memory overhead of the first level,
whose size varies depending on the split parameter. Thus,
as the number of k-mers increases, that overhead becomes a
less significant part of the total storage. Given that the two-
level index is more efficient in its use of storage, we expect
it to have better page reuse than gnu hash when queried
from a flash device.

C. Query Performance

We examine the performance of LMAT classification
using flash memory as a store, in which we evaluate the two-
level index in two ways. First, we compare the performance
of eight index configurations. Each configuration has a
different split between prefix and suffix in the k-mer key,
resulting in varying first-level table sizes and second-level
list lengths. Second, we compare the query performance of
the two-level table with gnu hash.

These experiments make use of the DI-MMAP custom
memory map handler [3] to access the memory-mapped
database files. The goal of DI-MMAP was to address the
performance gap in standard linux memory-map for large
memory mapped files. The key features of the runtime
are a fixed size page buffer, whose size is a configuration
parameter; minimal dynamic memory allocation; a simple
FIFO buffer replacement policy; and preferential caching for
frequently accessed pages. DI-MMAP superior performance
to regular system mmap is measured up to 4.88⇥ as shown
in [3]. Our experiments consider 6 configurations of the DI-
MMAP buffer size from 1 GiB to 32 GiB.

For these experiments we consider three non-synthetic
metagenomic samples representing a human microbiome
with viruses (SRX022172) (0.5 GiB), a human bacterial
community metagenome (ERR011121) (2.5 GiB) and a sin-
gle species raw read ’metagenome’ (DRR000184) (0.6 GB)
for which many genomes are represented in our reference
database, taken from the NCBI sequence read archive for
our input sets (each are abbreviated to the initial three
letters). These were selected to measure three different
practical experimental conditions and not meant to be an
exhaustive list of examples. These experiments run the
LMAT software V1.1 adapted to run with the two-level
index using a 11.2 billion k-mer index from five kingdoms
or domains of microorganisms and the human genome. The
results of these experiments measure the input base-pairs per

562



first−level table size
128MB 256MB 512MB 1GB 2GB 4GB 8GB 16GB

Ba
se

s 
pe

r s
ec

on
d

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

1GB
2GB
4GB
8GB
16GB
32GB

DI−MMAP buffer size

(a) SRX

first−level table size
128MB 256MB 512MB 1GB 2GB 4GB 8GB 16GB

Ba
se

s 
pe

r s
ec

on
d

100000
150000
200000
250000
300000
350000
400000
450000
500000
550000

1GB
2GB
4GB
8GB
16GB
32GB

DI−MMAP buffer size

(b) DRR

first−level table size
128MB 256MB 512MB 1GB 2GB 4GB 8GB 16GB

Ba
se

s 
pe

r s
ec

on
d

40000

60000

80000

100000

120000

140000

160000

1GB
2GB
4GB
8GB
16GB
32GB

DI−MMAP buffer size

(c) ERR
Figure 5. Index configuration performance selecting various first-level
table sizes with varying DI-MMAP buffer sizes. The table sizes are selected
based on the range of k-mer split parameters considered in section 3.C. Each
subfigure is a different input set taken from a non-synthetic metagenome,
each with different redundancy and taxonomic diversity characteristics.

second (correlates with input bytes per second) processed
by the LMAT classification application, shown on the y-
axis of Figures 5 and 6. All the experimental runs for
LMAT classification use a single 40-core node running 160
concurrent threads.

Figure 5 show the performance with the eight different
index configurations based on the k-mer prefix-suffix split
range we identified in Section 3.3. We use the first-level
table sizes based on those splits for the x-axis because
those sizes can be compared with the various DI-MMAP
buffer sizes that each series represents. Each subfigure
uses input data from the SRX, DRR, and ERR data sets,
respectively. Note that the performance differences among
the three sets varies considerably. This is due to different
amounts of redundancy affecting hit rate and taxonomic
diversity affecting classification performance. The pattern
we observe with most of the curves plotted within the figure
is that performance improves from the 128 MB first-level
table size to 1 GB size, then declines to the 16 GB size.
Under the conditions of the smaller size, the entire table fits
comfortably into the DI-MMAP buffer, yet the second level
lists are longer on average.

We note several exceptions to the pattern observed above.

One difference among the three input sets is that the SRX
data set with 32 GB buffer does not have the same single
peak pattern. We have observed that the SRX data set has a
relatively high number of redundant k-mers. In contrast to
the other data sets, the hit rate becomes extremely high for
this data set with the 32GB buffer. Additionally, with a 1
GiB buffer, the 1 GiB table size is not the peak performer.
This result we expect because the 1 GB table cannot fit
entirely in the buffer without its pages being evicted when
requests are made for pages from the other components of
the index.

Figure 6 shows the performance of LMAT using the two-
level index compared with the gnu hash map index. We
include three index configurations for comparison. The x-
axis in each plot is the DI-MMAP buffer size. As correlating
with the previous data, the buffer size has considerable
impact on the performance of the two-level index. How-
ever, due to the mostly random-access pattern of the gnu
hash map, increasing the buffer has little impact. Looking
at each subfigure for the three input data set and the optimum
configuration of the two-level, we observe speedups of 74⇥
for SRX, 13.7⇥ for DRR and 8.4⇥ for ERR over the gnu
hash map index. The varying levels of k-mer redundancy
accounts for the large differences in speedups.

D. LMAT vs. Other Methods

We compare the runtime query performance of LMAT
with two alignment methods that can cover the full 22 GB
of reference sequences: BLASTn and Bowtie2. Other ap-
proaches that reduce the size of the reference database leave
much of the query input unclassified; thus, those methods are
outside the scope of this comparison. While neither program
is a metagenomic classifier, their output is the primary
input to PhymmBL (BLASTn) and Genometa (Bowtie2) and
represents the dominant computational cost. Since alignment
tools are used by all competing metagenomic classification
tools currently available, the LMAT speed performance
goal is to meet or beat the competing alignment runtimes.
Bowtie2 and BLASTn use all 40 available cores on the
single 1 TB node for processing. Because Bowtie2 limits
database sizes to 4 GiB, we partition the DB into 8 groups
and run each with 5 threads in a parallel task. BLASTn was
run with default settings; Bowtie2 with the “sensitive-local”
setting. Since Bowtie2 and BLASTn run their computation
in main memory, we include LMAT runtime performance
using ramdisk for index storage (see Figure 7). LMAT
measurements use the two-level index.

LMAT on ramdisk outperforms Bowtie2 by close to 50%
to 3.7⇥. For the SRX workload only, the LMAT running
on flash is 75% faster than Bowtie2 (in memory), but more
than 15⇥ slower on the ERR data set. The ERR has lower
taxonomic diversity but less redundancy; thus, when running
with the index stored on the ramdisk, it achieves much higher
performance with the lower latency. The higher diversity in

563



DI−MMAP buffer size
1GB 2GB 4GB 8GB 16GB 32GB

Ba
se

s 
pe

r s
ec

on
d

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06
gnu−hash
two−level−128MB
two−level−1GB
two−level−16GB

Index configuration

(a) SRX

DI−MMAP buffer size
1GB 2GB 4GB 8GB 16GB 32GB

Ba
se

s 
pe

r s
ec

on
d

0

100000

200000

300000

400000

500000 gnu−hash
two−level−128MB
two−level−1GB
two−level−16GB

Index configuration

(b) DRR

DI−MMAP buffer size
1GB 2GB 4GB 8GB 16GB 32GB

Ba
se

s 
pe

r s
ec

on
d

0

20000

40000

60000

80000

100000

120000

140000

160000
gnu−hash
two−level−128MB
two−level−1GB
two−level−16GB

Index configuration

(c) ERR

Figure 6. LMAT classification performance comparing the two-level index with gnu hash-map. For the index configurations, the size indicated after
two-level gives the first-level table size for the index: the two extremes of the range of values considered and one median value. Each subfigure is a
different input set taken from a non-synthetic metagenome, each with different redundancy and taxonomic diversity characteristics.

SRX makes classification (aside from index lookup) take
longer, so moving to lower-latency storage does not make
as great a difference. BLASTn performs at several orders
of magnitude slower than either LMAT configuration. We
have previously compared LMAT on species classification
accuracy with Genometa and PhymmBL [1]. We observed
that LMAT produces no false positive calls and 531 correct
out of 541 in the test set, while the other produce up to
526 correct calls with 265 false positive calls (phymmBL)
or 504 correct calls with 95 false positive calls (Genometa).

E. Discussion

Ingest Although a prefix-oriented partitioning strategy
significantly reduces runtime for concurrent processing,
memory requirements appear to increase with the input
size. Thus, either larger memory nodes or larger cluster
allocations are needed, as we expect to see larger inputs
as more organism are sequenced and incorporated into
genome reference sets. ScaleMP provides large memory to
ameliorate the need for batching on large-memory nodes,
but comes at a significant cost in runtime.

Our results suggest that database ingest directly onto flash
storage should be a viable alternative to ingest using a large-
memory node when using a two-level index for k-mers; it
is not viable with hash-based indexing.

Query While there is not one clear choice for how to
configure the two-level index for query, we observe that
configuring the index within the range of 26 - 28 bits for k-
mer prefix is favorable for best query performance, and the
extremes of the range are not. within the input set affects the
performance of both conventional hash and two-level index;
thus, we incur a wide range of speedups when comparing the
two strutures with various input sets. LMAT configured with
a two-level index using 1 GiB for the first-level is faster than
the Bowtie2 read mapping application when using ramdisk
storage and competitive in two cases using flash storage. It
is orders of magnitude faster than BLASTn in both flash and
ramdisk configurations on all tested data sets.

V. RELATED WORK

For metagenomic analysis, two approaches applied toward
making search more scalable include reference database size

Input set (Metagenome)
SRX DRR ERR

Pr
oc

es
si

ng
 ra

te
 (K

bp
/s

)

4000

1000

100

10

1

.1

12
30

51
1

15
8

25
80

17
10 32

20

0.
4 0.
5

1.
7

70
2

89
4 24

66

LMAT−flash
LMAT−ramdisk
BLASTn
Bowtie2

LMAT config. / Application

Figure 7. Comparison of LMAT using flash or ramdisk for index storage
with BLASTn and Bowtie2 to process three metagenomes.

reduction and faster database search methods. Reference
database size reduction is achieved through the use of
genetic markers storing only the more informative sequences
[8]. Genometa features a user interface to enable simple
best match classification using the output from Bowtie2 [9].
MetaPhlAn uses a reduced database set and can use either
Bowtie2 or BLAST to map reads to its input database prior
to taxonomic classification [4]. Marker based approaches
to reduce database size offer efficient summarization of
metagenomic contents, but only cover a portion of the
query set, which could lead to missing informative reads
and prevent recovering complete genomes for more accurate
classification [5]. A recent alternative approach reduced
sequence redundancy by storing only the genetic differences
among reference genomes. This approach was shown to
speed up BLAST and BLAT genome database searches [10].

Faster database search methods apply large search seeds
and examples include BLAT [11], BWA [12] and other read
mapping tools [13], but the analysis of search results can
lead to inaccurate findings with some approaches taking
a less informative but conservative approach by selecting
the lowest common ancestor of multiple matches and others
using variants of a best match selection procedure to improve
rank specificity of the reported taxonomic label with the
increased risk of overly specific calls. Moreover, parameter
settings of the search tools can dramatically alter the out-
come of the reported label and must be considered carefully

564



[14].
Other projects have taken approaches to read mapping

and scaled them to cluster computing. Note that the cluster
approaches alone do not attempt metagenomic classification.
mpiBLAST supports the mapping of reads utilizing cluster
computing resources. It partitions its reference genomes
database by creating what the authors refer to as database
fragments and also partitions the input query read into
multiple segments. mpiBLAST-PIO features several parallel
I/O optimizations, namely, it offloads the formatting and
writing of results from a master process to the workers. This
feature increases the scalability of mpiBLAST to hundreds
of thousands of processors [15].

CloudBurst makes use of the Hadoop framework to scale
read mapping to a cluster. CloudBurst uses a k-mer based
approach — well-known seed-and-extend algorithms — but
unlike LMAT, it does not index every k-mer in the reference
database [16]. Crossbow is another Hadoop-based cluster
read mapper, which is based on using bowtie as the kernel
that maps the input reads against the reference sequences
[17].

VI. CONCLUSION

This paper evaluates scalable techniques to index refer-
ence sequence data sets, generating a searchable metage-
nomic database. We have evaluated the alternative ap-
proaches to the database ingest pipeline. This evaluation
includes a comparison of k-mer extraction using a conven-
tional cluster, a single large memory node, and a vSMP
configuration. To facilitate query, we designed a two-level
index data structure uniquely tuned for flash storage, and
we demonstrate its speed performance: an improvement of
8-74 times versus the use of a conventional hash table.
We additionally compare query speed performance to state-
of-the-art read mapping software. The LMAT open source
software is in use both at LLNL and in the international
bioinformatics community.

VII. ACKNOWLEDGEMENT

This work was performed under the auspices of the
U.S. Department of Energy by Lawrence Livermore Na-
tional Laboratory under Contract DE-AC52-07NA27344.
This work was funded in part by Laboratory Directed
Research and Development grants 33-ER-2012 and 25-
ER-2013, and DOE Office of Science grant KJ0402000-
SCW1076. We thank Roger Pearce, Brian van Essen and
Shea Gardner for their valuable feedback.

REFERENCES

[1] S. K. Ames, D. A. Hysom, S. N. Gardner, G. S. LLoyd,
M. B. Gokhale, and J. E. Allen, “Scalable metagenomic
taxonomy classification using a reference genome database,”
Bioinformatics, vol. 29, no. 18, pp. 2253–2260, July 2013.

[2] J. E. Allen, S. Ames, D. Hysom, S. Garnder, and G. S. Lloyd,
“Lmat: Efficient taxonomic labeling of very large metage-
nomic datasets,” http://http://sourceforge.net/projects/lmat/,
2013.

[3] B. Van Essen, H. Hsieh, S. Ames, and M. Gokhale,
“DI-MMAP: A high performance memory-map runtime for
data-intensive applications,” in International Workshop on
Data-Intensive Scalable Computing Systems (DISCS-2012),
Nov. 2012.

[4] N. Segata, L. Waldron, A. Ballarini, V. Narasimhan,
O. Jousson, and C. Huttenhower, “Metagenomic microbial
community profiling using unique clade-specific marker
genes,” Nat Meth, vol. 9, no. 8, pp. 811–814, 2012.

[5] M. H. Mohammed, T. S. Ghosh, N. K. Singh, and S. S.
Mande, “SPHINX–an algorithm for taxonomic binning of
metagenomic sequences,” Bioinformatics, vol. 27, no. 1, pp.
22–30, 2011.

[6] G. Marais and C. Kingsford, “A fast, lock-free approach
for efficient parallel counting of occurrences of k-mers,”
Bioinformatics, vol. 27, no. 6, pp. 764–770, 2011.

[7] J. Evans, “A scalable concurrent malloc(3) implementation
for freebsd,” in BSDCan - The Technical BSD Conference,
2006.

[8] B. Liu, T. Gibbons, M. Ghodsi, T. Treangen, and M. Pop,
“Accurate and fast estimation of taxonomic profiles from
metagenomic shotgun sequences,” BMC Genomics, vol. 12,
no. Suppl 2, p. S4, 2011.

[9] C. F. Davenport, J. Neugebauer, N. Beckmann, B. Friedrich,
B. Kameri, S. Kokott, M. Paetow, B. Siekmann, M. Wieding-
Drewes, M. Wienhfer, S. Wolf, B. Tmmler, V. Ahlers, and
F. Sprengel, “Genometa - a fast and accurate classifier for
short metagenomic shotgun reads,” PLoS ONE, vol. 7, no. 8,
p. e41224, 08 2012.

[10] P.-R. Loh, M. Baym, and B. Berger, “Compressive genomics,”
Nat Biotech, vol. 30, no. 7, pp. 627–630, 2012.

[11] V. K. Sharma, N. Kumar, T. Prakash, and T. D. Taylor,
“Fast and accurate taxonomic assignments of metagenomic
sequences using metabin,” PLoS ONE, vol. 7, no. 4, p.
e34030, 04 2012.

[12] C. F. Davenport, J. Neugebauer, N. Beckmann, B. Friedrich,
B. Kameri, S. Kokott, M. Paetow, B. Siekmann, M. Wieding-
Drewes, M. Wienhfer, S. Wolf, B. Tmmler, V. Ahlers, and
F. Sprengel, “Genometa - a fast and accurate classifier for
short metagenomic shotgun reads,” PLoS ONE, vol. 7, no. 8,
p. e41224, 08 2012.

[13] J. Martin, S. Sykes, S. Young, K. Kota, R. Sanka, N. Sheth,
J. Orvis, E. Sodergren, Z. Wang, G. M. Weinstock, and
M. Mitreva, “Optimizing read mapping to reference genomes
to determine composition and species prevalence in microbial
communities,” PLoS ONE, vol. 7, no. 6, p. e36427, 06 2012.

[14] S. S. Mande, M. H. Mohammed, and T. S. Ghosh,
“Classification of metagenomic sequences: methods and
challenges,” Briefings in Bioinformatics, 2012.

[15] A. E. Darling, L. Carey, and W. chun Feng, “The design, im-
plementation, and evaluation of mpiblast,” in In Proceedings
of ClusterWorld 2003, 2003.

[16] M. C. Schatz, “Cloudburst: highly sensitive read mapping
with mapreduce,” Bioinformatics, vol. 25, no. 11, pp. 1363–
1369, 2009.

[17] B. Langmead, M. C. Schatz, J. Lin, M. Pop, and S. L.
Salzberg, “Searching for SNPs with cloud computing.”
Genome biology, vol. 10, no. 11, pp. R134+, Nov. 2009.

565


