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Abstract—This paper proposes and evaluates a strat-
egy to run Biological Sequence Comparison applications
on hybrid platforms composed of GPUs and multicores
with SIMD extensions. Our strategy provides multiple
task allocation policies and the user can choose the one
which is more appropriate to his/her problem. We also
propose a workload adjustment mechanism that tackles
situations that arise when slow nodes receive the last
tasks. The results obtained comparing query sequences
to 5 public genomic databases in a platform composed
of 4 GPUs and 2 multicores show that we are able
to reduce the execution time with hybrid platforms,
when compared to the GPU-only solution. We also show
that our workload adjustment technique can provide
significant performance gains in our target platforms.

Keywords-bioinformatics; smith-waterman; GPUs;
multicores;

I. INTRODUCTION

Once a new biological sequence is discovered,

its functional/structural characteristics must be estab-

lished. In order to do that, the newly discovered se-

quence is compared against other sequences, looking

for similarities. Sequence comparison is, therefore,

one of the most basic operations in Bioinformatics

[1]. The most accurate algorithm to execute pairwise

comparisons is the one proposed by Smith-Waterman

(SW) [2], which is based on dynamic programming,

with quadratic time and space complexity. This can

easily lead to very high execution times and huge

memory requirements, since biological databases are

growing exponentially.

Parallel processing can be used to produce results

faster, reducing significantly the time needed to obtain

results with the SW algorithm. Indeed, many pro-

posals do exist to execute SW on clusters [9] [3]

and grids [7]. More recently, accelerators such as

GPUs (Graphics Processing Units) and FPGAs (Field

Programmable Gate Arrays) have been explored to

execute SW [4] [6] [8]. In addition to that, the SIMD

extensions of general-purpose processors, such as the

Intel SSE, have also been explored to accelerate SW

applications [17].

Since accelerators are normally connected to a

multicore host, the idea to use both the accelerators

and the SIMD extensions of multicores to execute

SW came naturally and there are some approaches in

the literature that explore this idea [16] [10] [13]. In

order to distribute work among the hybrid processing

elements, these approaches either (a) assume that

multicores and accelerators have the same process-

ing power [10]; (b) distribute work proportionally,

considering the theoretical computing power of each

processing element [13]; or (c) assign one work unit at

the time [16]. As far as we know, there is no work in

the literature that executes Smith-Waterman on hybrid

platforms, distributing work according to the observed

performance of each processing element.

This paper proposes and evaluates a strategy that

uses workload adjustment to execute Smith-Waterman

on hybrid platforms composed of multi-cores and

accelerators. Our proposal assumes that the compu-

tational platform can be either dedicated or non-

dedicated, being composed of one or more GPUs and

one or more multi-cores with SIMD extensions. In

the GPUs, CUDASW++ 2.0 [6] is used, since it is the

state-of-the art program to compare query sequences

to a biological database with SW in GPUs. In order

to execute SW in multicores with SSE extensions,

we implemented a modified version of the Farrar

algorithm [18].

Having a set of query sequences and a biological

database, our approach uses a master-slave strategy

to assign work units to the processing elements in

the following way. In the first allocation, the master

assigns one work unit for each slave. The slaves

execute the query x database comparison and ask for

more work. Based on the observed performance, the

master adjusts the number of work units to be assigned

to each slave. Nevertheless, if a slow node receives

one of the last tasks, the end of the computation

can be significantly retarded. To avoid this situation,

we propose a workload adjustment mechanism that

allows idle nodes to execute tasks which have been

assigned to other nodes which have not yet finished

2013 IEEE 27th International Symposium on Parallel & Distributed Processing Workshops and PhD Forum

978-0-7695-4979-8/13 $26.00 © 2013 IEEE

DOI 10.1109/IPDPSW.2013.28

501



the execution.

Our strategy was implemented in C with SSE

extensions and CUDA, and it integrates CUDASW++

2.0 into our code. The tests were conducted with

40 real query sequences of minimum size 100 and

maximum size 5,000 amino acids, which were com-

pared to 5 real genomic databases: SwissProt/Unipro-

tKB (available at www.uniprot.org, with 537,505 se-

quences), Enbembl (www.ensembl.org) Dog (25,160

sequences) and Rat (32,971 sequences) and Ref-

Seq (www.ncbi.nlm.nih.gov/RefSeq) Human (34,705

sequences) and Mouse (29,437 sequences). The tests

conducted in a hybrid platform composed of 4 NVidia

GPUs and 2 Intel i7 (4 SSE real cores each) show

that 172.82 GCUPS (Billions of Cells Updates per

Second) can be attained, reducing the execution time

from 7,190 seconds (one SSE core) to 112 seconds (4

GPUs + 4 Intel SSE Cores). Also, we show that our

workload adjustment mechanism is able to reduce the

total execution time in 57.2%.

The remainder of this paper is organized as follows.

Section 2 presents the sequence comparison problem

and the SW algorithm. Related work is discussed in

Section 3. Our strategy for executing SW on hybrid

platforms is proposed in Section 4. Section 5 presents

experimental results. Finally, Section 6 concludes the

paper and suggests future work.

II. BIOLOGICAL SEQUENCE COMPARISON

A biological sequence is a molecule of nucleic

acids or proteins. It is represented by an ordered list

of residues, which are nucleotide bases (for DNA

or RNA sequences) or amino acids (for protein se-

quences).

DNA and RNA sequences are treated

as strings composed of elements of the

alphabets ∑ = {A,T,G,C} and ∑ = {A,U,G,C},

respectively. Protein sequences are also treated

as strings which elements belong to an

alphabet with, normally, 20 amino acids ( ∑ =
{A,C,D,E,F,G,H, I,K,L,M,N,P,Q,R,S,T,V,W,Y}).

Since two biological sequences are rarely identical,

sequence comparison is in fact a problem of approxi-

mate pattern matching [1]. To compare two sequences,

we need to find one alignment between them, which

is to place one sequence above the other making clear

the correspondence between similar characters [1].

In an alignment, spaces can be inserted in arbitrary

locations so that the sequences end up with the same

size.

Given an alignment between sequences s and t, a

score is associated to it as follows. For each two bases

in the same column, we associate (a) a punctuation

ma, if both characters are identical (match); or (b) a

penalty mi, if the characters are different (mismatch);

or (c) a penalty g, if one of the characters is a

space (gap). The score is the addition of all these

values. The maximal score is called the similarity

between the sequences. Figure 1 presents one possible

global alignment between two DNA sequences and its

associated score. In this figure, ma=+1, mi=−1 and

g =−2.

A C T T G T C C G
A − T T G T C A G
+1 −2 +1 +1 +1 +1 +1 −1 +1︸ ︷︷ ︸

score = 4

Figure 1. Example of alignment and score

A. Smith-Waterman (SW) Algorithm
The algorithm SW [2] is an exact method based on

dynamic programming to obtain the optimal pairwise

local alignment in quadratic time and space. It is

divided in two phases: create the similarity matrix and

obtain the alignment.
1) Phase 1: Create the similarity matrix: The first

phase of the SW algorithm receives as input sequences

s and t, with |s| = m and |t| = n, where |s| repre-

sents the size of sequence s. The similarity matrix

is denoted Hm+1,n+1, where Hi, j contains the score

between prefixes s[1..i] and t[1.. j]. At the beginning,

the first row and column are filled with zeroes. The

remaining elements of H are obtained from equation

1. In addition, each cell Hi, j contains information

about the cell that was used to produce the value.

Hi, j = max

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Hi−1, j−1 +(if s[i] = s[ j] then ma else mi)
Hi, j−1+g

Hi−1, j+g

0

(1)

2) Phase 2: Obtain the optimal alignment: In order

to obtain the optimal local alignment, the algorithm

starts from the cell that has the highest value in Hi, j,

following the arrows until the value zero is reached.

A left arrow in Hi, j is the alignment of s[i] with a gap

in t. An up arrow represents the alignment of t[ j] with

a gap in s. Finally, an arrow on the diagonal indicates

that s[i] is aligned with t[ j]. Figure 2 presents the

similarity matrix to obtain the local alignment between

two sequences, with score = 3.
3) Affine-gap Model: The SW algorithm assigns a

linear cost to gaps. Nevertheless, in nature, gaps tend

to be together. For, this reason a higher penalty is

usually associated to the first gap and a lower penalty

is given to the following ones (affine-gap model).

Gotoh [20] proposed an algorithm based on SW that

implements the affine-gap model by calculating 3

Dynamic Programming (DP) matrices: H, E and F ,

where E and F keep track of gaps in each of the

sequences.
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* G A A G C T A
* 0 0 0 0 0 0 0 0

G 0 1 0 0 1
��

0 0 0

C 0 0 0 0 0 2
��

0 0

T 0 0 0 0 0 0 3
��

1

G 0 1 0 0 1 0 1 2

A 0 0 2 1 0 0 0 2

C 0 0 0 0 0 1 0 0

C 0 0 0 0 0 1 0 0

T 0 0 0 0 0 0 2 0

Figure 2. Similarity matrix for sequences s and t

B. SW in Parallel

There are several ways to parallelize the SW algo-

rithm. In the following paragraphs, we assume that a

set of x query sequences (q1,q2, ...,qx) will be com-

pared to a set of y database sequences (d1,d2, ...,dy)
and that x � y.

In the fine-grained approach, the comparison of

one query sequence and one database sequence (i.e.

a single SW execution) is done by several Processing

Elements (PEs). The data dependency in the matrix

calculation is non-uniform, and the calculations that

can be done in parallel evolve as waves on diago-

nals (Equation 1). Figure 3.a illustrates a fine-grained

column-based block partition technique with four PEs.

At the beginning, only P0 is computing. When P0

finishes calculating the values of a block of matrix

cells, it sends its border column to P1, that can start

calculating and so on. Note that, very close to the

end of the matrix computation, only P3 is calculating.

When the PEs finish to compare d1 to q1, they start

computing SW for q1 x d2 and so on, until the

comparison qx x dy is done.

In the coarse-grained parallelization, each PE re-

ceives the query sequence q1 and a subset of d. The

PEs calculate the SW algorithm for q1 x subset of d,

without communication, as shown in Figure 3.b. After

that, the PEs compute the SW algorithm for q2 x d,

q3 x d, and so on, until the computation of qx and d
is finished.

In the very coarse-grained approach, each PE com-

pares a different query sequence to the whole database

(Figure 3.c). For instance, P0 compares q1 to d, P1

compares q2 to d and so on. Note that, in this case,

the number of SW comparisons executed by each

processing element is big and this approach can easily

lead to load imbalance.

III. RELATED WORK

Blazwicz et al. [12] propose a strategy to run

SW (first and second phases) in multiple GPUs. In

order to retrieve the alignment, the quadratic space

procedure (Section II.A.2) was used. Therefore, only

short sequences were compared. In this proposal,

coarse-grained parallelization is used in the top level.

The algorithm executes as follows. Each idle GPU

retrieves one window (set of tasks which can be

executed in one kernel invocation) from the top of the

queue until the queue is empty, in a Self-Scheduling

(SS) basis.

Ino, Kotani and Hagihara [14] propose the use of

a non-dedicated grid composed of multiple GPUs

to execute SW. When the screensaver is activated,

coarse-grained SW tasks are executed. The authors

propose a master/slave architecture where the resource

manager server is the master and the grid resources

are the slaves. Tasks are distributed using a self-

scheduling policy.

The work of [14] was extended by [15] in order

to take advantage of shorter idle periods of time

so, in this case, the screensaver is not used. As

in [14], a master/slave architecture is used and idle

resources execute coarse-grained SW tasks. SW tasks

are distributed to the workers in a modified self-

scheduling fashion, where resources with longer idle

periods receive tasks first. SW tasks can be canceled

if the resource changes its state to busy. In this case,

the task is re-assigned to another idle resource.

Rognes [17] proposes a multi-threaded version of

an optimized SSE code to compare a query sequence

to a database, with the SW algorithm. Work is as-

signed in an SS basis, where a task is defined as one

query sequence and a chunk of x database sequences

(coarse-grained allocation).

Meng and Chaudhary [13] propose the execution

of SW in a platform composed of CPU and FPGA.

A master/slave architecture is proposed where the

master prepares the data, assigns tasks to the workers,

merges the results and presents the final results to

the user. The workers execute the SW algorithm. A

configuration file is used that specifies the number

of PEs (CPU w/o SSE, CPU with SSE, FPGA) that

the node contains. This file is used to distribute work

proportionally (WFixed) among the nodes. Since the

FPGA imposes restrictions on the size of the se-

quences, long database sequences are compared in the

CPU and long query sequences are segmented (with

overlap). Depending on the degree of overlapping, the

sensitivity of the SW algorithm is reduced.

Singh et al. [16] propose the use of desktop grids

composed of CPUs and GPUs to execute SW com-

parisons for comparative genomics. In this case, all

possible pairwise comparisons between n sequences

are calculated ((n ∗ (n − 1)/2) comparisons). The

application is divided into work units of approxi-

mately the same number of residues. The process-

ing of the working units is managed with BOINC

(boinc.berkeley.edu), that allocates tasks in an SS

manner.
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Figure 3. Strategies to Parallelize the SW Algorithm.

Table I
SMITH-WATERMAN APPROACHES ON HETEROGENEOUS

PLATFORMS

Ref Platform Alloc Ded. Reassign GCUPs

[12] GPUs SS Yes No 11.00
4 GPUs

[14] GPUs SS No No 3.09
8 GPUs

[15] GPUs SS No Yes 64.00
8 GPUs

[17] CPUs SS Yes No 106.00
12 SSE

[13] CPU WFixed Yes No 11.30
FPGA 1 FPGA, 20 SSE

[16] CPU SS No No 4.40
GPU (BOINC) 10 GPUs

[10] CPU Fixed Yes No 27.00
GPU 1 GPU, 4 SSE

Singh and Aruni [10] proposed a strategy for ex-

ecuting the first phase of SW in a system composed

of CPU and GPU. In the CPU, a modified version of

SWPS3 [11] was executed and a modified version of

CUDASW++ 2.0 [6] was executed in the GPU. The

authors assumed that the performance of the CPU (4

SSE cores) and the GPU are the same, so the work

was distributed evenly between both platforms in a

coarse-grained way.

Table I presents a comparative view of the ap-

proaches discussed in this section. In column 2, we

can see the platform targeted by each paper. As can be

seen, most of the papers treat multiple heterogeneous

GPUs or CPUs ([12], [14], [15], [17]). Two of them

([16] [10]) consider GPUs and CPUs and one of them

([13]) allocates tasks to CPUs and FPGAs. In order

to allocate tasks to the PEs (Aloc. column), most of

the papers use a self-scheduling-based policy, where

an idle node asks for more tasks. All the papers that

propose the execution on a non-dedicated environment

use the SS policy (Ded. column). Only paper [15]

allows task reassignment (Reassign column). In the

last column, we can see the GCUPs provided by

each paper. This information cannot be used for direct

comparison since the GPUs, FPGAs and multi-cores

used in the papers vary a lot. However, it can be used

to give an idea of the potential of these approaches.

The best GCUPs was obtained with 12 SSE cores.

Receive 
parameters

Acquire 
sequences

Convert 
format

Allocate tasks

Merge results

Allocation 
policies

Register 
slaves

Configure

User
Register with 

master

Acquire 
sequences

Convert 
format

Execute tasks

Send results

Sequences

Master Slave

Figure 4. Overview of the Architecture

IV. DESIGN OF THE SW TASK EXECUTION

ENVIRONMENT FOR HYBRID PLATFORMS

In order to execute SW on hybrid platforms com-

posed of different types of PEs, we propose a mas-

ter/slave architecture provides user-selectable task al-

location policies with dynamic workload adjustment

capabilities. An overview of the proposed architecture

is given in Figure 4.

First, the master process starts the execution and

waits for the slaves to register. After that, the slaves

can register themselves in the master. In order to

execute SW comparisons, the user provides the names

of two files (query and database). The master then

reads the sequences (acquire sequences) and converts

the format to a more suitable one. Using information

about the number of slaves, their processing speed and

the allocation policy, the master assigns a subset of

tasks to the slaves. In our system, a task defined to be

the comparison of one query sequence to one genomic

database (very coarse-grained approach). When the

slaves finish the execution of the assigned tasks, they

communicate with the master, asking for more tasks.

At this moment, the slaves implicitly give information

to the master about their processing speed. When there

are no more tasks left, the slaves send their results to

the master, that merges them and sends the result to

the user.
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A. Task Allocation Module

Considering the hybrid and dynamic characteristics

of our environment, we opted to provide two important

functionalities in our task allocation module: multiple

allocation policies and workload adjustment mecha-

nism.

We do not believe that there is a single task allo-

cation policy that is best suited for all databases and

query sequences sizes as well as for all the hybrid

platforms that we are targeting. For this reason, we

claim that the user must be able to select the allocation

policy which is more appropriate for his/her plat-

form and sequence files. Therefore, when requesting

one application execution, the user provides also the

task allocation policy. So far, we have implemented

the Self-Scheduling (SS) policy and the Package

Weighted Adaptive Self-Scheduling (PSS) policies.
1) Self-Scheduling (SS): Having a set of N tasks

and P slave PEs, the SS policy always allocates

one task to each slave pi(Allocate(N, pi) = 1). When

the slave finishes the execution of this task, it com-

municates with the master, asking for another task.

Using this policy, the maximum idle time a set of

slaves could wait for is limited by the processing time

of one task in the slowest slave. Note that the SS

policy incurs in considerable communication, since

each task retrieved by a slave node requires at least

one interaction with the master node.
2) Weighted Adaptive Task Allocation Strategy

(PSS): Having a set of N tasks and P slave PEs, PSS
allocates tasks to the slave pi as shown in Equation

(2). In our case, Allocate(N, pi) is the SS policy and

Φ(pi,P) represents the weight calculated by PSS.

PSS(pi,N,P) = Allocate(N, pi)∗Φ(pi,P) (2)

To distribute tasks to PEs, the master analyzes

periodic notifications sent by the slave PEs, reporting

the progress in processing tasks. It then calculates the

weighted mean from the last Ω notifications sent by

each pi slave PE. A small Ω indicates that only very

recent histories will be considered to calculate the

weight. On the other hand, high values for Ω indicate

that not only recent histories will be considered but

also older ones. The weighted means calculated for

each pi slave PE are used to produce the Φ(pi,P)
PSS weight. A more detailed explanation of PSS can

be found in [19].
3) Workload Adjustment Mechanism: On hybrid

platforms, such as the ones composed of GPUs and

SSE cores, load imbalance can have a great impact on

the total execution time. For instance, if the last tasks

are assigned to the slower nodes, the execution time of

the whole application can be significantly augmented.

To tackle this problem, we propose a workload

adjustment mechanism that works as follows. Each

task can be in one of three states: ready, executing
or finished. The slave PEs request tasks to the master

node, using a given task allocation policy. As long as

there are ready tasks, they are allocated to the slave

PEs. When a slave PE requests tasks and there are no

more ready tasks, the workload adjustment mechanism

assigns tasks in the executing state to the idle PE. Note

that, in this case, there can be more than one node

executing the same task. When a slave PE finishes

executing a task, the task state changes to finished
and its results can be collected.

In order to illustrate the benefit of our workload

adjustment mechanism, assume a system with 4 PEs

(1 GPU and 3 SSE cores) and 20 tasks that take 1s to

execute in the GPU, allocated by the PSS policy. In

this system, the GPU is 6 times faster than the SSE

core and the communication time between the master

and the slave is negligible. Figure 5 illustrates this

execution.

In Figure 5.a, the workload adjustment mechanism

is used. At the beginning, one task is assigned to

each PE. When GPU1 finishes processing task t1 (1s),

it contacts the master, asking for more tasks. The

master then calculates the processing power of GPU1

and assigns 6 tasks to it (t5 to t10). SSEs 1, 2 and

3 finish to process their task at 6s and contact the

master, which assigns one task to each SSE (t11, t12

and t13, respectively). At time 7s, the GPU finishes

to process its tasks and asks for more tasks. At this

moment, it receives tasks t14 to t19. At time 12s,

the SSEs finish executing and ask for more tasks.

Since there is only one task left (t20), this task is

allocated to SSE1. At time 13s, the GPU finishes

processing its tasks and asks for more work. At this

moment, there are no more idle tasks and tasks t1
to t19 are finished. Nevertheless, task t20 is at the

executing state. Therefore, our workload adjustment

mechanism assigns t20 to GPU1. At time 14s, GPU1

finishes executing t20 and the application execution is

completed.

Note that, if we do not use the load adjustment

mechanism (Figure 5.b), the execution is exactly the

same until time t13. When GPU1 finishes the execu-

tion of tasks t14 to t19 and there are no more tasks

in the ready state, the master replies saying that there

are no more tasks to execute and waits for SSE1 to

finish execution. In this case, the application execution

is completed in 18s.

B. Indexed format for sequence files

Even though many biological files are called

databases, they are in fact huge flat files where the

sequences are put together. In our mechanism, the

tasks compare one sequence to the whole database.

In this case, the execution modules in the PEs will

process the database files sequentially so this will
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 time (s) 
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t20 

0
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GPU1 

SSE1 

SSE2 

SSE3 

 time (s) 

t1 t5 t6 t7 t8 t9 t10 0 t14 4 t15 5 t16 6 t17 7 t18 8 t19 

t2 

t3 

t4 

t11 

t12 

t13 

t20 

 (a) Task allocation with the load adjustment mechanism. Total execution time is 14s. 

 (b) Task allocation without the load adjustment mechanism. Total execution time is 18s. 

t1 t5 t6 t7 t8 t9 t100 t144 t155 t166 t177 t188 t199 t2009

t1 t5 t6 t7 t8 t9 t100 t144 t155 t166 t177 t188 t19

Figure 5. Comparison between the mechanism with and without the load adjustment mechanism

should not be a problem. Nevertheless, we also have a

flat file that contains the query sequences which will

be compared to the database.

In order to retrieve quickly a subset of query

sequences, we propose an indexed format that keeps

track of the total number of sequences, the size of

the biggest sequence and the offset that marks the

beginning of each sequence in the file. Using the

offsets, we can quickly retrieve the beginning of a

sequence that is in the middle of the file.

C. SW execution in the PEs

In order to execute SW on GPUs, we opted to use

CUDASW++ 2.0 [6]. Differently from [10], we did

not need to modify CUDASW++ 2.0, since we defined

that each task will compare one query sequence with

the whole genomic database. Therefore, CUDASW++

2.0 was encapsulated and easily integrated to our tool.

In order to execute SW on SSE cores, we im-

plemented the Farrar algorithm [18] , generating an

adapted Farrar version. Basically, our version uses

signed integers instead of unsigned ones to store

the values of the SW DP matrices, augmenting the

maximum score to 255 (8 bits) and 65536 (16 bits).

V. EXPERIMENTAL RESULTS

We implemented the architecture proposed in sec-

tion IV in C with SSE extensions and CUDA. The

code was compiled with the CUDA SDK 4.2.9 and gcc

4.5.2. The operating system used was Linux 3.0.0-15

Ubuntu 64 bits.

The tests were executed in a hybrid platform com-

posed of 2 hosts interconnected by Gigabit Ethernet.

Each host contained 2 GPUs NVidia GTX580 and one

Intel Core i7 3.4GHz, 8GB RAM. The PSS policy

was used in all the tests and, unless otherwise stated,

the workload adjustment mechanism was always acti-

vated.

In our tests, we compared 40 query sequences to

five genomic databases (Table II). We chose 40 query

sequences from each genomic database, with equally

distributed sizes, ranging from 100 amino acids to

approximately 5,000 amino acids, as in [6].

Table II
GENOMIC DATABASES IN OUR TESTS

Database Number of Smallest Longest
Database Seqs Query Seq Query Seq

Ensembl Dog Proteins 25,160 100 4,996

Ensembl Rat Proteins 32,971 100 4,992

RefSeq Human Proteins 34,705 100 4,981

RefSeq Mouse Proteins 29,437 100 5,000

UniProtDB/SwissProt 537,505 100 4,998

A. Execution Times and GCUPs

1) SSE Execution: First, we measured the time

needed for the multicores to compare these 40 amino

acid sequences to each database. Our modified Farrar

implementation (Section IV-C) was used in up to 4

cores in each Intel Core i7. The wallclock execution

times and GCUPs (Billions of Cells Updated per

Second) are shown in Table III. In this table, we can

see that speedups close to linear are obtained for all

databases.

2) GPU Execution: We also measured the execu-

tion times/GCUPs for 1, 2 and 4 GPUs (Table IV).

Note that the results obtained for 4 GPUs were col-

lected using both hosts. As in the SSE execution, the

GPU execution presents speedups close to linear for
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Table III
RESULTS FOR THE SSE CORES

Database 1 SSE 2 SSEs 4 SSEs 8 SSEs
Time(s) Time(s) Time(s) Time(s)
GCUPs GCUPs GCUPs GCUPs

Ensembl Dog 553.03 283.27 157.13 76.74
2.68 5.23 9.43 19.31

Ensembl Rat 629.08 337.27 181.31 88.89
2.68 5.17 9.61 19.60

RefSeq Human 673.55 353.79 197.81 96.02
2.92 5.56 9.95 20.49

RefSeq Mouse 572.47 305.92 169.54 82.01
2.80 5.24 9.46 19.55

UniProtDB/SwissProt 7,190.60 3,615.38 2,020.68 1,027.28
2.80 5.38 9.63 18.94

all databases. Differently form the SSE execution, the

GPUs obtain much better GCUPs and, consequently,

better execution times, for huge databases such as the

UniProtDB/SwissProt. For this comparison, we were

able to obtain 163.93 GCUPs, using 4 GPUs, which is

approximately the double of GCUPs obtaining when

using the other databases.

Table IV
RESULTS FOR THE GPUS

Database 1 GPU 2 GPUs 4 GPUs
Time(s) Time(s) Time(s)
GCUPs GCUPs GCUPs

Ensembl Dog 72.54 39.44 23.75
20.43 37.58 62.41

Ensembl Rat 93.34 52.85 25.90
18.62 32.96 67.25

RefSeq Human 89.16 46.52 24.75
22.07 42.30 79.52

RefSeq Mouse 69.99 36.82 22.95
22.91 43.54 69.81

UniProtDB/SwissProt 439.15 222.85 118.67
44.3 87.3 163.93

3) GPU and SSE Execution: In order to measure

the benefits of using a hybrid platform, we measured

the wallclock execution time and GCUPs obtained

when comparing 40 query sequences to the five ge-

nomic databases (Table V).

Table V
RESULTS FOR THE GPUS AND SSES

Database 1 GPU 1 GPU 1 GPU 2 GPU 4 GPU
+1 SSE +2 SSE +4 SSE +4 SSE +4 SSE
Time(s) Time(s) Time(s) Time(s) Time(s)
GCUPs GCUPs GCUPs GCUPs GCUPs

Ensembl 65.02 60.87 53.82 33.47 24.93
Dog 22.79 24.35 27.53 44.28 59.43

Ensembl 84.64 79.79 68.33 47.99 28.83
Rat 20.58 21.83 25.49 36.3 60.41

RefSeq 81.096 78.67 65.47 46.87 25.16
Human 24.27 25.01 30.06 41.98 71.77

RefSeq 65.44 61.01 50.59 34.38 25.16
Mouse 24.50 26.28 31.69 46.63 63.67

UniProtDB/ 425.19 400.64 393.17 211.85 112.43
SwissProt 45.76 48.56 49.48 91.83 172.82

We can see that the combined GPU + SSE execution

(Table V) provides better times and GCUPs for 1

and 2 GPUs (Table IV). However, better results are

obtained with the 4 GPUs execution for the first
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Figure 6. GCUPs for comparing the databases with and without
the workload adjustment mechanism

four databases, when compared to the 4 GPUs + 4

SSEs execution. This happens because these databases

are relatively small (Table II) and most of the work

assigned for the SSEs is actually done by the GPUs,

using the workload adjustment mechanism. For the

UniProtDB/SwissProt, we observe that better results

are obtained by the 4 GPUs + 4 SSE platform,

indicating that this configuration is best suited for

bigger databases.

B. Impact of the Workload Adjustment Mechanism

In order to evatuate the benefits of our workload

adjustment mechanism, we compared the 40 query

sequences with and without the mechanism, for the

UniProtKD/SwissProt database (Figure 6).

In this figure, we first show that the load ad-

justment mechanism has a negligible impact when

the PEs are homogeneous (1, 2 and 4 GPUs).

Without using the workload adjustment mecha-

nism, the GCUPs rate drops a lot when we add

SSEs to the execution configuration (1GPU+4SSEs,

2GPUs+4SSEs and 4GPUs+4SSEs). Nevertheless,

when the load adjustment mechanism is activated,

much better performance is obtained. For instance,

for the 2GPUs+4SSEs platform, we obtained 48.288

GCUPs without the mechanism and 89.768 GCUPs

with the mechanism, yielding a performance gain of

85,9%. The same behavior was also obtained for the

4GPUs+4SSE case. The workload adjustment mech-

anism was able to achieve a performance gain of

207,2%, when compared to the execution without the

mechanism. Also, we can see in this figure that using

GPUs combined with SSEs gives a better performance

than the GPU-only solution, showing the appropriate-

ness of the hybrid platform.
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Figure 7. Dedicated execution with 4 cores

C. Non-dedicated Execution

In this test, we wanted to evaluate if our PSS

policy is able to adjust the PE weights if local load

is introduced. In order to do that, we compared the

Ensembl Dog database with 40 query sequences, using

4 SEEs.

First, we executed the Smith-Waterman application

in a dedicated environment (Figure 7). In this figure,

each mark corresponds to a task allocation interaction

with the master node. With this execution, we noticed

that, even without other application running in the

machine, there is a small variation in the GCUPs of

each core, probably due to some operating system’s

services. The wallclock execution time was 129.13s.

Second, we re-executed the SW application and

introduced local load at core 0, after 60 seconds of

execution time (Figure 8). The local load was caused

by the execution of the compute-intensive benchmark

superpi (www.superpi.net). As can be seen in Figure

8, after about 60 seconds, the GCUPs rate for core

0 is reduced to less than a half, since now our

SW application competes with superpi for the CPU.

The wallclock execution time was 146.86s, i.e., an

augmentation of 12.1% in the execution time. This is

a very good result since the computing power of the 4-

core system was reduced in approximately 15%, from

60s to 146.86s.

VI. CONCLUSION

In this paper, we proposed and evaluated a mas-

ter/slave architecture to execute SW applications on

hybrid platforms composed of SSE cores and GPUs.

Our architecture is flexible in such a way that multiple

task allocation policies can be incorporated to it. Also,

we propose a workload adjustment technique that is

able to cope with load balancing problems that arise

when slow nodes receive some of the last tasks.
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Figure 8. Non-dedicated execution with 4 cores, with local load
at core 0

The results obtained when comparing 40 query

sequences with 5 different genomic databases show

that our architecture and mechanism can be used

with SSE cores, GPUs and GPUs+SSEs, with very

good performance benefits. We also show that the

workload adjustment technique can reduce drastically

the execution time when GPUs and SSE cores are

used. Without this mechanism, many of the hybrid

executions would not be better than the GPU-only ex-

ecutions. Finally, we also evaluated our PSS allocation

policy and showed that it is able to adapt the number

of tasks assigned to a PE when local load occurs.

As future work, we intend to integrate FPGAs to our

architecture. Also, we want to extend our solution to

tackle situations where nodes join/leave the platform

while an SW application is executing. Finally, we want

to adapt our architecture to run other Bioinformatics

applications, such as Multiple Sequence Alignment

and DNA Assembly/Scaffolding, among others.
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