
Finding Common RNA Secondary Structures:
A Case Study on the Dynamic Parallelization of a Data-driven Recurrence

Steven T. Stewart, Eric Aubanel and Patricia A. Evans

Faculty of Computer Science
University of New Brunswick, Fredericton, New Brunswick, Canada E3B 4A3

Email: {steven.t.stewart, aubanel, pevans} @unb.ca

Abstract—This paper presents the dynamic parallelization
of a sequential algorithm for finding common RNA secondary
structures that initially does not appear to be amenable to
parallelization. A critical insight into the problem structure,
which at first appears to be inherently top-down, leads to
the development of a revised sequential algorithm that uses
both bottom-up tabulation and top-down memoization. This
novel combined approach proves well-suited for parallelization,
overcoming the inherent difficulties in parallelizing the original
top-down algorithm. The improved algorithm also eliminates
two factors from the space complexity to fit into quadratic
space, enabling the comparison of lengthy and complex RNA
structures. Experimental results demonstrate that the parallel
algorithm scales well, achieving speedup of up to 32X using 64
processors for contrived worst-case data containing structures
having up to 1600 nested arcs. This algorithm illustrates
the significant benefits that can be achieved by designing an
underlying sequential dynamic programming algorithm with
parallelizability in mind, instead of directly parallelizing an
existing sequential algorithm. Our results also show the useful-
ness of combining both bottom-up and top-down perspectives
when designing a parallel dynamic programming algorithm.

Keywords-parallel dynamic programming; parallel algo-
rithms; RNA structure comparison;

I. INTRODUCTION

Dynamic programming is an algorithm design technique

for discrete optimization problems such as scheduling, pack-

ing, and string comparison, with diverse applications in areas

ranging from graph and network algorithms, compilers and

parsers, bioinformatics and others. It is a powerful technique

for optimization problems in which the optimal solution is

composed of optimal solutions to subproblems [2]. Dynamic

programming algorithms can be high in complexity and

computational demands; therefore, implementations of these

algorithms are often impractical for sequential machines.

Parallel dynamic programming promises to tackle these

difficulties, but great care must be given to the design of

such algorithms.

Dynamic programming recurrences can be computed ei-

ther by iteration (“bottom-up” approach) or recursion (“top-

down” approach), and the principal idea is to store or

memoize optimal results in order to avoid unnecessarily

repeating the computation of subproblems. The design of

parallel dynamic programming algorithms is typically re-

garded as difficult, and this can be exacerbated when the

recurrence unfolds in an unpredictable manner due to ir-

regular dependencies. This occurs when the recursive terms

reference the input to the problem (data-driven), and, for

the bottom-up approach, can lead to a significant amount

of wasted computation. Although for some recurrences the

amount of wasted computation can be tolerable, for others,

such as RNA secondary structure comparison [1], [3], a

recursive top-down approach can be the most viable option.

Unfortunately, when this occurs, effective parallelization is

difficult to achieve due to the challenges in managing a

distributed data structure for storing intermediate results,

and the problem of determining the order in which to

assign subproblems to processors in an irregular data access

pattern. For such parallelization to be effective, how the

computations are distributed must be determined at run-time,

essentially making it a dynamic parallelization. Finding a

good dynamic parallelization is also made more difficult by

the memory needs of large dynamic programming problems.

In [8], a general approach to top-down dynamic program-

ming for a shared memory parallel computer is presented,

but their approach is not suitable for distributed memory

computers, which have the available memory needed to com-

pute particularly demanding dynamic programming formula-

tions. Additionally, recent work [7] has tackled this problem

for heterogenous computing environments by developing a

manager-worker approach in which workers are responsible

for task creation and a manager handles dynamic load-

balancing; however, although its memory usage is highly

scalable, the approach is still essentially top-down and

speedup is limited.

In this paper, we describe a parallel dynamic program-

ming algorithm for RNA secondary structure comparison,

a problem that initially does not appear to be amenable

to parallelization due to its greater suitability for the top-

down approach over the bottom-up approach. A parallel

algorithm would be highly desirable, because the Θ(n4)
space complexity is impractical for reasonable problem

sizes, but a straightforward parallel implementation is not

immediately obvious, and the existing sequential algorithms

either have significant wasted computation [1] or do not

parallelize well due to top-down organization [3], [7]. This

2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops

978-0-7695-4676-6/12 $26.00 © 2012 IEEE

DOI 10.1109/IPDPSW.2012.89

709

2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum

978-0-7695-4676-6/12 $26.00 © 2012 IEEE

DOI 10.1109/IPDPSW.2012.89

709

2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum

978-0-7695-4676-6/12 $26.00 © 2012 IEEE

DOI 10.1109/IPDPSW.2012.89

715

changes when a critical problem insight emerges, leading

to a new perspective on how the RNA structures are tra-

versed – instead of decomposing the problem strictly into

individual subproblems, two-dimensional “child” slices of

the dynamic programming table, consisting of groups of

subproblems, are treated as independent problem instances

that can be solved recursively, but are themselves computed

in a bottom-up manner. Additionally, a computation order is

determined that permits child slices to be discarded, reducing

the space complexity from Θ(n4) to Θ(n2), and leading

to a sequential algorithm with a flavour of both top-down

and bottom-up approaches. This suggests a new approach to

consider when parallelizing data-driven recurrences, and the

redesigned sequential algorithm then proves to be readily

amenable to a coarse-grained parallelization by computing

child slices in parallel.

The rest of this paper is organized as follows. In Section

II, we introduce background information and related work

pertaining to parallel dynamic programming and the problem

of finding common RNA secondary structures. In Section

III, we decompose the dynamic programming formulation

into its respective cases. In Section IV, we introduce our

new sequential algorithm that combines both the top-down

and bottom-up approaches, and we then improve upon this

sequential algorithm by reducing its overhead, exploiting

additional insights into the computation order. In Section

V, we parallelize the sequential algorithm based on the

insights acquired in developing the sequential algorithms,

and the experimental results are presented in Section VI.

Conclusions about the completed work and its implications

for similar problems are discussed in Section VII.

II. BACKGROUND AND RELATED WORK

For computer scientists, dynamic programming refers to

an algorithm-design technique for solving discrete optimiza-

tion problems with an underlying problem structure that

satisfies Bellman’s principle of optimality [2]. The solution

space is implicitly explored by breaking the problem down

into a series of subproblems and then building up optimal

solutions to larger subproblems based on optimal solutions

to smaller subproblems [6], which suggests a bottom-up

approach to formulating a recurrence equation. Dynamic

programming recurrences are typically implemented by it-

eratively tabulating optimal solutions to subproblems begin-

ning with the base case(s), and building upon previously

computed solutions towards the optimal result.

The effective parallelization of complex dynamic pro-

gramming formulations is difficult to achieve, and so the

use of a representative model or classification scheme would

be very helpful, although (to date) there still does not exist

a parallelization framework for the domain of possible dy-

namic programming recurrences. Grama et al. [5] proposed

a classification scheme in which a dynamic programming

recurrence can be broadly classified based on the number

of recursive terms for alternate solutions and the number

of levels separating dependencies among subproblems. The

recurrence equation can be classified as serial monadic, non-

serial monadic, serial polyadic, and non-serial polyadic. The

non-serial polyadic class is considered the most difficult to

parallelize, and this is further complicated when there is a

data-driven characteristic, with the recurrence cases based

in part on the input values themselves, which is exactly the

case for the problem of finding common RNA secondary

structures. With subproblem dependencies based on the in-

put, an appropriate distribution of the computation between

different processors cannot effectively be determined until

run-time, and this issue must be dealt with when designing

a parallel algorithm.

The serial and non-serial characteristics hint at the lifespan

of tabulated or memoized results when computing a recur-

rence. The serial characteristic indicates that subproblems

at one level in the dependency graph are dependent on

subproblems that are at most one level away, suggesting that

a dimension (or dimensions) of the dynamic programming

table can be discarded. The non-serial characteristic implies

that dependencies between subproblems cross many levels,

requiring that a greater portion of the table remains active, or

suggests that, when combined with the data-driven charac-

teristic, the lifespan of tabulated results is either difficult to

predict or unpredictable. For this reason, recurrences having

the non-serial characteristic are considered more “difficult”

than those having the serial characteristic. This increased

difficulty emerges both in terms of a greater memory burden

and an increased likelihood of interprocessor communication

across table boundaries when dependencies exist on multiple

processors over non-contiguous portions of the distributed

table.

The conventional approach to parallelizing dynamic pro-

gramming recurrences is to use the bottom-up strategy

[5]. Parallelization is achieved by distributing the dynamic

programming table among processors, each of which is

responsible for computing the subproblems belonging to its

portion of the table. The success of this approach greatly

depends upon how well tasks are mapped to processors,

such that interprocessor communication is minimized and

processors are kept as busy as possible. This approach is in

contrast to adopting a top-down strategy that implements the

recurrence directly and uses memoization to avoid unneces-

sarily recomputing results. In the presence of the data-driven

characteristic, the difference between the two approaches is

that the bottom-up approach ignores features of the problem

and input structure and simply fills the table with results,

which leads to overtabulation; namely, subproblems are

computed that in no way contribute to the final result. The

top-down approach, although subject to additional overhead

due to repeated memoization lookups and recursion, has the

advantage of performing an exact tabulation because only

those subproblems that contribute to the final solution are

710710716

visited in the depth-first traversal of the dependency graph.

The top-down strategy and memoization are not typically

adopted for parallel dynamic programs because of the dif-

ficulties in managing a shared memoization table and in

determining how to assign the computation of the recursive

terms to processors when adopting a depth-first traversal.

That said, a recent paper [8] describes a general approach to

parallel dynamic programming that can be used for a shared

memory parallel computer. A shared data structure is used

for memoizing the results of computed subproblems, and

each processor calls the dynamic programming recurrence

using identical parameters for the targeted outcome. The ob-

jective function, which is a maximization or minimization of

the available choices, is applied at each stage of the process

in the top-down manner. Parallelism arises by randomizing

the order in which subproblems are computed, essentially

sending each processor down a different path in the decision

structure. The more divergence among the parallel threads,

the greater the amount of parallelism, but this approach does

not appear to scale well, because as the number of processors

increases, so, too, does the likelihood of multiple processors

following identical paths.

Other recent work has explored the difficulties inherent

in parallelizing dynamic programming recurrences of the

non-serial polyadic classification, including [3] and [7] who

investigate the problem of finding common RNA secondary

structures that permit pseudoknots, requiring both four-

and eight-dimensional dynamic programming tables. The

extremely large tables and the mutual dependencies be-

tween independent segments make the use of the bottom-

up approach impractical, and so a top-down approach is

adopted that selectively allocates portions of the table on

demand. This approach is effective in reducing the amount

of memory needed to compute the data-driven recurrence,

although there is still a substantial accumulation of overhead

due to dynamic memory allocation and memoization, and

the approach is quite complex. The research discussed in

this paper resolves these shortcomings for a more restricted

model that requires only the portion of the problem structure

associated with the four-dimensional table.

Ultimately, both the bottom-up and top-down approaches

to dynamic programming have significant drawbacks for

producing an efficient parallel algorithm. For data-driven

recurrences, where the recurrence indices and subproblem

dependencies are affected by the input, the bottom-up se-

quential algorithm itself inefficiently requires unnecessary

computations and space. A top-down strategy, on the other

hand, requires significant overhead both in interprocessor

communication and in distributing the subproblems. In our

work, the complexity and additional overhead needed to par-

allelize the top-down algorithm is eliminated by redesigning

the underlying algorithm to use a combined bottom-up and

top-down approach; the use of a top-down perspective in

designing the algorithm eliminates the wasted space and

computations that would be used by a strictly bottom-

up algorithm, while still allowing for a straightforward

parallelization.

III. FINDING COMMON RNA SECONDARY STRUCTURES

A. Problem Formulation

A single-stranded RNA molecule is a sequence of bases

over the four-letter alphabet {A,C,G,U} [6], [7]. The RNA

secondary structures can be viewed as a set of ordered

sequence positions, using arcs between positions to represent

bases that are bonded. A bond structure X is said to be

a substructure of bond structure Y if the positions of X
can be mapped onto positions of Y while preserving both

the sequence order and the bonds. The basic problem is

that of finding the Maximum Common Ordered Substructure

(MCOS) between RNA sequences [3].

The MCOS problem can be formulated as follows, where

the objective is to maximize the length of the common

substructure [3]:

Input: structures S1 and S2.

where S1 is the arc structure for a sequence of n positions

and S2 is the arc structure for a sequence of m positions,

so S1 ⊆ {1, . . . , n} × {1, . . . , n} and

S2 ⊆ {1, . . . ,m} × {1, . . . ,m}.

Output: substructure Sc, maximizing |Sc|
where Sc ⊆ {1, . . . , nc} × {1, . . . , nc} for some positive

integer nc, such that: ∃ one-to-one functions

f1 : {1, . . . , nc} → {1, . . . , n} and

f2 : {1, . . . , nc} → {1, . . . ,m} where ∀i, j ∈ {1, . . . , nc},

i < j if and only if f1(i) < f1(j) and f2(i) < f2(j) and

if (i, j) ∈ Sc, then (f1(i), f1(j)) ∈ S1

and (f2(i), f2(j)) ∈ S2.

Although MCOS is NP-complete, polynomial time algo-

rithms exist for solving this problem for restricted models

that do not permit arcs to share endpoints or cross [1], [3].

The problem of finding common RNA secondary struc-

tures is concerned with the structures formed between bases

in RNA chains. Figure 1 presents an example structure,

illustrating how arcs link the bases of the underlying RNA

sequences, which are, respectively, of lengths n and m. The

model used here is restricted to non-pseudoknot secondary

structures, which allow each base to be linked at most once,

and permits pairs of arcs to be either sequential ((1, 8) and

(9, 18)) or nested ((0, 19) and (9, 18)).

B. Dynamic Programming Formulation

The dynamic programming formulation presented by

Bafna et al [1], which computes similarity between two RNA

secondary structures by aligning the sequences with respect

to their common substructures, forms the basis on which

our sequential and parallel algorithms for finding common

711711717

Figure 1. Example RNA secondary structure with positions labelled.

RNA secondary structures are devised. The problem is

decomposed into the comparison of different intervals (or

substructures) of the two sequences under consideration.

We modify the Bafna formulation to reflect our goal of

finding common RNA secondary structures (i.e., by counting

matched arcs) as opposed to aligning RNA sequences, the

latter of which takes into consideration both the bond

structure and applies weight functions when comparing

symbols in the alignment. The two modifications are: (1)

the weight functions used by Bafna are removed; (2) Bafna

also included an additional subproblem used to align interval

endpoints without matching arcs, which is not required when

weight functions are discarded.

The dynamic programming recurrence for finding com-

mon RNA secondary structures, which computes the exact

solution to the MCOS problem for the non-pseudoknot

model, is illustrated in Figure 2. The formulation is broken

down into static dependencies and dynamic dependencies,

the latter of which characterizes the recurrence as data-

driven because these cases are only inspected when matched

arcs are encountered while scanning the input, and they lead

to irregularity in the data-dependency graph.

Common RNA secondary structures are identified in terms

of the bond structure by taking into consideration both

the order and relative position of arcs. For example, if

one structure has three nested arcs followed by two nested

arcs in an interval, and the other structure has two nested

arcs followed by three nested arcs in an interval, then the

maximum number of matched arcs, when comparing the

two intervals and taking into consideration both order and

structure, would be four. If the ordering of the two different-

sized groups of nested arcs were identical, then the optimal

solution would be five.

When devising the dynamic programming formulation of

Figure 2, we define F (i1, j1, i2, j2) as the maximum num-

ber of arcs of the common substructures when comparing

interval (i1, j1) of the first structure with interval (i2, j2) of

the second structure. There are two possibilities to consider,

which are then further decomposed into specific cases.

The first possibility is that (i1, j1) /∈ S1 or (i2, j2) /∈ S2;

in other words, either position j1 does not correspond

with an endpoint of an arc in S1, or position j2 does not

correspond with an ending point of an arc in S2. When this

occurs, our count does not increase, and so it is necessary

to obtain the maximum result over smaller instances of the

F [i1, j1, i2, j2] = max

{
F [i1, j1 − 1, i2, j2],

F [i1, j1, i2, j2 − 1]

if ∃k1, k2 s.t. i1 ≤ k1 < j1, i2 ≤ k2 < j2 and (k1, j1) ∈
S1, (k2, j2) ∈ S2 then

F [i1, j1, i2, j2] = max

⎧⎪⎨
⎪⎩
F [i1, j1, i2, j2],

1 + F [i1, k1 − 1, i2, k2 − 1]+

F [k1 + 1, j1 − 1, k2 + 1, j2 − 1]
end if

Figure 2. Dynamic programming formulation for finding common RNA
secondary structures.

problem by recursively comparing intervals (i1, j1−1) with

(i2, j2) and (i1, j1) with (i2, j2 − 1). This is achieved by

computing the maximum of both F (i1, j1 − 1, i2, j2) and

F (i1, j1, i2, j2 − 1). These two subproblems are referred to

as static dependencies s1 and s2, which must always be

inspected in order to account for arcs matched over the

incrementally smaller intervals, regardless of whether or not

an arc has been matched.

The second possibility is that (i1, j1) ∈ S1 and (i2, j2) ∈
S2). When this occurs, we have to consider the substructures

both before and underneath the matched arcs because, as

noted, our model permits only non-pseudoknot substruc-

tures, and so it is necessary to account for arcs that appear

either in sequence or that are nested. Matched arcs can begin

at position i1 or later and i2 or later, and before j1 and

j2, and so variables k1 ≥ i1 and k2 ≥ i2 are introduced

as the beginning endpoints of the matched arcs (k1, j1) and

(k2, j2). Since these cases arise depending on the input to the

problem, they are called dynamic dependencies and labelled

with a d. Thus, we compare intervals (i1, k1−1, i2, k2−1) to

account for arcs that occur in sequence, and we compare in-

tervals (k1+1, j1−1) with (k2+1, j2−1) to account for arcs

that may be nested, and so the dynamic dependencies d1 and

d2 are obtained by computing both F (i1, k1 − 1, i2, k2 − 1)
and F (k1 + 1, j1 − 1, k2 + 1, j2 − 1).

Finally, F (i1, j1, i2, j2) is computed by first obtaining the

maximum of s1 and s2, which accounts for any matched

arcs that were encountered over the incrementally smaller

intervals, and then determining the maximum of that result

with 1 + d1 + d2 whenever a matched arc is encountered.

IV. SEQUENTIAL ALGORITHMS

Before delving into the discussion of the sequential algo-

rithms, consider the dependency graph illustrated in Figure

3. A top-down traversal visits the subproblems (or nodes)

in a depth-first order, which can be thought as unfolding

the problem structure from top to bottom. As the unfolded

structure is folded back, the results of subproblems are

tabulated, leading to an exact tabulation. The difficulty of

this approach is that there is no apparent way of knowing

712712718

Figure 3. Dependency graph for the sequence (upper-left) aligned with
itself. Top-down (or depth-first) traversal begins at node (0, 4, 0, 4), and
results of subproblems are memoized to avoid following identical paths
multiple times. Directed edges indicate the unfolded problem structure, and
the dashed edge indicates when a matched arc is found.

how much of the memoization table to allocate in advance,

and so the obvious choice is to allocate memory for all n2m2

possible subproblems. For most computers, it would not take

long to exhaust available memory resources for practical

problem sizes.

Next, consider solving the problem using the bottom-up

strategy. To do so, the computation order must be defined

such that we count matched arcs specifically in the manner

in which the substructures are encountered, preserving both

the order and structure. This computation order is referred to

as the order of increasing interval widths. First, the structure

of the smallest interval of the first sequence is compared with

the structure of the smallest interval of the second sequence,

anchored at positions i1 of the first sequence and i2 of the

second sequence. Using these anchored beginning positions,

the interval width is increased incrementally across the

second sequence before then aligning the structure of the

second smallest interval of the first sequence with that of the

smallest interval of the second sequence, and so on; thus,

when computing (i1, n, i2,m), subproblems are computed in

the following order: (i1, i1+1, i2, i2+1), (i1, i1+1, i2, i2+
2), . . . , (i1, i1 + 1, i2, j2), (i1, i1 + 2, i2, i2 + 1), (i1, i1 +
2, i2, i2 + 2), . . . , (i1, i1 + 2, i2,m), . . . , (i1, n, i2,m −
1), (i1, n, i2,m). The beginning positions (i1 and i2) only

change when matched arcs are encountered, triggering the

inspection of cases d1 and d2.

Unfortunately, the amount of overtabulation quickly ac-

cumulates when traversing a four-dimensional table, which

can be extremely large for practical problem instances (i.e.,

sequences of lengths in the hundreds or low thousands),

when no consideration is given to the actual structure of

a problem instance. By slightly changing one’s perspective

on the problem structure, it turns out that it is possible to

completely narrow the gap between overtabulation and exact

tabulation, resulting in a much faster bottom-up algorithm

and reducing the space complexity to Θ(nm). This is

achieved by letting the input drive the computation, and we

refer to this algorithm as SRNA1.

A. SRNA1
SRNA1 incorporates aspects of both the bottom-up and

top-down strategies (i.e., both tabulation and memoiza-

tion). A critical insight emerges when viewing the four-

dimensional table in terms of two-dimensional slices, which

can be expressed as (i1, i2) pairs (the indices for the begin-

ning of the two intervals being aligned). In other words, for

each of the possible (i1, i2) pairs, there is a corresponding

two-dimensional slice of the table. Since the problem is

solved by computing F (0, n − 1, 0,m − 1), the (0, 0) pair

is said to correspond with the parent slice, referred to as

slice0,0. All other (i1, i2) pairs are said to correspond with

child slices.

Algorithm 1 SRNA1: Table M , Structures S1 and S2,

Endpoints i1 and j1 of the first structure, Endpoints i2 and

j2 of the second structure

Allocate memory for slicei1,i2
for each arc (k1, x) ∈ S1 with i1 ≤ k1 < x ≤ j1 (by

increasing order of x) do
for each arc (k2, y) ∈ S2 with i2 ≤ k2 < y ≤ j2 (by

increasing order of y) do
max←MAX(slicei1,i2 [x−1][y], slicei1,i2 [x][y−1])
d1 ← slicei1,i2 [k1 − 1][k2 − 1]
d2 ←Mk1+1,k2+1

if (d2 is KEY NOT FOUND) then
{Spawn child slice}
d2 ← SRNA1(M,S1, S2, k1+1, x−1, k2+1, y−1)

end if
slicei1,i2 [x][y]← MAX(max, 1 + d1 + d2)

end for
end for
Mi1,i2 ← slicei1,i2 [x][y] {x and y refer to the last arc

end-points}
Deallocate memory for slicei1,i2
Return Mi1,i2

If only subproblems s1, s2, and d1 are considered, then

there would be a single two-dimensional slice to be con-

cerned with, slice0,0; however, whenever a matched arc

is encountered, subproblem d2 requires the tabulation of

slicek1+1,k2+1. The top-down approach naturally uncovers

the subproblems of child slices (for example, the subtree

rooted at (1, 3, 1, 3) in Figure 3), but the overtabulated

bottom-up implementation naively accounts for all possible

matched arcs regardless of the actual problem structure. This

shortcoming is resolved as follows: (1) tabulate slice0,0 in a

bottom-up manner based on the static dependencies and d1;

(2) tabulate the two-dimensional slicek1+1,k2+1 only when

a matched arc is encountered (see Algorithm 1).

713713719

� � � � � � �	
 �

Figure 4. Partial dependency graph when self-comparing the depicted RNA
secondary structure. Dashed lines indicate recursive calls to SRNA1 and
the spawning of child slices. Multiple levels of recursive calls are possible,
as indicated by following dashed paths of length greater than one.

Whenever a child slice is tabulated, it is said to have been

spawned, meaning that memory is dynamically allocated

for the two-dimensional slice of the table. By calling the

function recursively, each child slice is tabulated in the

identical manner of the parent slice. The result is that only

those subproblems that appear in the dependency graph

are visited in the bottom-up traversal, leading to an exact

tabulation.

So far, this revised bottom-up approach has a glaring flaw

– it is inefficient. The same child slice can potentially be

spawned multiple times, amounting to a significant amount

of redundancy in the computation. This occurs when a

subproblem within a child slice corresponds with a matched

arc and leads to an additional level of recursion. This is

illustrated in Figure 4 in which the dashed lines indicate

recursive calls to SRNA1 and the spawning of child slices by

multiple levels of recursion. It would be wasteful to spawn

child slices again and again for the inner arcs, which would

have already been encountered earlier in the computation

order. This is not dynamic programming at all, and so it is

instead necessary to memoize the results of child slices so

that they need only be computed one time.

It turns out that only the last tabulated subproblem of

each two-dimensional child slice needs to be memoized,

and the result of each child slice can thus be stored in

a two-dimensional memoization table M . The reason for

this is that any time we match nested arcs, the number of

matched arcs underneath an arc between the two sequences,

corresponding with the (i1, i2) pairs, never changes – we

only need to know the final result and (unless we are

interested in backtracing the subproblem that spawned the

child slice) we do not need the details of how that last result

was obtained.

Figure 5. Example nested structure S and matrix M , where each position
(i1, i2) in M contains the result obtained by tabulating slicei1,i2 .

The rows and columns of memoization table M (Figure

5) correspond with the values of i1 and i2 for the possible

(i1, i2) pairs. This is illustrated for the self-comparison of

a structure of the form depicted in Figure 4, which consists

of a large group of nested arcs. In Figure 5, given i′1 > i1,

M(i1, i2) is dependent on M(i′1, i
′
2) when, as depicted in

Figure 4 by dashed lines, a subproblem in slicei1,i2 leads to

the spawning of slicei′1,i′2 . The bottom-up tabulation implies

that M(0, 0) is the last position memoized, ensuring that

child slices need not be spawned again if they have already

been memoized at an earlier point in the computation order.

SRNA1 solves the problem in Θ(n2m2) time, and does

so having most of the advantages of using the bottom-up

strategy (i.e., no overhead due to a lengthy chain of recursive

calls, and a minimum of redundant visits to previously

computed subproblems). Indeed, memoization generally is

not associated with the bottom-up strategy and, in this

regard, SRNA1 possesses an intriguing flavour of both

the bottom-up and top-down strategies and combines both

approaches to gain advantages of each. Additionally, by

memoizing the result of the last computed subproblem in a

child slice, it is guaranteed that the depth of recursive calls

never exceeds one, and it is a certainty that if a particular

row i1 in M is dependent on values from another row i′1,

then the elements in row i′1 would have been updated at an

earlier point in the computation order. This naturally occurs

because the most deeply nested arcs are encountered first.

For example, if subproblem (1,8,1,8) (which corresponds

with position M(1, 1) in the memoization table) depends

on subproblem (2,7,2,7) (which corresponds with position

M(2, 2) in the memoization table), then endpoints 7 of the

first structure and 7 of the second structure are encountered

before endpoints 8 and 8, implying that M(2, 2) is updated

before M(1, 1). When implementing SRNA1, all that is

required is to look up the (i1, i2) pair in the memoization

table before deciding whether or not to spawn a child slice.

Given that the depth of recursive calls never exceeds one

and that only the result of the last subproblem of a slice

needs to be memoized, the original space complexity of

714714720

Figure 6. Dependency graph for the memoization table M when self-comparing the RNA secondary structure depicted in Figure 4 using algorithm
SRNA2.

Θ(n2m2) can be reduced to Θ(nm).

B. SRNA2

The second sequential algorithm, which forms the basis

for the parallel algorithm discussed in Section V, improves

upon SRNA1 by eliminating overhead due to memoization

lookups and removing the need for the recursive call to

the function. As noted in Section IV-A, SRNA1 needs

to retrieve M(i1, i2) before deciding whether or not to

spawn the child slice (slicei1,i2), and both the conditional

expression and the lookup occur within the inner loop of the

computation whenever a matched arc is found. This implies

that the amount of overhead accumulated by executing

these statements is Θ(n2m2). The lookup expression returns

KEY NOT FOUND whenever a value has not been previ-

ously memoized; SRNA2, instead, ensures that the lookup

function is guaranteed to always return a memoized value,

thereby eliminating the need for the conditional expression

and the recursive spawning of a child slice. An auxiliary

routine, called TabulateSlice() (see Algorithm 2), is called

to perform the bottom-up tabulation of a slice over the

intervals (i1 + 1, j1 − 1) and (i2 + 1, j2 − 1).
SRNA2 (Algorithm 3) is divided into two stages: (1)

for each pair of arcs, tabulate the child slice spawned

by matching the pair, and memoize the result of the last

subproblem in memoization table M ; (2) tabulate the parent

slice (slice0,0), looking up values in M only when needed.

The key to this algorithm is the order of memoization.

In stage one, the tabulation of child slices is completed

in an order that ensures that if some child slice has a

dynamic dependency requiring the tabulation of another

child slice, that result is already available in M . The bottom-

up tabulation of M could instead occur on a row-by-row

basis beginning with the higher numbered rows (indexed

by i1) and working towards the lowest numbered row. This

order of memoization exactly corresponds with traversing

the two structures in a right-to-left order as opposed to a

left-to-right order. Both orderings are acceptable and reach

Algorithm 2 TabulateSlice: Table M , Structures S1 and S2,

Endpoints i1 and j1 of the first structure, Endpoints i2 and

j2 of the second structure

Allocate memory for slicei1,i2
for each arc (k1, x) ∈ S1 with i1 ≤ k1 < x ≤ j1 (by

increasing order of x) do
for each arc (k2, y) ∈ S2 with i2 ≤ k2 < y ≤ j2 (by

increasing order of y) do
max←MAX(slicei1,i2 [x−1][y], slicei1,i2 [x][y−1])
d1 ← slicei1,i2 [k1 − 1][k2 − 1]
d2 ←Mk1+1,k2+1

slicei1,i2 [x][y]← MAX(max, 1 + d1 + d2)

end for
end for
Mi1,i2 ← slicei1,i2 [x][y] {x and y refer to the last arc

end-points}
Deallocate memory for slicei1,i2

the same outcome.

In order to exactly tabulate M , a preprocessing step is

performed that determines all of the possible rows and

columns that correspond with matched arcs. This is achieved

by determining all of the ending points of arcs in the two

structures.

C. Experimental Results for the Sequential Algorithms

SRNA1 and SRNA2 were implemented in the C program-

ming language using the Portland Group 64-bit C compiler

(version 8.0-6), and tested on a Dual-Core AMD Opteron

2.8 GHz computer. The objective was to determine whether

or not SRNA2 would outperform SRNA1 as expected, and

also to gather sequential results to be used as a comparison

baseline for the parallel algorithm (see Section V). Contrived

worst-case data, consisting of the maximum number of pos-

sible nested arcs for a given sequence length (for example,

the structure depicted in Figure 5), was used to fully exhaust

the two algorithms. These contrived structures ensured the

715715721

Algorithm 3 SRNA2: Structures S1 and S2, Length n of

the first sequence, Length m of the second sequence

Allocate memory for n×m table M
{Stage One - Tabulate child slices}
for each arc (i1, j1) ∈ S1 (by increasing order of j1) do

for each arc (i2, j2) ∈ S2 (by increasing order of j2)

do
TabulateSlice(M,S1, S2, i1+1, j1−1, i2+1, j2−1)

end for
end for

{Stage Two - Tabulate parent slice}
TabulateSlice(M,S1, S2, 0, n− 1, 0,m− 1)
Return M0,0

100 200 400 800 1600
SRNA1 0.015 0.238 4.008 76.371 1434.856
SRNA2 0.008 0.128 2.323 37.799 660.696

Table I
EXECUTION TIMES (IN SECONDS) OF SRNA1 AND SRNA2 FOR

SEQUENCES OF LENGTHS 100 TO 1600 USING CONTRIVED WORST-CASE

DATA.

greatest number of spawned child slices by being as dense

as possible in terms of matching arcs. Sequences of length

up to 1600 were tested, which required about 10 MB of

allocated memory, and Table I shows their execution times.

When compared to the worst-case Θ(n2m2) bound on the

space complexity for the original formulation, this amounts

to a substantial savings, enabling lengthy non-pseudoknot

structures to be compared on a sequential machine.

The contrived worst-case data is representative of the kind

of substructures that appear in RNA secondary structures on

a much smaller scale (i.e., groups of nested arcs), and so

it is expected that the execution times for real data should

be significantly faster than for the contrived worst-case data.

Table II contains the sequential execution times when self-

comparing two sample RNA secondary structures. The first

RNA secondary structure tested was an example of 23S

ribosomal RNA having 4216 bases and 721 arcs (Fungus or

Suillus sinuspaulianus; Accession #L47585), and the second

RNA secondary structure tested was an example of 23S

ribosomal RNA having 4381 bases and 1126 arcs (Malaria

Parasite or Plasmodium falciparum; Accession #U48228).

SRNA2 is observed to require roughly half the amount of

time to compare RNA secondary structures than SRNA1. As

noted, these time savings are a consequence of eliminating

overhead associated with memoization table lookups and

removing the use of recursion when adopting the two-stage

algorithm.

An additional objective of this experiment was to identify

the amount of time the SRNA2 program spends during each

stage of its execution. These stages include preprocessing,

Fungus (721) Malaria Parasite (1126)
SRNA1 49.149 86.887
SRNA2 25.472 39.028

Table II
EXECUTION TIMES (IN SECONDS) OF SRNA1 AND SRNA2 FOR

SEQUENCES OF LENGTHS 4216 (721 ARCS) AND 4381 (1126 ARCS).

100 200 400 800
Preprocessing 0.1814 0.0488 0.0052 0.0002
Stage One 99.6131 99.9055 99.9844 99.9963
Stage Two 0.1693 0.0434 0.0102 0.0034

Table III
PERCENTAGE BREAK-DOWN OF EXECUTION FOR SRNA2 USING

CONTRIVED WORST-CASE DATA.

stage one (tabulation of child slices), and stage two (tabula-

tion of the parent slice). Results in Table III show that the

sequential program spends over 99% of its execution time in

stage one, identifying this stage as the greatest opportunity

for parallelism.

V. PARALLEL ALGORITHM

A. Design

The parallel algorithm for finding common RNA sec-

ondary structures (PRNA) is based on SRNA2, and is

likewise divided into three parts: preprocessing, stage one,

and stage two. Stage one accounts for the most significant

percentage of the program that can be executed in parallel,

and so emphasis is placed on parallelizing this stage. By

using SRNA2 as the basis of the parallel algorithm, we are

both using the most efficient sequential algorithm and also

choosing the underlying design that is easier to parallelize.

In parallelizing stage one, a child slice is characterized

as a primitive task, and the workload is shared among

processors by distributing the columns of the parent slice

that correspond with matched arcs, which are determined

in the preprocessing stage. The relative amount of work

between the columns is identical from row to row (see

Figure 7), and so a static load balancing scheme can be

applied by determining the workload distribution during a

preprocessing step, for which we use a greedy approximation

algorithm [4]. Whenever a matched arc is encountered, a

child slice is spawned and sequentially tabulated by calling

TabulateSlice(), and the result of tabulating the last sub-

problem of the child slice is stored in the memoization table.

Given that child slices themselves are primitive tasks, par-

allelism arises when multiple processors are simultaneously

tabulating child slices.

During stage two of the algorithm, primitive tasks cor-

respond with each element of the parent slice, which is

tabulated by calling TabulateSlice(). Since all of the

possible dynamic dependencies that require the spawning

of child slices (case d2) have already been memoized in

716716722

Figure 7. The non-empty entries in the table (right) indicates the relative
amount of work required to tabulate the spawned child slices.

stage one, tabulating the parent slice in stage two is very

straightforward. Although stage two performs operations that

could be parallelized, the small percentage of execution

accounted for by stage two and the amount of time required

for parallel overhead is so great that it is not worth the

additional programming effort.

Figure 7 depicts the view of the parent slice when

aligning the two example structures. The non-empty table

entries contain the number of elements (or subproblems)

that are tabulated in the corresponding spawned child slice,

which appear in the positions whose indices correspond with

matched arcs between the two structures. Since child slices

are treated as primitive tasks, it is desirable to balance the

workload as much as possible, and the non-empty entries

in the table are indicative of the relative amount of work

between the columns.

B. Implementation

In the implementation of PRNA described here, we use

the message-passing interface (MPI) for parallel program-

ming, though the decisions made in the parallel design would

also be appropriate for other parallel platforms. Given the

substantial reduction in the amount of allocated memory

required to compute this problem, the memoization table M
can easily fit in memory for practical problem sizes; thus,

the simplest approach to implementing this algorithm is to

allocate the memoization table on each processor and then

to synchronize the results after each row of the traversal in

stage one is completed. This ensures that each processor has

up-to-date values when looking up dependent subproblems.

The synchronized memoization table is initialized to

0, and the order in which rows are memoized is data-

dependent, but one can be certain that if a particular row

is dependent on values from another row, then that other

row would have been updated at an earlier time. This falls

into place naturally due to the computation order, just as is

the case with the sequential algorithm (Section IV-B). The

completion of a row in M occurs when moving to the next

endpoint in the traversal of the two structures, at which point

the table M can be synchronized by performing a reduction

operation over the completed row. When programming using

MPI, this can be accomplished by calling MPI Allreduce

with the beginning address of the row and number of

columns, and using the MPI MAX operation to ensure that

all updated values end up in the receive buffer for Algorithm

4.

Algorithm 4 PRNA: Table M , Structures S1 and S2, Length

n of the first sequence, Length m of the second sequence

{Preprocessing}
Allocate memory for n×m table M
Determine column ownership by calling load balance

{Stage One – Parallel}
for each arc (i1, j1) in S1 (by increasing order of j1) do

{Child slices are spawned in parallel}
for each arc (i2, j2) in S2 owned by this processor (by

increasing order of j2) do
TabulateSlice(M,S1, S2, i1+1, j1−1, i2+1, j2−1)

end for
Synchronize row i1 in M across all processors

end for

{Stage Two – Sequential}
TabulateSlice(M,S1, S2, 0, n− 1, 0,m− 1)
Return M0,0

VI. EXPERIMENTAL RESULTS

Figure 8 illustrates the speedup achieved by PRNA using

the contrived worst-case data on a distributed memory

parallel computer. PRNA was implemented in C and Open-

MPI using the Portland Group 64-bit C compiler (version

8.0-6). The testbed for these experiments was the hybrid

parallel cluster Fundy at the University of New Brunswick’s

ACENet-sponsored high-performance computing facilities.

Speedup of up to 32X was achieved for the sequence

of length 3200 containing 1600 nested arcs, and speedup

of up to 22X was achieved for the sequence of length

1600 containing 800 nested arcs. The trend of the results

illustrated in Figure 8 suggests scalability, as more speedup

is attained when increasing the problem size and the number

of processors.

VII. CONCLUSIONS

This research demonstrates that, given a careful inspec-

tion of how the top-down problem structure unfolds and

the interactions of irregular dependencies, a data-driven

recurrence for RNA secondary structure comparison can

be computed without wasted memory, and can be well-

suited for parallelization. This approach leads to problem

insights that enable us to eliminate the wasted space and

unnecessary computation that result from the conventional

717717723

Figure 8. Speedup for PRNA using contrived worst-case data. Up to 32X
speedup was achieved using 64 processors and 1600 nested arcs (a sequence
containing 3200 bases), and up to 22X speedup was achieved using 64
processors and 800 nested arcs (a sequence containing 1600 bases).

iterative bottom-up strategy for dynamic parallelization. The

resulting sequential algorithm is easily parallelized for a

distributed memory parallel computer, whereas the original

formulation was impractical and difficult to parallelize.

In this case study, the top-down algorithm for finding

common RNA secondary structures makes use of one crucial

piece of information that controls the manner in which it

branches off in its traversal of the dependency graph, and

it does so only when an actual matched arc is encountered,

rather than trying to account for all possible matched arcs.

This observation raised the question as to whether or not the

bottom-up algorithm could access this same information and

exploit it in order to reduce the amount of overtabulation.

The answer is yes, and indeed all of the overtabulation of

the bottom-up algorithm was eliminated. With this insight, it

turned out the bottom-up algorithm would have a flavour of

both the bottom-up and top-down strategies by employing

both tabulation and memoization – whenever a matched

arc is encountered, recursively spawn off an independent

dynamic programming problem to be solved for aligning

the intervals beneath the matched arcs, and memoize the

optimal value of the tabulated results. Thus, as we iterate

over the intervals in a bottom-up manner, we encounter

the root nodes of groups of subproblems (subtrees in the

dependency graph) that would ordinarily be encountered in

the top-down unfolding of the problem, and we can then,

by recursion, skip down from the root to the child nodes

of the subtree in order to tabulate it in the same bottom-

up manner. The end result was that both the bottom-up and

top-down algorithms were performing an exact tabulation,

with the former accomplishing this without the additional

constant amount of overhead. Perhaps most importantly, the

child slices could then be tabulated in parallel.

The results suggest that there are problems in which

nested structures (or nested sets of subproblems) that emerge

in the unfolded dynamic programming problem instance

could possess an inherent characteristic in which both tab-

ulation and memoization can co-exist, and better solutions

can be devised by more completely taking into consider-

ation the data-driven characteristic. Taken as a whole, the

outcome of this research suggests that one ought to explore a

dynamic programming formulation with care when devising

sequential or parallel algorithms, taking into consideration

how the problem structure unfolds in a top-down manner as

an exact tabulation of the subproblems in the representative

dependency graph, rather than using the generic approach of

allocating a table, dividing it up among the processors, and

tabulating results using the bottom-up strategy.
Finally, it is the exploration of the problem structure from

the point of view of merging both the top-down and bottom-

up approaches that led to the development of the improved

sequential algorithms that were initially not well-suited to

parallelism, but then later were parallelized to good effect.

This case study illustrates the benefits of this approach to

parallel dynamic programming design, where the parallel

design starts with the redesign of the underlying sequential

algorithm and makes design choices that will ultimately

lead to a better parallelization. Our results suggest that

similar problems, where a dynamic programming solution

is complicated by recurrence cases that depend on the data,

should also be considered using our combined approach to

potentially produce more efficient parallel solutions.

REFERENCES

[1] V. Bafna, S. Muthukrishnan, and R. Ravi. “Computing Simi-
larity between RNA Strings,” DIMACS Technical Report, Vol.
96, no. 30, 1996.

[2] R. Bellman. Dynamic Programming, Princeton University
Press, New Jersey, 1957.

[3] P. Evans. “Finding Common RNA Pseudoknot Structures
in Polynomial Time,” Proceedings of Combinatorial Pattern
Matching ’06, Springer-Verlag Lecture Notes in Computer
Science (LNCS). Vol. 4009, 2006, 223-232.

[4] R. L. Graham. “Bounds for multiprocessing timing anomalies,”
SIAM J. Applied Mathematics, Volume 17, 1969, 263-269.

[5] A. Grama, A. Gupta, G. Karypis, and V. Kumar. Introduction
to Parallel Computing, 2nd ed., Pearson Education Limited,
2003.

[6] J. Kleinberg and E. Tardos. Algorithm Design, Pearson Edu-
cation Inc., 2006.

[7] E. Snow, E. Aubanel, P. Evans. “Dynamic Parallelization
for RNA structure comparison,” Proceedings of the Eighth
IEEE International Workshop on High Performance Computing
Biology (HiCOMB 2009), May 2009.

[8] A. Stivala, P. J. Stuckey, M.G. de la Banda, M. Hermenegildo,
and A. Wirth. “Lock-free Parallel Dynamic Programming,”
Journal of Parallel and Distributed Computing, Vol. 70, 2010,
839-848.

718718724

