
Evaluation of GPU-based Seed Generation for Computational Genomics using
Burrows-Wheeler transform

Yongchao Liu, Bertil Schmidt
Institut für Informatik

Johannes Gutenberg Universität Mainz
Mainz, Germany

e-mail: {liuy, bertil.schmidt}@uni-mainz.de

Abstract— Unprecedented production of short reads from the
new high-throughput sequencers has posed challenges to align
short reads to reference genomes with high sensitivity and high
speed. Many CPU-based short read aligners have been
developed to address this challenge. Among them, one popular
approach is the seed-and-extend heuristic. For this heuristic,
the first and foremost step is to generate seeds between the
input reads and the reference genome, where hash tables are
the most frequently used data structure. However, hash tables
are memory-consuming, making it not well-suited to memory-
stringent many-core architectures, like GPUs, even though
they usually have a nearly constant query time complexity.
The Burrows-Wheeler transform (BWT) provides a memory-
efficient alternative, which has the drawback of having query
time complexity as a function of query length. In this paper, we
investigate GPU-based fixed-length seed generation for
computational genomics based on the BWT and Ferragina
Manzini (FM)-index, where k-mers from the reads are
searched against a reference genome (indexed using BWT) to
find k-mer matches (i.e. seeds). In addition to exact matches,
mismatches are allowed at any position within a seed, different
from spaced seeds that only allow mismatches at predefined
positions. By evaluating the relative performance of our GPU
version to an equivalent CPU version, we intend to provide
some useful guidance for the development of GPU-based seed
generators for aligners based on the seed-and-extend
paradigm.

Seed generation; seed-and-extend; CUDA; GPU; Burrows-
Wheeler transform

I. INTRODUCTION
The rapid progress of high-throughput sequencing

technologies has enabled the production of short reads at an
unprecedented scale. This high-throughput production has
significantly revolutionized the scale and resolution of many
biological applications, such as methylation patterns
profiling [1], protein-DNA interactions mapping [2], and
differentially expressed genome identification [3]. All these
applications require aligning large quantities of short reads to
the human genome or the genomes of other species.
However, the high throughput of second-generation
sequencing technologies comes with shorter read lengths and
higher error rates, compared to the conventional Sanger
shotgun sequencing. Moreover, a large number of short reads
are usually produced to achieve highly redundant coverage

of a genome. Thus, conventional sequence aligners,
optimized for capillary reads, have exposed their
inefficiency, in tackling the flood of short reads, with respect
to time efficiency and alignment accuracy [4]. Recently, a
few aligners have been developed for short read alignment,
which are different from the earlier-generation general
aligners like BLAST [5] and BLAT [6]. The earlier-
generation aligners are generally designed to find
homologous sequences by searching through biological
sequence databases, whereas the new-generation short read
aligners are generally employed to align short reads, from the
species of interest, to the reference genomes of that species
or other species. This subtle difference has certain impact on
sequence aligners with respect to design methodology and
performance [7]. The new-generation aligners are mainly
based on two techniques: hash tables and suffix/prefix tries.

Essentially, all hash-table-based aligners follow the seed-
and-extend paradigm [12]. The first and foremost step of the
seed-and-extend heuristic is to generate seeds between the
query sequence and the target sequence, represented as short
matches indicating highly similar regions. Subsequently,
these seeds are extended and refined to obtain the final
alignments using more sophisticated algorithms (e.g.
Needleman-Wunsch algorithm [13] or Smith-Waterman
algorithm [14]). Several kinds of seeds have been proposed,
including fixed-length seeds [5], variable-length seeds [15],
maximal unique matches [16], rare exact matches [17] and
adaptive seeds [18]. In this paper, we will concentrate our
research on the widely used fixed-length seeds. For fixed-
length seeds, short seeds can improve sensitivity but are
likely to result in longer runtime during the subsequent time-
consuming alignment extensions, due to the larger number of
seeds found. Long seeds are rarely matched but have the risk
of decreasing sensitivity. Fixed-length seeds are represented
as k-mer matches, where the simplest case is the exact k-mer
match. Some improvements have been suggested to allow
mismatches and gaps in the seeds, including spaced seeds
[19] and q-gram filters [9]. Spaced seeds allow mismatches
to occur only at predefined positions in different templates
that are specifically tuned for a reference genome with some
sensitivity tolerance. q-gram filters allow gaps in the seeds in
addition to mismatches. To identify seeds, two approaches
can be used: hash tables and the Burrows-Wheeler transform
(BWT) [10]. The hash tables are advantageous in terms of
fast query time but have a larger memory footprint. The
BWT, on the contrary, has a smaller memory footprint but

2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops

978-0-7695-4676-6/12 $26.00 © 2012 IEEE

DOI 10.1109/IPDPSW.2012.85

678

2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum

978-0-7695-4676-6/12 $26.00 © 2012 IEEE

DOI 10.1109/IPDPSW.2012.85

678

2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum

978-0-7695-4676-6/12 $26.00 © 2012 IEEE

DOI 10.1109/IPDPSW.2012.85

684

has a query time complexity in a function of the seed length.
Since the current-generation graphics processing units
(GPUs) have limited device memory, we select the memory-
efficient BWT approach to generate seeds (i.e. find k-mer
matches).

Since the advent of compute unified device architecture
(CUDA)-enabled GPUs, they have evolved to be a powerful
choice, for the high-performance computing community.
Their compute power has been demonstrated to reduce the
runtime in a range of demanding bioinformatics applications,
including sequence database search [20] [21] [22], multiple
sequence alignment [23], motif discovery [24] and
applications relating to new-generation high-throughput
sequencing such as short read error correction [25] and short
read alignment [26] [27] [28]. These successes have
motivated us to investigate and to evaluate seed generation
on CUDA-enabled GPUs for genomics. In this paper, we
investigate a GPU-based fixed-length seed generator for
genomics based on the BWT and FM-index, where seeds are
identified by searching k-mer matches of short reads against
the reference genome indexed using the BWT. In addition to
exact matches, we allow mismatches to occur at any position
of a k-mer. By evaluating the relative performance of our
GPU version to an equivalent CPU version, this paper
intends to provide some preliminary guidance to the future
development of GPU-based seed generators for aligners
using the seed-and-extend heuristic.

II. BACKGROUND

A. Fermi GPU Architecture
A CUDA-enabled GPU is a fully configurable scalable

processor (SP) array, organized into a set of streaming multi-
processors (SMs) based on two architectures: earlier-
generation Tesla architecture [29] and newer-generation
Fermi architecture [30]. Since our seed generator is designed
and optimized for the Fermi-based GPUs, we will only
describe some features of the Fermi architecture.

Each Fermi-based GPU device contains 16 SMs with
each SM comprising 32 SPs. Each SM has a total number 32
KB of 32-bit registers and has a configurable shared memory
size from the 64 KB on-chip memory. This on-chip memory
can be configured at runtime for each CUDA kernel. A
CUDA kernel can be configured to use either 48KB of
shared memory with 16 KB L1 cache or 16 KB of shared
memory with 48 KB L1 cache. The Fermi architecture has a
local memory size of 512 KB per thread, which is larger than
the Tesla architecture with a local memory size of 16 KB per
thread. Furthermore, the Fermi architecture introduces local
and global memory caching through a L1 cache of
configurable size per SM and a unified L2 cache of size 768
KB per device. This L1/L2 cache hierarchy offers the
potential to significantly improve the access performance to
the external device memory compared to direct accesses.
Programmers can choose to disable the global memory
caching in the L1 cache at compile time, but are not able to
disable the local memory caching in L1. Thus, for a CUDA
kernel, it is of great significance to find out the best
combination: 16 KB or 48 KB L1 cache (vice versa for

shared memory) with or without global memory caching in
L1 and with more or less usage of local memory. CUDA
kernels that have more local and global memory accesses
might be able to benefit from the 48 KB L1 cache.

B. Suffix Array and Burrows-Wheeler Transform
Given a genome sequence G, defined over the alphabet

Σ={A, C, G, T}, the suffix array SA of G stores the starting
positions of all suffixes of G in lexicographical order. In
other words, SA[i] = j means that the ith lexicographically
smallest suffix (among all suffixes of G) starts at position j in
G. Thus, given a substring S of G, we can find all of its
occurrences within an SA interval, i.e. an index range [Ia, Ib],
where Ia and Ib represent the indices in SA of the
lexicographically smallest and largest suffixes of G with S as
the prefix. Figure 1 shows the construction of an example
suffix array.

Index Suffixes Sorted Suffixes Suffix Array

0 cattattagga$
1 attattagga$
2 ttattagga$
3 tattagga$
4 attagga$
5 ttagga$
6 tagga$
7 agga$
8 gga$
9 ga$
10 a$
11 $

$
a$
agga$
attagga$
attattagga$
cattattagga$
ga$
gga$
tagga$
tattagga$
ttagga$
ttattagga$

11
10
7
4
1
0
9
8
6
3
5
2

Figure 1. An example suffix array for the sequenc G=cattattagga

The forward BWT of G can be constructed in the
following three steps. We first append a special character $,
which is lexicographically smaller than any character in Σ, to
the end of G to form a new sequence G$. Then, we construct
a conceptual matrix MG whose rows are all cyclic rotations
of G$ (equivalent to all suffixes of G) sorted in
lexicographical order. In MG, each column forms a
permutation of G$. Finally, we take the last column of MG to
form the transformed text B, i.e. the forward BWT of G.
Figure 2 shows the construction of an example BWT. From
the construction procedure, we can see that the ith entry in SA
has a one-to-one correspondence relationship with the ith row
of MG [11].

The matrix MG has a property called “last-to-first column
mapping”, which means that the ith occurrence of a character
in the last column corresponds to the ith occurrence of the
same character in the first column. This property forms the
basis of pattern search using BWT. Similarly, a reverse BWT
of G can also be constructed from the reverse orientation (not
the reverse complement). The reverse BWT shares the same
properties as the forward BWT, and has its own SA. For the

679679685

convenience of discussion, we define the following
denotations:

• C(•): an array of length |Σ|, where C(x) represents the
number of characters in G that are lexicographically
smaller than x∈Σ;

• Occ(•):the occurrence array, where Occ(x, i)
represents the number of occurrences of x in B[0,i].

For a genome sequence, we usually construct the BWTs
once and then store them on disk for the use of sequence
alignment. In this paper, the algorithm devised by Hon et al.
[31] is used to construct the BWTs of G, which requires |G|
bits of working space. This algorithm has also been used in
BWT-SW [32] and BWA [33].

Cyclic Rotations MG BWT (B)

cattattagga$
attattagga$c
ttattagga$ca
tattagga$cat
attagga$catt
ttagga$catta
tagga$cattat
agga$cattatt
gga$cattatta
ga$cattattag
a$cattattagg
$cattattagga

a
g
t
t
c
$
g
a
t
t
a
a

$cattattagg a
a$cattattag g
agga$cattat t
attagga$cat t
attattagga$ c
cattattagga $
ga$cattatta g
gga$cattatt a
tagga$catta t
tattagga$ca t
ttagga$catt a
ttattagga$c a

Figure 2. An example Burrows-Wheeler transfrom for the sequence
G=cattattagga

C. Backward Search using FM-index
Given a substring S of G, we can find all the occurrences

of S using a backward search procedure based on the FM-
index [11], which employs the arrays C(•) and Occ(•) to
compute the SA interval of S. Thus, using the forward BWT,
the SA interval can be recursively calculated, from the
rightmost to the leftmost suffixes of S, as

() ([]) ([], (1) 1) 1, 0

() ([]) ([], (1)), 0
a a

b b

I i C S i Occ S i I i i S

I i C S i Occ S i I i i S

 = + + − + ≤ <


= + + ≤ <
 (1)

where Ia(i) and Ib(i) represent the starting and end indices of
the SA interval for the suffix of S starting at position i, and
Ia(|S|) and Ib(|S|) are initialized as 0 and |G| respectively. The
calculation stops if it encounters Ia(i+1)>Ib(i+1), and the
condition Ia(i)≤Ib(i) stands if and only if the suffix of S
starting at position i is a substring of G. The total number of
the occurrences is calculated as Ia(0)−Ib(0)+1 if Ia(0)≤Ib(0),
and 0, otherwise. We can also perform the backward search
using the reverse BWT with the difference that it calculates

the SA interval from the leftmost to the rightmost prefixes of
S. Figure 3 shows an example of backward search to
calculate the SA interval.

$ cattattagg a
a $cattattag g
a gga$cattat t
a ttagga$cat t
a ttattagga$ c
c attattagga $
g a$cattatta g
g ga$cattatt a
t agga$catta t
t attagga$ca t
t tagga$catt a
t tattagga$c a

$ cattattagg a
a $cattattag g
a gga$cattat t
a ttagga$cat t
a ttattagga$ c
c attattagga $
g a$cattatta g
g ga$cattatt a
t agga$catta t
t attagga$ca t
t tagga$catt a
t tattagga$c a

$ cattattagg a
a $cattattag g
a gga$cattat t
a ttagga$cat t
a ttattagga$ c
c attattagga $
g a$cattatta g
g ga$cattatt a
t agga$catta t
t attagga$ca t
t tagga$catt a
t tattagga$c a

t t a t t a t t a

[1, 4]

[8, 9]

[10, 11]

Figure 3. Example of backward search to calculate the SA interval for a

substring “tta”

III. METHODS

A. BWT Memory Reduction
From Equation (1), the SA interval calculation only relies

on the occurrence array Occ, not requiring B. Thus, we can
compute all occurrences of S on GPUs after loading Occ into
the device memory of GPUs. Since the current-generation
GPUs have very limited device memory (≤6 GB), it is
critical to estimate the memory requirement of Occ
beforehand. For the genome sequence G, its Occ array has
4|G| elements. Assume that each element
takes 2log G   bits, it requires up to 24 logG G   bits.
This memory overhead is quite considerable for large
genomes. For example, the human genome (about 3 billion
bases) requires about 47 GB to store its Occ, far more than
the available device memory.

To reduce the memory footprint of Occ, we introduce a
reduced occurrence array (ROcc) that only stores parts of the
elements in Occ and calculates the others with the help of B
at runtime. In this paper, ROcc stores the elements whose
indices in Occ are multiple of q (default=128) to trade off the
execution speed and memory space. In this case, the total
memory size is the sum of ROcc and B. Using 2 bits to
represent each character in B, the total memory size can be
reduced to 24 log / 2G G q G  +  bits (i.e. about 1.1 GB
for the human genome). For clarity, we define bwt to denote
the combination of ROcc and B from the forward BWT and
define rbwt to denote the combination from the reverse
BWT.

In this paper, both bwt and rbwt are employed to generate
seeds on the GPU and thus need to be loaded into the GPU
device, where the overall memory footprint is about 2.2 GB
for the human genome. Considering that we only need to
load them once from the host to the device through the high-
throughput peripheral component interconnect express

680680686

channels, the data transfer time is very small and thus can be
neglected in our case.

B. BWT Data Deployment
When performing search, it requires frequent random

accesses to the BWT data, without showing good data
locality. Considering the large amount of device memory
consumed by the BWT data for large genomes, we store the
BWT data in cached global memory instead of cached
texture memory. This deployment of the BWT data is based
on the following two considerations. On one hand, we do not
need some other features, such as address calculations and
texture filter, which can benefit from texture fetches. On the
other hand, L1 cache has a higher bandwidth than texture
cache. Therefore, for random accesses to large memory, we
can expect a higher performance gain through regular global
memory loads cached in L1 than texture fetches. In general,
the larger L1 cache size, the better memory access
performance. Hence, we configure the GPU with a 48 KB
per-SM L1 cache with global memory cached in L1. For the
array C(•), it only has four integer elements and is stored in
cached constant memory.

C. Locating Occurrences using a Suffix Array
After getting the SA interval, we can determine the

starting position of each occurrence in G by directly looking
up SA. Loading the entire SA into the host memory would
require 2logG G   bits. For the human genome, the
memory size is about 12 GB. Although this memory
requirement can be met in high-end workstations, it is still a
challenge for most commonly available computers.
Fortunately, we can reconstruct the entire SA from parts of it.
Ferragina and Manzini [11] have shown that an unknown
value SA[i], can be re-established from a known SA[j] using
Equation (2).

()

[] []
()t

SA i SA j t
j iβ

= +


=
 (2)

where () ()t iβ means repeatedly applying the function ()iβ t
times. The ()iβ function employs the last-to-first column
mapping for the ith row of MG and is calculated as

() ([]) ([],)i C B i Occ B i iβ = + (3)

Based on Equations (2) and (3), we construct a reduced
suffix array (RSA) by simply storing SA[i] whose index i is a
multiple of p (default=32), reducing the total memory size of
SA to 2log /G G p   bits. Users can trade-off the lookup
time and memory space by selecting different p. A smaller p
means larger memory and (nearly always) faster lookups.
For a suffix array index i that is not a multiple of p, we
repeat t iterations using Equation (3) until j is a multiple of p,
where SA[j] is equal to RSA[j/p], and then calculate SA[i] as
SA[j]+t following Equation (2).

If the starting positions are calculated on the CPU
following Equation (2), it does not only require loading RSAs
into the memory, but also needs to load the corresponding
bwt or rbwt. This results in more memory overhead in the
host. In addition, more compute overhead will also be
required to calculate j and t values in Equation (2), thus
increasing the execution time. Fortunately, we find that the
calculation of j and t is independent of RSAs and can be
directly computed using the corresponding bwt (or rbwt) for
each occurrence. Hence, after gaining the SA interval, we
calculate the j and t values on GPUs for all indices in the SA
interval, and then output them instead of the final starting
positions. In this way, on the host we only require loading
the RSAs into the memory, and can get the starting position
of each occurrence very quickly by only two operations: one
table lookup and one addition.

D. Exact-match and Inexact-match Search
For exact-match search, it can be easily done following

the calculations in Equation (1). As for inexact-match search,
it can be transformed into exact-match search by introducing
substitutions (mismatches), insertions and deletions in the
seed and the reference genome. Since we do not allow
insertions and deletions, the inexact-match search can be
transformed to the exact-match search of all possible
sequences that have a Hamming distance of not more than
the allowable number of mismatches. Because the exact-
match search is straightforward, two separate CUDA kernels
are employed to implement the two searches. In addition to
the forward strand of S, we also consider its reverse
complement. For simplicity and clarity, the following
discussions only refer to the search from the forward strand,
if not specified.

The inexact-match search is equivalent to the traversal of
a complete 4-ary tree, where each possible sequence
corresponds to a path from the root (the root node is Ø,
meaning an empty string) to a leaf and each node along the
path corresponds to a base in the sequence that has the same
position. Hence, we can find all inexact matches of S by
traversing the tree using either depth-first search (DFS) or
breadth-first search (BFS). In this paper, we use the DFS
traversal and implement it using a stack data structure. Since
S has a maximal allowable number of mismatches, we must
confine the number of mismatches not to exceed the limit
when searching along a path from top to down. If the number
of mismatches, in the sub-path down to the current node,
exceeds the limit, we will stop traversing the sub-trees of the
current node. In addition, to further reduce the search space,
we estimate the lower bound of the number of mismatches
that are required to transform the substring, represented by
the sub-path down from the current node to the leaf, to have
exact matches to the genome. The approach proposed in
BWA is used, which estimates the lower bound of the
number of mismatches for a string by counting the number
of all constituent non-overlapping substrings that do not have
exact matches to the genome. We define a vector DIFFS(•)
for S to store the estimated values, where DIFFS(i)
represents the minimal number of mismatches that are

681681687

required in the suffix of S starting at position i+1, where
0≤i<|S|-1.

To generate fixed-length seeds, we need to identify exact
or inexact matches in the reference genome for k-mers from
the input short reads. Since we only measure the runtime
performance of fixed-length seed generation on the GPU,
without loss of generality, we pre-generate k-mers from short
reads and then take these k-mers as input for simplicity. For
both exact-match and inexact-match searches, one thread is
assigned to search a k-mer as well as its reverse complement.
Since we usually have a large number of k-mers, it is
infeasible to load all k-mers into the device memory on the
GPU. In this case, we organize all k-mers into batches and
employ multiple passes to complete the whole search. In this
way, in each pass, we only need to load a batch of k-mers
into the device memory, thus significantly alleviating the
device memory pressure. The k-mer batch is stored in texture
memory bound to linear memory at start-up time, and then is
loaded into shared memory when performing the search
since we see slight performance improvement after using
shared memory. For a k-mer, it is possible to find a lot of
matches in G, making it difficult for us to store and to output
all matches because after loading the BWT data, we usually
have a little device memory available. To solve this problem,
we simply discard all matches of a k-mer if the number of its
matches exceeds a specified threshold (128 by default).
During the search, we will stop the traversal if a k-mer has
already found more than the threshold matches. This
approach works but has a risk of discarding some significant
matches. Figure 4 shows the pseudocode of the CUDA
kernel for the inexact-match search from the forward strand
of S.

#bwt: the forward BWT of genome G; rbwt: the reverse BWT of G; S: a forward-strand k-mer.

1. estimate the lower bound of the number of mismatches for each suffix of S
diffs = 0; f = 0; l = |G|;
for i=|S|-1 to 0 do

f = bwt.C(S[i]) + bwt.Occ(S[i], f-1) + 1; l = bwt.C(S[i]) + bwt.Occ(S[i], l); DIFFS[i] = diffs;
if f > l then

f = 0; l = |G|; ++diffs;
fi

done

2. initialize the stack from the first base of S;
while (stack is not empty) do

access to the top node (the current node);
if have attempted all mutations for the current node then

pop out the top node from the stack;
continue;

fi
mutate the base corresponding to the current node;
check the number of mismatches in the full length;
if exceeding the limit then

pop out the top node from the stack;
continue;

fi
calculate the suffix array interval f and l from the mutation in the current node using rbwt.
if f <= l then

if reaching the end of S then
if the total number of k-mer matches exceeds the threshold then

return;
else

store the hit;
fi

else
push the next base in S into the stack as well as other information;

fi
fi

done
Figure 4. Pseudocode of the CUDA kernel for inexact-match search from

the forward strand of a k-mer S

IV. PERFORMANCE EVALUATION

A. Experimental Design
We have measured the performance of our GPU-based

seed generator by comparing the execution times of the CPU
and GPU versions that execute the same core code, where
the kernel code for a single CUDA thread is ported onto the
CPU with no need of algorithmic changes. All the tests are
conducted on a workstation with an AMD Opteron 2378 2.4
GHz quad-core processor and 8 GB RAM running the Linux
operating system. A Fermi-based Tesla C2050 GPU is used
for the evaluation of the GPU version. This GPU consists of
14 SMs (a total of 448 SPs) with a core frequency of 1.15
GHz and with 3 GB of user available device memory (after
turning off error correcting code). The CPU version has been
parallelized using the OpenMP programming model and is
compiled with the GNU GCC (version 4.1.2) tool chain. The
GPU version is compiled with the CUDA toolkit release 4.0.
Both of the two versions are optimized at compile time using
the compiling option “-O3”.

We have pre-generated five k-mer datasets from short
reads simulated from the human genome, named as S11,
S15, S20, S24 and S30 respectively. Each dataset consists of
one million k-mers and all k-mers in a specific dataset have
the same lengths. The k-mer length of a dataset can be
inferred from its name, i.e. S11 means a k-mer length of 11
and S15 means a k-mer length of 15 and so on. All the
following tests do not allow mismatches in the seeds for the
S11 and S15 datasets of small k-mer lengths, allow one
mismatch for the S20 and S24 datasets of medium k-mer
lengths, and allow two mismatches for the S30 dataset of
large k-mer lengths. As mentioned above, two separate
CUDA kernels are used for the exact-match and inexact-
match search respectively. For all tests, we set a thread block
to have 192 threads for the exact-match search and 64
threads for the inexact-match search.

B. Results and Discussion
Firstly, we have evaluated the total runtime (measured in

wall time) performance to complete the whole seed
generation, where the GPU version calculates the location
information (see Equation (2)) of all matches on the GPU.
Table 1 gives the runtimes (in seconds) of the CPU and GPU
versions as well as the speedups of the GPU version over the
CPU version. The experimental results in the table indicate
that the GPU version on a single GPU yields significant
speedups over the CPU version on either a single CPU core
or four CPU cores. Specifically, the GPU version achieves
an average speedup of 9.5, with a highest of 13.5, over the
CPU version on a single CPU core, and an average speedup
of 2.9, with a highest of 3.8, over the CPU version on four
CPU cores. Furthermore, the speedups generally increase
with the k-mer length increasing, even though a lowered
speedup is encountered when using the S24 dataset.

Secondly, we have evaluated the runtime performance
for only searching the k-mer matches using the BWT and
FM-index, without considering locating occurrences using
the suffix array. Table 2 shows the runtimes (in seconds) of
the two versions as well as the speedups of the GPU version

682682688

over the CPU version. Similar to the results of the whole
seed generation (see Table 1), the speedups generally
increase with the k-mer length increasing except for a
lowered speedup when using the S24 dataset. The GPU
version achieves a highest speedup of 13.6 over the CPU
version on a single CPU core, and a highest speedup of 3.9
over the CPU version on four CPU cores. Readers might be
surprised at the speedups for the S11 and S15 datasets, where
the GPU version is slower than the CPU version. This can be
explained by the short computational time on the GPU, due
to the small k-mer lengths, and the relatively larger extra
overhead, introduced by data preparation and transfer for the
CUDA kernel executions. However, after performing the
exact-match search using the other three datasets of larger k-
mer lengths, we found that the GPU version is faster than the
CPU version on a single CPU core, with speedups increasing
as the k-mer lengths increase, but not very much (data not
reported).

TABLE I. PERFORMANCE COMPARISON FOR THE WHOLE SEED
GENERATION EXECUTION

Dataset #Mismatch
Time (in seconds) Speedup

1
 core

4
cores

1
GPU

1
core

4
cores

S11 0 60.7 17.2 10.6 5.7 1.6
S15 0 122.4 36.1 12.4 9.9 2.9
S20 1 179.8 59.1 17.6 10.2 3.4
S24 1 129.1 44.3 15.8 8.2 2.8
S30 2 1094.0 311.2 80.9 13.5 3.8

TABLE II. PERFORMANCE COMPARISON FOR THE K-MER MATCHES
SEARCH

Dataset #Mismatch
Time (in seconds) Speedup
1

 core
4

cores
1

GPU
1

core
4

cores
S11 0 5.8 3.4 6.8 0.9 0.5
S15 0 7.3 4.1 7.2 1.0 0.6
S20 1 139.8 47.6 14.9 9.4 3.2
S24 1 107.6 37.9 13.4 8.0 2.8
S30 2 1067.6 309.5 78.6 13.6 3.9

Finally, we have evaluated the runtime performance of

the GPU version by calculating the location information
sequentially on the CPU, instead of the GPU. Figure 5 shows
the speedups over the CPU version on a single CPU core and
four CPU cores. For the S11 and S15 datasets of small k-mer
lengths, the runtimes of the CPU and GPU versions are
almost the same. Referring to the runtimes shown in Tables 1
and 2, we found that for datasets of small k-mer lengths, the
calculation of location information dominates the whole
execution. This tells us that we should select as small p for
RSA as possible, according to the available memory capacity
in the host, to speed up the locating of positions. For the
other three datasets, the GPU version achieves considerable
speedups over the CPU version with increasing speedups
towards larger k-mer lengths. For the S30 dataset, the GPU
version yields a highest speedup of 11.0 (3.1) over the CPU
version on a single CPU core (four CPU cores).

V. CONCLUSION
In this paper, we have investigated and evaluated the

performance of fixed-length seed generation on GPUs based
on the BWT and FM-index. In addition to exact matches, we
allow mismatches to occur at any position within a seed. For
the exact-match search, we simply follow the backward
search procedure using the FM-index and for the inexact-
match search, we employ a stack data structure to implement
the DFS traversal in order to find all possible matches that
have a Hamming distance of not more than the allowable
number of mismatches. The major challenges for GPU-based
seed generation using the BWT are the frequent accesses to
global memory with poor data locality and the divergence of
search paths for different k-mers. The poor data locality will
lead to more misses in the L1/L2 caches for global memory
accesses and the divergence of search paths cause the
execution paths of the threads in a warp to diverge
frequently. Overall, we have achieved some encouraging
experimental results through our evaluations, where the GPU
version achieves significant speedups over the CPU version.
Specifically, the GPU version achieves an average speedup
of 9.5 (2.9), with a highest of 13.5 (3.8), over the CPU
version on a single CPU core (four CPU cores). Furthermore,
the speedups generally increase with the increase of k-mer
lengths. We hope these results can provide some useful
guidance to the development of GPU-oriented seed
generators for genomics.

1.0 1.0

3.4
3.6

11.0

0.3 0.3
1.1

1.2

3.1

0

2

4

6

8

10

12

S11 S15 S20 S24 S30

Sp
ee

du
p

Dataset

1 CPU core

4 CPU cores

Figure 5. Speedups of the GPU version with occurrence locating

sequentially on the CPU over the CPU version on a single CPU core and
four CPU cores

ACKNOWLEDGMENT
We thank the anonymous reviewers for their helpful

comments that helped to improve the manuscript, and we
acknowledge the fund “Schwerpunkt für Rechnergestützte
Forschungsmethoden in den Naturwissenschaften”.

REFERENCES
[1] T.A. Down, V.K. Rakyan, D.J. Turner, P. Flicek, H. Li, E. Kulesha,

S. Gräf, N. Johnson, J. Herrero, E.M. Tomazou, N.P. Thorne, L.
Bäckdahl, M. Herberth, K.L. Howe, D.K. Jackson, M.M. Miretti, J.C.
Marioni, E. Birney, T.J. Hubbard, R. Durbin, S. Tavaré, and S. Beck,
A Bayesian deconvolution strategy for immunoprecipitation-based

683683689

DNA methylome analysis,” Nat Biotechnol, vol. 26, no. 7, 2008, pp.
779-785

[2] D.S. Johnson, A. Mortazavi, R.M. Myers, and B. Wold, “Genome-
wide mapping of in vivo protein-DNA interactions,” Science, vol.
316, no. 5830, 2007, pp. 1497-1502

[3] J.C. Marioni, C.E. Mason, S.M. Mane, M. Stephens, and Y. Gilad,
“RNA-seq: an assessment of technical reproducibility and
comparison with gene expression arrays,” Genome Res., vol. 18, no.
9, 2008, pp. 1509-1517

[4] H. Li, J. Ruan, and R. Durbin, “Mapping short DNA sequencing
reads and calling variants using mapping quality scores,”, Genome
Res., vol. 18, no. 11, 2008, pp. 1851-1858

[5] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman,
“Basic local alignment search tool,” J Mol Biol., vol. 215, no. 3,
1990, pp. 403-410

[6] W.J. Kent, “BLAT--the BLAST-like alignment tool,” Genome Res.
vol. 12, no. 4, 2002, pp. 656-664

[7] P. Flicek, and E. Birney, “Sense from sequence reads: methods for
alignment and assembly,” Nat Methods., vol. 11, no. Suppl., 2009,
pp. S6-S12

[8] N. Homer, B. Merriman, and S.F. Nelson, “BFAST: an alignment
tool for large scale genome resequencing,” PLoS One, vol. 4, no. 11,
2009, pp. e7767

[9] S.M. Rumble, P. Lacroute, A.V. Dalca, M. Fiume, A. Sidow, and M.
Brudno, “SHRiMP: accurate mapping of short color-space reads,”
PLoS Comput Biol., vol. 5, no. 5, 2009, pp. e1000386

[10] M. Burrows, and D.J. Wheeler, “A block sorting lossless data
compression algorithm,” Technical Report 124 Palo Alto, CA, Digital
Equipment Corporation, 1994

[11] P. Ferragina, and G. Manzini, “Indexing compressed text,” Journal of
the ACM, vol. 52, no. 4, 2005

[12] H. Li, and N. Homer, “A survey of sequence alignment algorithms for
next-generation sequencing,” Brief Bioinform., vol 11, no. 5, 2010,
pp. 473-483

[13] S.B. Needleman, and C.D. Wunsch, “A general method applicable to
the search for similarities in the amino acid sequence of two
proteins,” J Mol Biol., vol. 48, no. 3, 1970, pp. 443-453

[14] T.F. Smith, and M.S. Waterman, “Identification of common
molecular subsequences,” J. Mol.Biol., vol. 147, no. 1, 1991, pp. 195-
197

[15] M. Csurös, “Performing local similarity searches with variable length
seeds,” Lect Notes Comput Sci, vol. 3109, 2004, pp. 373–387

[16] S. Kurtz, A. Phillippy, A. Delcher, M. Smoot, M. Shumway, C.
Antonescu, and S. Salzberg, “Versatile and open software for
comparing large genomes,” Genome Biol., vol. 5, no. R12, 2004

[17] E. Ohlebusch, and S. Kurtz, “Space efficient computation of rare
maximal exact matches between multiple sequences,” J Comput Biol,
vol. 15, no. 4, 2008, pp. 357-377

[18] S.M, Kiełbasa, R. Wan, K. Sato, P. Horton, and M.C. Frith,
“Adaptive seeds tame genomic sequence comparison,” Genome Res.,
vol. 21, no. 3, 2011, pp. 487-493

[19] B. Ma, J. Tromp, and M. Li, “PatternHunter: faster and more
sensitive homology search,” Bioinformatics, vol. 18, no. 3, 2002, pp.
440-445

[20] Y. Liu, D.L. Maskell, and B. Schmidt, “CUDASW++: optimizing
Smith-Waterman sequence database searches for CUDA-enabled
graphics processing units,” BMC Research Notes, vol. 2, no. 73, 2009

[21] W. Liu, B. Schmidt, and W. Müller-Wittig, “CUDA-BLASTP:
accelerating BLASTP on CUDA-enabled graphics hardware,”
IEEE/ACM Trans Comput Biol Bioinform., vol. 8, no. 6, 2011, pp.
1678-1684

[22] P.D. Vouzis, and N.V. Sahinidis, “GPU-BLAST: using graphics
processors to accelerate protein sequence alignment,” Bioinformatics
vol. 27, no. 2, 2010, pp. 182-188

[23] Y. Liu, B. Schmidt, and D.L. Maskell, “MSA-CUDA: multiple
sequence alignment on graphics pro-cessing units with CUDA,” 20th
IEEE International Conference on Application-specific Systems,
Architectures and Processors, 2009, pp. 121-128

[24] Y. Liu, B. Schmidt, W. Liu, and D.L. Maskell, “CUDA-MEME:
accelerating motif discovery in biological sequences using CUDA-
enabled graphics processing units,” Pattern Recognition Letters, vol.
31, no. 14, 2009, pp. 2170-2177

[25] Y. Liu, B. Schmidt, and D.L. Maskell, “DecGPU: distributed error
correction on massively parallel graphics processing units using
CUDA and MPI,” BMC Bioinformatics, vol. 12, no. 95, 2011

[26] J. Blom, T. Jakobi, D. Doppmeier, S. Jaenicke, J. Kalinowski, J.
Stoye, and A. Goesmann, “Exact and complete short read alignment
to microbial genomes using GPU programming,” Bioinformatics, vol.
27, no. 10, 2011, pp. 1351-1358

[27] C.M. Liu, T.W. Lam, T. Wong, E. Wu, S.M. Yiu, Z. Li, R. Luo, B.
Wang, C. Yu, X. Chu, K. Zhao, and R. Li, “SOAP3: GPU-based
compressed indexing and ultra-fast parallel alignment of short reads,”
3th Workshop on Massive Data Algorithms, 2011

[28] Y. Liu, B. Schmidt, and D.L. Maskell, “CUSHAW: a CUDA
compatible short read aligner to large genomes based on the Burrows-
Wheeler transform,” http://cushaw.sourceforge.net, 2011

[29] E, Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “NVIDIA
Tesla: a unified graphics and computing architecture,” IEEE Micro,
vol. 28, no. 2, 2008, pp. 39-55

[30] NVIDIA, “NVIDIA’s next generation CUDA compute architecture:
Fermi,” NVIDIA Corporation Whitepaper, 2009

[31] W.K. Hon, T.W. Lam, K. Sadakane, W.K. Sung, and S.M. Yiu, “A
space and time efficient algorithm for constructing compressed suffix
arrays,”, Algorithmica, vol. 48, no. 1, 2007

[32] H. Li, and R. Durbin, “Fast and accurate short read alignment with
Burrows-Wheeler transform,”, Bioinformatics, vol. 25, no. 14, 2009,
pp. 1754-1760

[33] T.W. Lam, W.K. Sung, S.L. Tam, C.K. Wong, and S.M. Yiu.,
“Compressed Indexing and Local Alignment of DNA,”,
Bioinformatics, vol. 24, no. 6, 2008, pp. 791-797

684684690

