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Abstract— Unprecedented production of short reads from the 
new high-throughput sequencers has posed challenges to align 
short reads to reference genomes with high sensitivity and high 
speed. Many CPU-based short read aligners have been 
developed to address this challenge. Among them, one popular 
approach is the seed-and-extend heuristic. For this heuristic, 
the first and foremost step is to generate seeds between the 
input reads and the reference genome, where hash tables are 
the most frequently used data structure. However, hash tables 
are memory-consuming, making it not well-suited to memory-
stringent many-core architectures, like GPUs, even though 
they usually have a nearly constant query time complexity.  
The Burrows-Wheeler transform (BWT) provides a memory-
efficient alternative, which has the drawback of having query 
time complexity as a function of query length. In this paper, we 
investigate GPU-based fixed-length seed generation for 
computational genomics based on the BWT and Ferragina 
Manzini (FM)-index, where k-mers from the reads are 
searched against a reference genome (indexed using BWT) to 
find k-mer matches (i.e. seeds). In addition to exact matches, 
mismatches are allowed at any position within a seed, different 
from spaced seeds that only allow mismatches at predefined 
positions. By evaluating the relative performance of our GPU 
version to an equivalent CPU version, we intend to provide 
some useful guidance for the development of GPU-based seed 
generators for aligners based on the seed-and-extend 
paradigm. 

Seed generation; seed-and-extend; CUDA; GPU; Burrows-
Wheeler transform 

I.  INTRODUCTION 
The rapid progress of high-throughput sequencing 

technologies has enabled the production of short reads at an 
unprecedented scale. This high-throughput production has 
significantly revolutionized the scale and resolution of many 
biological applications, such as methylation patterns 
profiling [1], protein-DNA interactions mapping [2], and 
differentially expressed genome identification [3]. All these 
applications require aligning large quantities of short reads to 
the human genome or the genomes of other species. 
However, the high throughput of second-generation 
sequencing technologies comes with shorter read lengths and 
higher error rates, compared to the conventional Sanger 
shotgun sequencing. Moreover, a large number of short reads 
are usually produced to achieve highly redundant coverage 

of a genome. Thus, conventional sequence aligners, 
optimized for capillary reads, have exposed their 
inefficiency, in tackling the flood of short reads, with respect 
to time efficiency and alignment accuracy [4].  Recently, a 
few aligners have been developed for short read alignment, 
which are different from the earlier-generation general 
aligners like BLAST [5] and BLAT [6]. The earlier-
generation aligners are generally designed to find 
homologous sequences by searching through biological 
sequence databases, whereas the new-generation short read 
aligners are generally employed to align short reads, from the 
species of interest, to the reference genomes of that species 
or other species. This subtle difference has certain impact on 
sequence aligners with respect to design methodology and 
performance [7]. The new-generation aligners are mainly 
based on two techniques: hash tables and suffix/prefix tries. 

Essentially, all hash-table-based aligners follow the seed-
and-extend paradigm [12]. The first and foremost step of the 
seed-and-extend heuristic is to generate seeds between the 
query sequence and the target sequence, represented as short 
matches indicating highly similar regions. Subsequently, 
these seeds are extended and refined to obtain the final 
alignments using more sophisticated algorithms (e.g. 
Needleman-Wunsch algorithm [13] or Smith-Waterman 
algorithm [14]). Several kinds of seeds have been proposed, 
including fixed-length seeds [5], variable-length seeds [15], 
maximal unique matches [16], rare exact matches [17] and 
adaptive seeds [18]. In this paper, we will concentrate our 
research on the widely used fixed-length seeds. For fixed-
length seeds, short seeds can improve sensitivity but are 
likely to result in longer runtime during the subsequent time-
consuming alignment extensions, due to the larger number of 
seeds found. Long seeds are rarely matched but have the risk 
of decreasing sensitivity. Fixed-length seeds are represented 
as k-mer matches, where the simplest case is the exact k-mer 
match. Some improvements have been suggested to allow 
mismatches and gaps in the seeds, including spaced seeds 
[19] and q-gram filters [9]. Spaced seeds allow mismatches 
to occur only at predefined positions in different templates 
that are specifically tuned for a reference genome with some 
sensitivity tolerance. q-gram filters allow gaps in the seeds in 
addition to mismatches. To identify seeds, two approaches 
can be used: hash tables and the Burrows-Wheeler transform 
(BWT) [10]. The hash tables are advantageous in terms of 
fast query time but have a larger memory footprint. The 
BWT, on the contrary, has a smaller memory footprint but 
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has a query time complexity in a function of the seed length. 
Since the current-generation graphics processing units 
(GPUs) have limited device memory, we select the memory-
efficient BWT approach to generate seeds (i.e. find k-mer 
matches). 

Since the advent of compute unified device architecture 
(CUDA)-enabled GPUs, they have evolved to be a powerful 
choice, for the high-performance computing community. 
Their compute power has been demonstrated to reduce the 
runtime in a range of demanding bioinformatics applications, 
including sequence database search [20] [21] [22], multiple 
sequence alignment [23], motif discovery [24] and 
applications relating to new-generation high-throughput 
sequencing such as short read error correction [25] and short 
read alignment [26] [27] [28]. These successes have 
motivated us to investigate and to evaluate seed generation 
on CUDA-enabled GPUs for genomics. In this paper, we 
investigate a GPU-based fixed-length seed generator for 
genomics based on the BWT and FM-index, where seeds are 
identified by searching k-mer matches of short reads against 
the reference genome indexed using the BWT. In addition to 
exact matches, we allow mismatches to occur at any position 
of a k-mer. By evaluating the relative performance of our 
GPU version to an equivalent CPU version, this paper 
intends to provide some preliminary guidance to the future 
development of GPU-based seed generators for aligners 
using the seed-and-extend heuristic. 

II. BACKGROUND 

A. Fermi GPU Architecture  
A CUDA-enabled GPU is a fully configurable scalable 

processor (SP) array, organized into a set of streaming multi-
processors (SMs) based on two architectures: earlier-
generation Tesla architecture [29] and newer-generation 
Fermi architecture [30]. Since our seed generator is designed 
and optimized for the Fermi-based GPUs, we will only 
describe some features of the Fermi architecture. 

Each Fermi-based GPU device contains 16 SMs with 
each SM comprising 32 SPs. Each SM has a total number 32 
KB of 32-bit registers and has a configurable shared memory 
size from the 64 KB on-chip memory. This on-chip memory 
can be configured at runtime for each CUDA kernel. A 
CUDA kernel can be configured to use either 48KB of 
shared memory with 16 KB L1 cache or 16 KB of shared 
memory with 48 KB L1 cache. The Fermi architecture has a 
local memory size of 512 KB per thread, which is larger than 
the Tesla architecture with a local memory size of 16 KB per 
thread. Furthermore, the Fermi architecture introduces local 
and global memory caching through a L1 cache of 
configurable size per SM and a unified L2 cache of size 768 
KB per device. This L1/L2 cache hierarchy offers the 
potential to significantly improve the access performance to 
the external device memory compared to direct accesses. 
Programmers can choose to disable the global memory 
caching in the L1 cache at compile time, but are not able to 
disable the local memory caching in L1. Thus, for a CUDA 
kernel, it is of great significance to find out the best 
combination: 16 KB or 48 KB L1 cache (vice versa for 

shared memory) with or without global memory caching in 
L1 and with more or less usage of local memory. CUDA 
kernels that have more local and global memory accesses 
might be able to benefit from the 48 KB L1 cache. 

B. Suffix Array and Burrows-Wheeler Transform 
Given a genome sequence G, defined over the alphabet 

Σ={A, C, G, T}, the suffix array SA of G stores the starting 
positions of all suffixes of G in lexicographical order. In 
other words, SA[i] = j means that the ith lexicographically 
smallest suffix (among all suffixes of G) starts at position j in 
G. Thus, given a substring S of G, we can find all of its 
occurrences within an SA interval, i.e. an index range [Ia, Ib], 
where Ia and Ib represent the indices in SA of the 
lexicographically smallest and largest suffixes of G with S as 
the prefix. Figure 1 shows the construction of an example 
suffix array. 
 
Index Suffixes Sorted Suffixes Suffix Array

0 cattattagga$
1 attattagga$
2 ttattagga$
3 tattagga$
4 attagga$
5 ttagga$
6 tagga$
7 agga$
8 gga$
9 ga$
10 a$
11 $

$
a$
agga$
attagga$
attattagga$
cattattagga$
ga$
gga$
tagga$
tattagga$
ttagga$
ttattagga$

11
10
7
4
1
0
9
8
6
3
5
2  

Figure 1.  An example suffix array for the sequenc G=cattattagga 

The forward BWT of G can be constructed in the 
following three steps. We first append a special character $, 
which is lexicographically smaller than any character in Σ, to 
the end of G to form a new sequence G$. Then, we construct 
a conceptual matrix MG whose rows are all cyclic rotations 
of G$ (equivalent to all suffixes of G) sorted in 
lexicographical order. In MG, each column forms a 
permutation of G$. Finally, we take the last column of MG to 
form the transformed text B, i.e. the forward BWT of G. 
Figure 2 shows the construction of an example BWT. From 
the construction procedure, we can see that the ith entry in SA 
has a one-to-one correspondence relationship with the ith row 
of MG [11]. 

The matrix MG has a property called “last-to-first column 
mapping”, which means that the ith occurrence of a character 
in the last column corresponds to the ith occurrence of the 
same character in the first column. This property forms the 
basis of pattern search using BWT. Similarly, a reverse BWT 
of G can also be constructed from the reverse orientation (not 
the reverse complement). The reverse BWT shares the same 
properties as the forward BWT, and has its own SA. For the 
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convenience of discussion, we define the following 
denotations: 

• C(•): an array of length |Σ|, where C(x) represents the 
number of characters in G that are lexicographically 
smaller than x∈Σ; 

• Occ(•):the occurrence array, where Occ(x, i) 
represents the number of occurrences of x in B[0,i]. 

For a genome sequence, we usually construct the BWTs 
once and then store them on disk for the use of sequence 
alignment. In this paper, the algorithm devised by Hon et al. 
[31] is used to construct the BWTs of G, which requires |G| 
bits of working space. This algorithm has also been used in 
BWT-SW [32] and BWA [33]. 
 
Cyclic Rotations MG BWT (B)

cattattagga$
attattagga$c
ttattagga$ca
tattagga$cat
attagga$catt
ttagga$catta
tagga$cattat
agga$cattatt
gga$cattatta
ga$cattattag
a$cattattagg
$cattattagga

a
g
t
t
c
$
g
a
t
t
a
a

$cattattagg a
a$cattattag g
agga$cattat t
attagga$cat t
attattagga$ c
cattattagga $
ga$cattatta g
gga$cattatt a
tagga$catta t
tattagga$ca t
ttagga$catt a
ttattagga$c a  

Figure 2.  An example Burrows-Wheeler transfrom for the sequence 
G=cattattagga 

C. Backward Search using FM-index 
Given a substring S of G, we can find all the occurrences 

of S using a backward search procedure based on the FM-
index [11], which employs the arrays C(•) and Occ(•) to 
compute the SA interval of S. Thus, using the forward BWT, 
the SA interval can be recursively calculated, from the 
rightmost to the leftmost suffixes of S, as 

( ) ( [ ]) ( [ ], ( 1) 1) 1,   0

( ) ( [ ]) ( [ ], ( 1)),   0
a a

b b

I i C S i Occ S i I i i S

I i C S i Occ S i I i i S

 = + + − + ≤ <


= + + ≤ <
 (1)  

where Ia(i) and Ib(i) represent the starting and end indices of 
the SA interval for the suffix of S starting at position i, and 
Ia(|S|) and Ib(|S|) are initialized as 0 and |G| respectively. The 
calculation stops if it encounters Ia(i+1)>Ib(i+1), and the 
condition Ia(i)≤Ib(i) stands if and only if the suffix of S 
starting at position i is a substring of G. The total number of 
the occurrences is calculated as Ia(0)−Ib(0)+1 if Ia(0)≤Ib(0), 
and 0, otherwise. We can also perform the backward search 
using the reverse BWT with the difference that it calculates 

the SA interval from the leftmost to the rightmost prefixes of 
S. Figure 3 shows an example of backward search to 
calculate the SA interval. 
 

$ cattattagg a
a $cattattag g
a gga$cattat t
a ttagga$cat t
a ttattagga$ c
c attattagga $
g a$cattatta g
g ga$cattatt a
t agga$catta t
t attagga$ca t
t tagga$catt a
t tattagga$c a

$ cattattagg a
a $cattattag g
a gga$cattat t
a ttagga$cat t
a ttattagga$ c
c attattagga $
g a$cattatta g
g ga$cattatt a
t agga$catta t
t attagga$ca t
t tagga$catt a
t tattagga$c a

$ cattattagg a
a $cattattag g
a gga$cattat t
a ttagga$cat t
a ttattagga$ c
c attattagga $
g a$cattatta g
g ga$cattatt a
t agga$catta t
t attagga$ca t
t tagga$catt a
t tattagga$c a

t t a t t a t t a

[1, 4]

[8, 9]

[10, 11]

 
Figure 3.  Example of backward search to calculate the SA interval for a 

substring “tta” 

III. METHODS 

A. BWT Memory Reduction 
From Equation (1), the SA interval calculation only relies 

on the occurrence array Occ, not requiring B. Thus, we can 
compute all occurrences of S on GPUs after loading Occ into 
the device memory of GPUs. Since the current-generation 
GPUs have very limited device memory (≤6 GB), it is 
critical to estimate the memory requirement of Occ 
beforehand. For the genome sequence G, its Occ array has 
4|G| elements. Assume that each element 
takes 2log G   bits, it requires up to 24 logG G    bits. 
This memory overhead is quite considerable for large 
genomes. For example, the human genome (about 3 billion 
bases) requires about 47 GB to store its Occ, far more than 
the available device memory. 

To reduce the memory footprint of Occ, we introduce a 
reduced occurrence array (ROcc) that only stores parts of the 
elements in Occ and calculates the others with the help of B 
at runtime. In this paper, ROcc stores the elements whose 
indices in Occ are multiple of q (default=128) to trade off the 
execution speed and memory space. In this case, the total 
memory size is the sum of ROcc and B. Using 2 bits to 
represent each character in B, the total memory size can be 
reduced to 24 log / 2G G q G  +  bits (i.e. about 1.1 GB 
for the human genome). For clarity, we define bwt to denote 
the combination of ROcc and B from the forward BWT and 
define rbwt to denote the combination from the reverse 
BWT. 

In this paper, both bwt and rbwt are employed to generate 
seeds on the GPU and thus need to be loaded into the GPU 
device, where the overall memory footprint is about 2.2 GB 
for the human genome. Considering that we only need to 
load them once from the host to the device through the high-
throughput peripheral component interconnect express 
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channels, the data transfer time is very small and thus can be 
neglected in our case. 

B. BWT Data Deployment 
When performing search, it requires frequent random 

accesses to the BWT data, without showing good data 
locality. Considering the large amount of device memory 
consumed by the BWT data for large genomes, we store the 
BWT data in cached global memory instead of cached 
texture memory. This deployment of the BWT data is based 
on the following two considerations. On one hand, we do not 
need some other features, such as address calculations and 
texture filter, which can benefit from texture fetches. On the 
other hand, L1 cache has a higher bandwidth than texture 
cache. Therefore, for random accesses to large memory, we 
can expect a higher performance gain through regular global 
memory loads cached in L1 than texture fetches. In general, 
the larger L1 cache size, the better memory access 
performance. Hence, we configure the GPU with a 48 KB 
per-SM L1 cache with global memory cached in L1. For the 
array C(•), it only has four integer elements and is stored in 
cached constant memory. 

C. Locating Occurrences using a Suffix Array 
After getting the SA interval, we can determine the 

starting position of each occurrence in G by directly looking 
up SA. Loading the entire SA into the host memory would 
require 2logG G   bits. For the human genome, the 
memory size is about 12 GB. Although this memory 
requirement can be met in high-end workstations, it is still a 
challenge for most commonly available computers. 
Fortunately, we can reconstruct the entire SA from parts of it. 
Ferragina and Manzini [11] have shown that an unknown 
value SA[i], can be re-established from a known SA[j] using 
Equation (2). 

( )

[ ] [ ]
( )t

SA i SA j t
j iβ

= +


=
   (2) 

where ( ) ( )t iβ means repeatedly applying the function ( )iβ t 
times. The ( )iβ  function employs the last-to-first column 
mapping for the ith row of MG and is calculated as 

( ) ( [ ]) ( [ ], )i C B i Occ B i iβ = +   (3) 

Based on Equations (2) and (3), we construct a reduced 
suffix array (RSA) by simply storing SA[i] whose index i is a 
multiple of p (default=32), reducing the total memory size of 
SA to 2log /G G p   bits. Users can trade-off the lookup 
time and memory space by selecting different p. A smaller p 
means larger memory and (nearly always) faster lookups. 
For a suffix array index i that is not a multiple of p, we 
repeat t iterations using Equation (3) until j is a multiple of p, 
where SA[j] is equal to RSA[j/p], and then calculate SA[i] as 
SA[j]+t following Equation (2). 

If the starting positions are calculated on the CPU 
following Equation (2), it does not only require loading RSAs 
into the memory, but also needs to load the corresponding 
bwt or rbwt. This results in more memory overhead in the 
host. In addition, more compute overhead will also be 
required to calculate j and t values in Equation (2), thus 
increasing the execution time. Fortunately, we find that the 
calculation of j and t is independent of RSAs and can be 
directly computed using the corresponding bwt (or rbwt) for 
each occurrence. Hence, after gaining the SA interval, we 
calculate the j and t values on GPUs for all indices in the SA 
interval, and then output them instead of the final starting 
positions. In this way, on the host we only require loading 
the RSAs into the memory, and can get the starting position 
of each occurrence very quickly by only two operations: one 
table lookup and one addition. 

D. Exact-match and Inexact-match Search 
For exact-match search, it can be easily done following 

the calculations in Equation (1). As for inexact-match search, 
it can be transformed into exact-match search by introducing 
substitutions (mismatches), insertions and deletions in the 
seed and the reference genome. Since we do not allow 
insertions and deletions, the inexact-match search can be 
transformed to the exact-match search of all possible 
sequences that have a Hamming distance of not more than 
the allowable number of mismatches. Because the exact-
match search is straightforward, two separate CUDA kernels 
are employed to implement the two searches. In addition to 
the forward strand of S, we also consider its reverse 
complement. For simplicity and clarity, the following 
discussions only refer to the search from the forward strand, 
if not specified. 

The inexact-match search is equivalent to the traversal of 
a complete 4-ary tree, where each possible sequence 
corresponds to a path from the root (the root node is Ø, 
meaning an empty string) to a leaf and each node along the 
path corresponds to a base in the sequence that has the same 
position. Hence, we can find all inexact matches of S by 
traversing the tree using either depth-first search (DFS) or 
breadth-first search (BFS). In this paper, we use the DFS 
traversal and implement it using a stack data structure. Since 
S has a maximal allowable number of mismatches, we must 
confine the number of mismatches not to exceed the limit 
when searching along a path from top to down. If the number 
of mismatches, in the sub-path down to the current node, 
exceeds the limit, we will stop traversing the sub-trees of the 
current node. In addition, to further reduce the search space, 
we estimate the lower bound of the number of mismatches 
that are required to transform the substring, represented by 
the sub-path down from the current node to the leaf, to have 
exact matches to the genome. The approach proposed in 
BWA is used, which estimates the lower bound of the 
number of mismatches for a string by counting the number 
of all constituent non-overlapping substrings that do not have 
exact matches to the genome. We define a vector DIFFS(•) 
for S to store the estimated values, where DIFFS(i) 
represents the minimal number of mismatches that are 
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required in the suffix of S starting at position i+1, where 
0≤i<|S|-1. 

To generate fixed-length seeds, we need to identify exact 
or inexact matches in the reference genome for k-mers from 
the input short reads. Since we only measure the runtime 
performance of fixed-length seed generation on the GPU, 
without loss of generality, we pre-generate k-mers from short 
reads and then take these k-mers as input for simplicity. For 
both exact-match and inexact-match searches, one thread is 
assigned to search a k-mer as well as its reverse complement. 
Since we usually have a large number of k-mers, it is 
infeasible to load all k-mers into the device memory on the 
GPU. In this case, we organize all k-mers into batches and 
employ multiple passes to complete the whole search. In this 
way, in each pass, we only need to load a batch of k-mers 
into the device memory, thus significantly alleviating the 
device memory pressure. The k-mer batch is stored in texture 
memory bound to linear memory at start-up time, and then is 
loaded into shared memory when performing the search 
since we see slight performance improvement after using 
shared memory. For a k-mer, it is possible to find a lot of 
matches in G, making it difficult for us to store and to output 
all matches because after loading the BWT data, we usually 
have a little device memory available. To solve this problem, 
we simply discard all matches of a k-mer if the number of its 
matches exceeds a specified threshold (128 by default). 
During the search, we will stop the traversal if a k-mer has 
already found more than the threshold matches. This 
approach works but has a risk of discarding some significant 
matches. Figure 4 shows the pseudocode of the CUDA 
kernel for the inexact-match search from the forward strand 
of S. 
 

#bwt: the forward BWT of genome G; rbwt: the reverse BWT of G; S: a forward-strand k-mer.

1. estimate the lower bound of the number of mismatches for each suffix of S
diffs = 0; f = 0; l = |G|;
for i=|S|-1 to 0 do

f = bwt.C(S[i]) + bwt.Occ(S[i], f-1) + 1; l = bwt.C(S[i]) + bwt.Occ(S[i], l); DIFFS[i] = diffs;
if f > l then

f  = 0; l = |G|; ++diffs;
fi

done

2. initialize the stack from the first base of S;
while (stack is not empty) do

access to the top node (the current node);
if have attempted all mutations for the current node then

pop out the top node from the stack;
continue;

fi
mutate the base corresponding to the current node;
check the number of mismatches in the full length;
if exceeding the limit then

pop out the top node from the stack;
continue;

fi
calculate the suffix array interval f and l from the mutation in the current node using rbwt.
if f <= l then

if reaching the end of S then
if the total number of k-mer matches exceeds the threshold then

return;
else

store the hit;
fi

else
push the next base in S into the stack as well as other information;

fi
fi

done  
Figure 4.  Pseudocode of the CUDA kernel for inexact-match search from 

the forward strand of a k-mer S 

IV. PERFORMANCE EVALUATION 

A.  Experimental Design 
We have measured the performance of our GPU-based 

seed generator by comparing the execution times of the CPU 
and GPU versions that execute the same core code, where 
the kernel code for a single CUDA thread is ported onto the 
CPU with no need of algorithmic changes. All the tests are 
conducted on a workstation with an AMD Opteron 2378 2.4 
GHz quad-core processor and 8 GB RAM running the Linux 
operating system. A Fermi-based Tesla C2050 GPU is used 
for the evaluation of the GPU version. This GPU consists of 
14 SMs (a total of 448 SPs) with a core frequency of 1.15 
GHz and with 3 GB of user available device memory (after 
turning off error correcting code). The CPU version has been 
parallelized using the OpenMP programming model and is 
compiled with the GNU GCC (version 4.1.2) tool chain. The 
GPU version is compiled with the CUDA toolkit release 4.0.  
Both of the two versions are optimized at compile time using 
the compiling option “-O3”. 

We have pre-generated five k-mer datasets from short 
reads simulated from the human genome, named as S11, 
S15, S20, S24 and S30 respectively. Each dataset consists of 
one million k-mers and all k-mers in a specific dataset have 
the same lengths. The k-mer length of a dataset can be 
inferred from its name, i.e. S11 means a k-mer length of 11 
and S15 means a k-mer length of 15 and so on. All the 
following tests do not allow mismatches in the seeds for the 
S11 and S15 datasets of small k-mer lengths, allow one 
mismatch for the S20 and S24 datasets of medium k-mer 
lengths, and allow two mismatches for the S30 dataset of 
large k-mer lengths. As mentioned above, two separate 
CUDA kernels are used for the exact-match and inexact-
match search respectively. For all tests, we set a thread block 
to have 192 threads for the exact-match search and 64 
threads for the inexact-match search. 

B. Results and Discussion 
Firstly, we have evaluated the total runtime (measured in 

wall time) performance to complete the whole seed 
generation, where the GPU version calculates the location 
information (see Equation (2)) of all matches on the GPU. 
Table 1 gives the runtimes (in seconds) of the CPU and GPU 
versions as well as the speedups of the GPU version over the 
CPU version. The experimental results in the table indicate 
that the GPU version on a single GPU yields significant 
speedups over the CPU version on either a single CPU core 
or four CPU cores. Specifically, the GPU version achieves 
an average speedup of 9.5, with a highest of 13.5, over the 
CPU version on a single CPU core, and an average speedup 
of 2.9, with a highest of 3.8, over the CPU version on four 
CPU cores. Furthermore, the speedups generally increase 
with the k-mer length increasing, even though a lowered 
speedup is encountered when using the S24 dataset. 

Secondly, we have evaluated the runtime performance 
for only searching the k-mer matches using the BWT and 
FM-index, without considering locating occurrences using 
the suffix array. Table 2 shows the runtimes (in seconds) of 
the two versions as well as the speedups of the GPU version 
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over the CPU version. Similar to the results of the whole 
seed generation (see Table 1), the speedups generally 
increase with the k-mer length increasing except for a 
lowered speedup when using the S24 dataset. The GPU 
version achieves a highest speedup of 13.6 over the CPU 
version on a single CPU core, and a highest speedup of 3.9 
over the CPU version on four CPU cores. Readers might be 
surprised at the speedups for the S11 and S15 datasets, where 
the GPU version is slower than the CPU version. This can be 
explained by the short computational time on the GPU, due 
to the small k-mer lengths, and the relatively larger extra 
overhead, introduced by data preparation and transfer for the 
CUDA kernel executions. However, after performing the 
exact-match search using the other three datasets of larger k-
mer lengths, we found that the GPU version is faster than the 
CPU version on a single CPU core, with speedups increasing 
as the k-mer lengths increase, but not very much (data not 
reported). 

TABLE I.  PERFORMANCE COMPARISON FOR THE WHOLE SEED 
GENERATION EXECUTION 

Dataset #Mismatch 
Time (in seconds) Speedup 

1 
 core  

4 
cores 

1 
GPU 

1 
core 

4 
cores 

S11 0 60.7 17.2 10.6 5.7 1.6 
S15 0 122.4 36.1 12.4 9.9 2.9 
S20 1 179.8 59.1 17.6 10.2 3.4 
S24 1 129.1 44.3 15.8 8.2 2.8 
S30 2 1094.0 311.2 80.9 13.5 3.8 

 

TABLE II.  PERFORMANCE COMPARISON FOR THE K-MER MATCHES 
SEARCH 

Dataset #Mismatch 
Time (in seconds) Speedup 
1 

 core 
4 

cores 
1 

GPU 
1 

core 
4 

cores 
S11 0 5.8 3.4 6.8 0.9 0.5 
S15 0 7.3 4.1 7.2 1.0 0.6 
S20 1 139.8 47.6 14.9 9.4 3.2 
S24 1 107.6 37.9 13.4 8.0 2.8 
S30 2 1067.6 309.5 78.6 13.6 3.9 
 
Finally, we have evaluated the runtime performance of 

the GPU version by calculating the location information 
sequentially on the CPU, instead of the GPU. Figure 5 shows 
the speedups over the CPU version on a single CPU core and 
four CPU cores. For the S11 and S15 datasets of small k-mer 
lengths, the runtimes of the CPU and GPU versions are 
almost the same. Referring to the runtimes shown in Tables 1 
and 2, we found that for datasets of small k-mer lengths, the 
calculation of location information dominates the whole 
execution. This tells us that we should select as small p for 
RSA as possible, according to the available memory capacity 
in the host, to speed up the locating of positions. For the 
other three datasets, the GPU version achieves considerable 
speedups over the CPU version with increasing speedups 
towards larger k-mer lengths. For the S30 dataset, the GPU 
version yields a highest speedup of 11.0 (3.1) over the CPU 
version on a single CPU core (four CPU cores). 

V. CONCLUSION 
In this paper, we have investigated and evaluated the 

performance of fixed-length seed generation on GPUs based 
on the BWT and FM-index. In addition to exact matches, we 
allow mismatches to occur at any position within a seed. For 
the exact-match search, we simply follow the backward 
search procedure using the FM-index and for the inexact-
match search, we employ a stack data structure to implement 
the DFS traversal in order to find all possible matches that 
have a Hamming distance of not more than the allowable 
number of mismatches. The major challenges for GPU-based 
seed generation using the BWT are the frequent accesses to 
global memory with poor data locality and the divergence of 
search paths for different k-mers. The poor data locality will 
lead to more misses in the L1/L2 caches for global memory 
accesses and the divergence of search paths cause the 
execution paths of the threads in a warp to diverge 
frequently. Overall, we have achieved some encouraging 
experimental results through our evaluations, where the GPU 
version achieves significant speedups over the CPU version. 
Specifically, the GPU version achieves an average speedup 
of 9.5 (2.9), with a highest of 13.5 (3.8), over the CPU 
version on a single CPU core (four CPU cores). Furthermore, 
the speedups generally increase with the increase of k-mer 
lengths. We hope these results can provide some useful 
guidance to the development of GPU-oriented seed 
generators for genomics. 
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Figure 5.  Speedups of the GPU version with occurrence locating 

sequentially on the CPU over the CPU version on a single CPU core and 
four CPU cores 
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