
An Efficient and Scalable Implementation of SNP-Pair Interaction Testing for

Genetic Association Studies

Lars Koesterke
*
, Dan Stanzione, Matt Vaughn

Texas Advanced Computing Center

The University of Texas

Austin, Texas, USA

*e-mail: lars@tacc.utexas.edu

Stephen M. Welch
*
, Waclaw Kusnierczyk

Department of Agronomy

Kansas State University

Manhattan, Kansas, USA

*e-mail: welchsm@ksu.edu

Jinliang Yang, Cheng-Ting Yeh, Dan Nettleton, Patrick S. Schnable
*

Iowa State University

Ames, Iowa, USA

*email: Schnable@iastate.edu

Abstract— This paper describes a scalable approach to one of

the most computationally intensive problems in molecular

plant breeding, that of associating quantitative traits with

genetic markers. The fundamental problem is to build

statistical correlations between particular loci in the genome of

an individual plant and the expressed characteristics of that

individual. While applied to plants in this paper, the problem

generalizes to mapping genotypes to phenotypes across all

biology. In this work, a formulation of a statistical approach

for identifying pairwise interactions is presented. The

implementation, optimization and parallelization of this

approach are then presented, with scalability results.

Keywords: parallel, trait, gene expression, eQTL

I. INTRODUCTION

Pressure on the world's food supply from increased
population, dietary changes, loss of farmland, and
anthropogenic climate change makes it essential that we
radically improve the rate and efficiency at which we
produce our staple food crops [1-2]. Over the course of the
last century, the science of plant breeding has advanced to
produce the annual increases in crop yield that have allowed
the world population to burgeon while the average price of
calories has declined (USDA-ERS). Yet, just as we begin to
truly need even more spectacular increases in yield, the rate
at which improvements are made has begun to reach a
plateau - we've essentially reached the limits of traditional
plant breeding [3]. If we're not successful in reversing this
trend, then by sometime in the middle of this century we'll
simply be unable to provide enough calories to feed the
citizens of our world [4].

For the most part, plant breeding is an empirical process -
it proceeds by selecting and breeding together parents that
have the best versions of traits deemed desirable. This has
been surprisingly successful, but we don't know (with a few
exceptions) which biochemical pathways and genetic
processes are being affected by the selection process. Faced
with diminishing returns, we need to obtain a fine-grained
understanding of the relationships between the genetic

language of our crop plant species, the dynamic environment
in which they grow, and their resulting complement of traits
[5-6]. We need this knowledge so that we can predict the
genetic codes that will, in specified environments, yield
desirable traits such as increased drought tolerance,
resistance to disease, or enhanced starch production. This
knowledge provides invaluable guidance in selecting which
parents to breed together. Conversely, we need to be able to
predict the features that an individual will develop knowing
little more about it than its set of genetic codes. This will
enable us to predict the potential performance of the
offspring that might arise from given parents.

One way of obtaining this knowledge comes in the form
of 'association studies'. Broadly stated, this method exploits
the natural variation that different individuals display for
specific traits of interest. This information is coupled with
experimental measurement of the genetic code at intervals
across the genome for those same individuals and, if present,
correlative relationships between the two data sets are
identified. Depending on the experimental design, the
density of genome locations surveyed, and the inheritance
structure of the population being examined, these studies are
known as Quantitative Trait Locus (QTL) mapping
experiments or Genome Wide Association Studies (GWAS).
A variety of statistical methods used in such studies –
including maximum likelihood, Bayesian estimation, and
general linear modeling [7-12] – all share a common
problem in that as the analyses increase in complexity and
produce more detailed data, the computational requirements
to perform them rapidly exceed the resources readily
available to the average breeder. Thus there is significant
interest in using high-performance computing to accelerate
this process [13-15, P. Bradbury pers. comm].

Even when a specific marker is found to associate with a
trait of interest, it is a common situation that association only
accounts for a fraction of the trait’s variance. This is not
surprising because many traits are 'polygenic', meaning that
several genes contribute additively to the final outcome.
However, even when polygenic relationships are identified,
as much as 95% of the variance can remain unaccounted for

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.190

522

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.190

518

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.190

518

by classical inheritance [16]. One popular hypothesis is that
pairwise interactions between and among genes may account
for much of this missing heritability [17-19].

However, searching for interactions is much more
computationally intensive than single-gene analysis because
all pair-wise relationships between genetic positions have to
be computed and tested for statistical significance.
Specifically, if one has a data set consisting of 10

6
 genetic

positions (which is a reasonable number given the state of
the art in DNA sequence technology), he or she will need to
perform not 10

6
 computations but 5x10

11
 computations for

every trait to be examined. The problem may be amplified by
the need to use permutation-testing methods for identifying
significance thresholds.

The nature of the algorithm and the amount of data puts
the analysis well in the realm of High Performance
Computing (HPC) on large clusters. Code based on scripting
languages like Perl, Python, R, etc., which are widely used in
Bioinformatics, are insufficient because they are very slow,
and they cannot (easily) scale to thousands of compute cores.
Resolving the latter problem alone would not even be
sufficient. The competition for HPC compute resources is
fierce and only projects that use efficient approaches and
languages have a chance to be awarded substantial amounts
of compute time.

We describe here the outcome of a collaboration between
researchers versed in implementing highly optimized and
parallelized scientific algorithms, plant molecular geneticists,
and statisticians, to produce an efficient and scalable code for
performing permutation tests for detecting pairwise gene
interactions that will facilitate rigorous analysis of large,
complex molecular breeding data sets.

II. BACKGROUND

The task of identifying stretches of DNA that may
contain genes controlling particular traits is critical to solving
the “Genotype-to-Phenotype Problem”, declared by the
National Research Council to be a top-priority problem in
applied biology [20]. To date there are two major
approaches. The first is direct experimentation, which
involves using various technologies to generate either
"shotgun" or targeted changes to the DNA, and then tracking
down the location of changes that seem to affect the trait of
interest. Such approaches are time-consuming and can easily
take several years. The second general class of methods
involves looking for statistical associations between
naturally-occurring DNA differences and variation in
numerical measurements of the trait of interest. Commonly,
the statistical methods involve heavy use of general linear
models. The precise form of the model depends on the
breeding pattern that generated the particular individuals
whose trait values were measured. These patterns range from
the very free-form family trees that characterize human
populations to very structured arrangements within plant
populations that have been specifically produced for use in
association studies. The range of general linear models
(GLMs) varies correspondingly.

From the computational standpoint, there are also various
methods used for estimating parameters of these GLMs to

extract the desired genetic information. These methods can
range from simple least-squares regression to the iterative
procedures used for "mixed models" - that is, models that
explicitly represent both random and fixed effects. There are
computational commonalities that exist whichever of these
methods is used. The basic idea is to use the markers as
independent variables and the trait scores as dependent
variables. Then the models are fit to the data using model-
specific matrix methods. If a particular marker, or set of
markers, is near genes that, in fact, control the trait of
interest, then the expectation is that the model, when fit, will
explain a statistically significant percentage of the trait
variation. For markers where this does not happen, one
concludes that whatever effect they may have, if any at all, is
too small to be detected.

Thus, the computational task of model fitting must be
repeated for as many markers or combinations of markers as
are deemed relevant to the problem. As described elsewhere,
this can run into many billions of model fitting operations.
Although there are some differences in nomenclature, this
general approach is referred to as "QTL mapping" or
"association mapping". The acronym "QTL" stands for
"quantitative trait locus" - that is, a place in the genome that
is associated with some quantitative trait. Studies are
currently underway by our group and others to find ways to
accelerate these calculations, including GPU based
implementations.

The approach taken in this paper has the same general
objective as these standard methods - to identify genomic
regions exerting control on a trait or traits of interest beyond
simple additive effects. There are, however, two differences.
The first is that we are specifically looking for interacting
controls, i.e. pairs of markers that jointly influence the traits
of interest. The second difference is that our approach does
not directly involve matrix operations, but only simple
differences between the mean trait values of subgroups of
individuals whose marker states vary in a systematic way
(section III.B.1).

III. DATA, STATISTICAL APPROACH, AND ALGORITHM

A. Input Data

Two datasets containing Marker Scores and Trait Values
from two different files are used for the calculations. The
Markers file contains the genotype information. For each
individual, information about which parent provided the
particular DNA character at a particular location is specified.
This information is gathered from DNA sequencing,
microarrays, or amplification-based methods. The Trait
Value file contains the measured values for particular
characteristics of those same individuals. For this type of
analysis, the traits in question can all be expressed as a
numerical value, which is why they are called “quantitative
traits”. A real-world example of a quantitative trait is plant
height at developmental maturity. In both files a line starts
with a RIL (Recombinant Inbred Line) designator (1st
column), which is a unique string used to identify the
individual from which the data were derived. Both datasets
have the same number of lines (NRIL) and the RIL

523519519

designators match. Each RIL represents one specific
genotype (or “line”) that results from cross-breeding of two
parents with known genetic characteristics, followed by
several generations of self-breeding to eliminate
heterozygosity across its genome.

The first file contains Trait Values for a number of traits.
Each trait is represented by one column. The trait values are
only known to a few significant digits and single precision is
sufficient for storage and all numerical operations. An
example of the Trait Values file is given below. The first
column contains the line designators. Other columns hold the
measured values for the traits. Missing information is
denoted NA. Columns and rows are trimmed.

M0001 0.2859 2.3228 26.5275 163.401 29.3054 379.593 …
M0002 0.2535 3.0007 25.0224 174.592 NA 509.122 …
M0004 0.2617 1.8441 NA 142.614 16.7467 237.905 …

…
The second file contains markers with chromosomal

coordinates and genotypes for each of the RILs (lines). An
example of the Markers file is given below. The first column
contains the line designators. “NA” is missing data. Columns
and rows are trimmed.

M0001 1 1 1 0 NA 0 …
M0002 0 0 NA 1 1 1 …
M0004 0 0 0 0 NA 1 …

…
Note that both files contain additional information, i.e.,

descriptive information of the traits, trait names,
chromosome on which the marker resides, and the location
of the marker within the chromosome measured in relative
units (centiMorgans). This information is used during
subsequent steps, but is not relevant for the interaction
testing described in this paper..

B. Statistical Approach

It is the goal to calculate interaction values (Finter) and a
distribution of maximum interaction values (Fmax) for all
traits provided in the Trait Values file. We describe the
calculation of Finter first (section. III.B.1) and progress to the
calculation of Fmax in section. III.B.2.

1) Calculation of Finter. For now we assume that no data
are missing in either input file. Interaction values are
defined as the interaction between a pair of markers, i.e. two
columns in the marker file. All possible combinations will
be examined; for Nmark markers, Npair=(Nmark (Nmark–1))/2
pairs can be selected.

Since each potential interaction involves two markers,
four different marker combinations are possible: 11, 00, 01,
and 10. All summations are done with respect to these four
marker combinations. The trait values are denoted by y;
specifically yij is the score of the jth

 individual with marker
combination i=1..4, corresponding to 11, 00, 01, and 10,
respectively.

ni is defined as the number of individuals with the ith

marker combination (i.e., 11, 10, 01, or 00). If one or both
markers are missing the individual is ignored. For a marker
pair the interaction value (Finter) is defined as follows:

()

()

()

1

4 4
2

1 1 1

2

1 2 3 4

4
1

1

1

4

i

i

n

i ij

ji

n

ij i i

i j i

inter

i

i

y y
n

MSE y y n

y y y y
F

MSE n

=

= = =

-

=

=

æ ö é ùæ ö
= - -ç ÷ ê úç ÷

è øë ûè ø

+ - -
=

æ ö
ç ÷
è ø

å

åå å

å

i ij
y yy y

i ij
n

i iji ij
y yy y

1 1 11 1 11 1 11 1 1è ø
)

1 1 11 1 1

)
1 1 11 1 1

y ny ny ny ny ny ny ny n))y ny n)y ny n))))

)1 2 3 4
y y y y

1 2 31 2 3
y y y yy y y y

1 2 31 2 31 2 3

The MSE numerator can be simplified as follows

() ()
4 4

2
2 2

1 1 1 1

4 4 4
2 2

1 1 1 1 1 1

4 4 4
2 2

1 1 1 1 1

4 4
2

1 1 1 1 1

2

2

2

1
2

i i

i i i

i i

i i i

n n

ij i ij ij i i

i j i j

n n n

ij ij i i

i j i j i j

n n

ij i ij i i

i j i j i

n n n

ij ij ij

ii j i j j

y y y y y y

y y y y

y y y n y

y y y n
n

= = = =

= = = = = =

= = = = =

= = = = =

- = - +

= - +

= - +

æ ö
= - +ç ÷ç ÷

è ø

åå åå

åå åå åå

åå å å å

åå å å å

) ()2 2

1 1 1 1

ij ij i i(y yij ij i iij ij i i(- +(2 22 222 22 2y y y yy y y y(2ij ij i iij ij i iij ij i i(2åå)ij i)ij i)- =))ij i)

2 2

1 1 1

j i iy yj i ij i iåå2 22 2
j i ij i iy yy yj i ij i i+2 22 2y yy yj i ij i i

2 2

1 1

ij i iy n yij i iij iå å2 22 2
ij iij iy ny nij iij i+2 22 22 2y ny nij iij iij i

2
4

1 1

1 in

i ij

ii j

y
n= =

æ ö
ç ÷ç ÷
è ø

å å

Setting 1

1

in

i ij

j

S y
=

ºå and
2

2

1

in

i ij

j

S y
=

ºå , MSE simplifies to:

4 4 4 4
1 2 1 2

2 1 1

1 1 1 1

4 4 4
1 2

2 1

1 1 1

4 4 4

2 1

1 1 1

2 4

4

4

i i i i i i

i i i i

i i i i

i i i

i i i i

i i i

MSE S n S n S n

S n S n

S S y n

- -

= = = =

-

= = =

= = =

é ùæ ö æ ö
= - + -ê úç ÷ ç ÷
è ø è øë û

é ùæ ö æ ö
= - -ê úç ÷ ç ÷
è ø è øë û

é ùæ ö æ ö
= - -ê úç ÷ ç ÷
è ø è øë û

å å å å

å å å

å å å
è ø1 1 11 1 11 1 11 1 11 1 11 1 1è ø1 1 11 1 11 1 11 1 11 1 11 1 1

y ny ny n
i i i ii i i ii i i i

y ny ny ny ny ny ny ny ny n
i i i ii i i ii i i i

y ny ny ny ny ny n
è ø
ç ÷ç ÷i i i ii i i ii i i ii i i ii i i ii i i ii i i ii i i ii i i ii i i ii i i ii i i ii i i ii i i ii i i i

è ø
ç ÷ç ÷ê úê úê úê úê úi i i ii i i ii i i ii i i ii i i ii i i ii i i ii i i ii i i ii i i ii i i ii i i ii i i ii i i i

A total of Npair interaction values are calculated for each

trait. Once these calculations are performed for the data as
observed, the y-values are randomly shuffled across the
lines and the calculation is repeated. This is done many
times (Nperm) in a Monte Carlo simulation to approximate
the distribution of the Fmax statistic (next section) under the
null hypothesis of no association between the trait in the
marker scores.

2) Calculation of Fmax: Fmax is defined as the maximum
(across all marker pairs) of all interaction values (Finter) for a
given permutation of the data. Hence, the calculation
described in sect. III.B.1 is executed 1+Nperm times for every
trait, once with the original order of trait values for the
calculation of Finter, and Nperm times for the calculation of the
Fmax distribution. This distribution is then used to calculate
the significance levels of the Finter values computed for each

524520520

marker pair in a manner adjusted for testing multiple
dependent marker pairs within each trait [21].

3) Incomplete data: Collection of trait data is often a
very labor intensive process, requiring months of field work.
Sometimes, individual RILs may fail to grow or be lost to
herbivory and disease, and in some cases, the trait
measurement may simply be unsuccessful. Collection of
genome data takes place in laboratory conditions and is
generalbly reliable, but the large number of measurements
may still result in missing data for specific markers in
particular lines. Thus, data may be missing in either input
dataset. If either the trait value (yj) or any markers are
missing, the line is omitted from all summations. If a trait
value is missing the line is not considered in the
permutations. Also, if any of the ni’s are zero or if the
sum(ni) <= 4, then no interaction value (Finter) is calculated.

C. Algorithm

Four implementations are described: serial/naive,
serial/optimized, parallel/OpenMP, and parallel/MPI. The
description covers the actual calculation, but does not
consider (binary) I/O.

1) Naive serial implementation: A straightforward
implementation of the equations above was initially coded
in serial fashion as a baseline. The pseudo-code for the
serial implementation is provided below in listing 1. Note
that the calculation of Finter and Fmax is independent of the
trait and the itr index is dropped from the description. Hence
the index itr does not appear in the pseudo-code except as
the index of the outermost loop.

Loop over all Traits: itr
 Loop over 1+Nperm permutations: iperm=0..Nperm
 If iperm > 0: permute valid trait values (yj != “NA”)
 Fmax = 0.
 Loop over Npair marker pairs: imp
 ni = 0 i=1..4
 s1i = 0. i=1..4
 s2 = 0.
 Loop over all lines (RILs): j
 If yj = “NA”: cycle
 If marker1 or marker2 = “NA”: cycle
 Determine index i from the two markers
 ni = ni + 1
 s1i = s1i + yj
 s2 = s2 + yj * yj
 End loop (j)
 If any(ni) = 0 or
 sum(ni) <= 4: Finter = “NA”; cycle
 meani = s1i / ni (I=1..4)
 contrast = meani=1 + meani=2 – meani=3 – meani=4
 mse = s2 – sum(s1i * meani, i=1..4) / (sum(ni,i=1..4) – 4)
 Finter = contrast^2 / (mse * sum(1 / ni, i=1..4))
 If iperm = 0: Output Finter
 Fmax = max(Fmax, Finter)
 End loop (imp)
 Output Fmax
 End loop (iperm)
End loop (itr)

The naive serial version written in Fortran is about 1000
times faster than a similar implementation in Python.

2) Optimized serial implementation: The naive serial
implementation suffers from two performance penalties.
The number of floating-point operations is not minimized,
but more importantly the innermost loop over the lines
(RILs) cannot be vectorized because of the two if conditions
that skip over invalid traits and/or marker pairs, and the
indirect addressing of ni and s1i through the index i. Without
vectorization only one multiplication or addition can be
executed in a SIMD instruction (Single Instruction Multiple
Data) out of eight possible concurrent operations on a
modern processor (single precision, four multiplications and
four additions).

To enable vectorization and to increase speed, the loop
order has to be changed and a vectorizable loop has to
become the innermost loop. The trait loop (itr) and the
permutations loop (iperm) are candidates but the loop over
marker pairs is not, since it bears the indirect addressing.
For the following two reasons we chose to move the
permutation loop inside the RIL-loop. First, the number of
loop iterations is large (at least 1000 to achieve meaningful
statistics), while the number of traits may be very small or
even one. Second, the exact number of permutations is not
important, allowing us to choose a total number of loop
iterations in the innermost loop (1+Nperm) that is divisible by
4, which supports effective loop vectorization.

The pseudo-code for the optimized serial implementation
is given below. The core is a nested loop over RILs and
permutations. The sum ni is independent of the permutation
and can be determined outside of the core. The permutation
of the Trait Values is done in advance and the permuted
Trait Values are stored in a separate 2D array zj,iperm to avoid
indirect addressing. The inner loop of the core vectorizes
and the number of loop iterations is divisible by 4 which is
the SIMD width of x86 processors in single precision. Note
that the calculation of Finter and Fmax is independent of the
trait. Thus, the index itr does not appear in the pseudo-code.

Loop over all Traits: itr
 Loop over Npair marker pairs: imp
 Calculate ni for the marker pair under consideration
 Calculate zj,iperm from permutations of yj

Comment – Core of nested loops: RILs and permutations
 Loop over all lines/RILs: j
 If zj,iperm=0 = ” NA”: cycle
 If marker1 or marker2 = “NA”: cycle
 Determine index i from the two markers
 Loop (vectorized) over permutations: iperm=0..Nperm
 s1i,iperm = s1i,iperm + zj,iperm
 s2iperm = s2iperm + zj,iperm * zj,iperm
 End loop (iperm)
 End loop (j) Comment – End of nested core loops

 Calculate and output Finter
 Update Fmax for all permutations
 End loop (imp)

525521521

 Output Fmax
End loop (itr)

The optimized serial version is about 12 times faster than
the naive serial version, which can be mainly attributed to
the vectorization of the inner loop of the core.

3) Parallel implementation with OpenMP: The second
loop (marker pairs: imp) is parallelized with OpenMP.
Summation variables (ni, s1i, s2, etc.) are made private and
an OpenMP reduction is used for the calculation of Fmax.

Loop over all Traits: itr

 OpenMP: parallel do with reduction (+) of Fmax

 Summation variables (ni, s1i, s2, etc.) are made private

 Loop over Npair marker pairs: imp

 Calculate ni for the marker pair under consideration

 Calculate zj,iperm from permutations of yj

 Loop over all lines/RILs: j

 If zj,iperm=0 = “NA”: cycle

 If marker1 or marker2 = “NA”: cycle

 Determine index i from the two markers

 Loop over 1+Nperm permutations: iperm=0..Nperm

 s1i,iperm = s1i,iperm + zj,iperm

 s2iperm = s2iperm + zj,iperm * zj,iperm

 End loop (iperm)

 End loop (j)

 Calculate and output Finter

 Update Fmax for all permutations

 End loop (imp)

 omp: end parallel

 Output Fmax

End loop (itr)

4) Parallel implementation with MPI: The outermost
loop (itr) is parallelized with MPI. Every MPI task is
assigned a range of traits (itr_srank and itr_erank) to
distribute the work as evenly as possible. Note that OpenMP

may be used seamlessly within the MPI implementation.

MPI_Init
MPI_Comm_size(…, size, …)
MPI_Comm_rank(…, rank, …)

Determine non-overlapping and balanced itr_srank and
itr_erank for every MPI task.

Loop over all Traits: itr = itr_srank, itr_erank
 omp: parallel do with reduction (+) of Fmax
 Summation variables (ni, s1i, s2, etc.) are made private
 Loop over Npair marker pairs: imp
 Calculate ni for the marker pair under consideration
 Calculate zj,iperm from permutations of yj
 Loop over all lines/RILs: j
 If zj,iperm=0 = “NA”: cycle
 If marker1 or marker2 = “NA”: cycle

 Determine index i from the two markers
 Loop over 1+Nperm permutations: iperm=0..Nperm
 s1i,iperm = s1i,iperm + zj,iperm
 s2iperm = s2iperm + zj,iperm * zj,iperm
 End loop (iperm)
 End loop (j)

 Calculate and output Finter
 Update Fmax for all permutations
 End loop (imp)
 omp: end parallel
 Output Fmax
End loop (itr)

5) MPI version limitations & alternatives
The trait-based MPI implementation limits the number of
MPI tasks to the number of traits, and therefore the amount
of resources that can be utilized. However, the dataset at
hand contains over 13,000 traits, which would allow for
using at least 13,000 cores, and up to ~100,000 cores if
combined with OpenMP on eight-core blades. However,
this exceeds the number of cores in most clusters and the
single-core time to analyze one trait is only a few minutes.

The situation changes with datasets that contain just a
few traits (or even one) but a greatly increased number of
markers. The number of marker pairs and, therefore, the
compute time per trait would increase quadratically while
the number of cores would be dramatically limited. To
enable the use of many compute cores, the MPI
parallelization would have to move from the trait-loop to the
marker-pair-loop, i.e., the same loop that is parallelized with
OpenMP. Changes to the code would be minimal and would
mostly be limited to the use of an MPI_Reduce call for the
calculation of Fmax. Note that these changes can be easily
done while keeping the OpenMP parallelization intact.

IV. PERFORMANCE AND SCALING

We introduce the experimental setup and the hardware
in section IV.A and discuss the performance and scaling
aspects of the serial and parallel versions in sections III.B to
III.D. Figure 1 (sections III.C-D) gives scaling diagrams.

A. Experimental Setup and Hardware

We have used 2 large clusters, Ranger and Longhorn, at the

Texas Advanced Computing Center (TACC) for the

evaluation of the performance and the scaling. Ranger is an

AMD Opteron based system (2.3GHz) with a total of

62,976 compute cores arranged in 3,936 quad-socket, quad-

core blades. Longhorn has 256 dual-socket, quad-core Intel

Nehalem blades with a total of 2048 cores (2.53GHz). The

dataset contains 13,824 traits, 56 lines (RILs) and 1127

markers (634,501 marker pairs). The number of

permutations is set to 999. To keep the run-time relatively

consistent in the strong and weak scaling experiments, only

a few traits are selected. The total number of operations and

the amount of output scale linearly with the number of traits.

526522522

For the strong scaling (OpenMP) the number of traits is set
constant, while for the weak scaling (MPI) the number of
traits is selected proportional to the number of MPI tasks.
Both parallelization techniques are implemented side-by-
side, so that the code can be run in Hybrid mode (MPI with
OpenMP, not shown).

B. Serial Performance

The code was written in Fortran2003 and compiled with
the Intel compiler version 11 and was carefully hand-
optimized for maximum performance. The optimized serial
version of the code performs about 2 and 1.3 floating-point
operations per clock cycle on Longhorn and Ranger,
respectively. This translates to 25% and 16% of the peak
performance, given that an x86 CPU has a nominal single
precision peak performance of eight operations per clock
cycle (four additions and four multiplications). The
difference of performance on the two platforms can be
traced back to the much improved memory bandwidth of the
Intel Nehalem architecture. These are excellent performance
numbers, particularly with an unbalanced innermost loop
(two additions and one multiplication) and one division in
the second innermost loop. Note that the timings include
both the output and the random number generator calls.

The total number of operations needed to analyze the full
dataset is ca. Nops≈(Ntrait)(Nmarker-pairs)(21Nperm+3NpermNRIL)
or 1.6x10

15
 operations which translates to about 92 hours

(Longhorn: 2.5GHz, 2ops/cycle of achieved performance).
One trait can be analyzed in 25 seconds on Longhorn. The
speedup gained by the optimization is about a factor of 12.

Based on the naive serial implementation in C and Fortran
and the Python implementation, the total run-time is
estimated to 20-50 and 20,000 days, respectively. This
demonstrates vividly that only highly optimized code is
appropriate to perform the task.

C. OpenMP Performance

The OpenMP performance was measured in strong
scaling tests on a single Ranger and Longhorn blade. The
scaling is excellent. Due to the non-uniform memory
architecture (NUMA), applications parallelized with
OpenMP perform best when the number of threads is equal
to the number of cores per socket (4 on both platforms)
which minimizes memory traffic between sockets. The
parallel efficiency is about 99% for 4 threads on 1 socket.
The graph is shown in Figure 1.

D. MPI Performance

Weak scaling with MPI is excellent as well. In this test,
weak scaling was achieved by reading a fixed number of
traits per processor from the input file and increasing the
total number of traits as the number of MPI tasks is
increased. The parallel efficiency at 128 cores is above 99%
on both platforms. No degradation is observed at scale. The
scatter is due to the utilization of the file system by other
users. No performance test has yet been performed in
dedicated mode. Based on 95% parallel efficiency the whole
dataset can be analyzed within one hour on 96 Longhorn
cores and 192 Ranger cores, which translates to 12 blades in
both cases.

Figure 1: Strong and Weak Scaling on Longhorn and Ranger.
OpenMP achieves almost perfect scaling on one blade (left). The MPI version (right) scales perfectly to the highest core counts when the

performance degradation due to I/O contention is addressed by increasing the number of Object Storage Targets (OST) used by the Lustre
filesystem. Two timings are given at the highest core counts for 2 different stripe settings (default and an increase by 4 and 8, respectively).

The timings with the higher stripe number are indicated by squares and the performance gain is indicated by arrows. The maximum amount of

(binary) output is 4.8 and 19.4 GB, respectively, which translates to transfer rates of 248MB/s on Ranger and 51MB/s on Longhorn.

527523523

With OpenMP almost perfect scaling is achieved on one
blade (left panel). The MPI version (right panel) scales
perfectly to the highest core counts when the performance
degradation due to the large amount of output is
compensated for by increasing the number of Object Storage
Targets (OST) in the Lustre file system. Two timings are
given at the highest core counts for 2 different stripe settings
(default and an increase by 4 and 8, respectively). The
timings with the higher stripe number are indicated by
squares and the performance gains are indicated by arrows.
The maximum amount of (binary) output is 4.8 and 19.4 GB,
respectively, which translates to transfer rates of 248MB/s on
Ranger and 51MB/s on Longhorn.

E. Analysis

As mentioned previously, much larger datasets with a
vastly increased number of markers will become available
soon. Assuming that the number of markers may grow to
the order of 10

6
, the time that it takes to analyze one trait

would grow to 5,500 hours on a single compute core
(Longhorn), based on the estimate (10

6
 / 1127)

2
 x 25s. Even

given this likely future problem size, the scalability results
indicate that 125 blades (1,000 cores) could finish the job
within a couple of hours. These core counts represent only a
fraction of the size of modern leadership clusters. At such
speeds the analysis of large datasets with a million markers
and thousands of traits is within reach.

F. Absolute Performance

About two floating point operations per clock cycles are
achieved on one core which translates to 25% of peak in
single precision. This is high compared to average code
written in HPC languages (Fortran, C/C++) that execute at
about 1% to 5% of peak. The algorithm is of a conveniently
parallel nature and no data has to be exchanged between
MPI tasks. However, the assertion that this would lead
naturally to a linear speed-up is wrong. Multiple OpenMP
threads and MPI tasks are competing for resources, namely
for higher-level caches and memory bandwidth on a node,
and for I/O bandwidth. We have carefully analyzed the
behavior of several trial implementations on multiple
platforms to achieve the best scaling.

There is no competing software (apart from a Python
version) to which the current implementation can be
compared. However, from the high serial performance (25%
of peak) and the linear scaling it can be asserted that a
different implementation cannot be much faster.

We have conducted early production runs (not shown)
with about 13,000 traits, 10,000 permutations, 1000 markers
(0.5 million pairs) and 60 RIL’s. A calculation of this size
takes about 4.5 hours on 128 cores, which is equivalent to
600 hours on a single core (600 SUs). This means that
similar calculations can be performed on any small resource
(small cluster, single multi-core workstation). Calculations
that take 1,000 to 10,000 times longer (0.6 – 6 million SUs)
can be facilitated through the TeraGrid which is a nation-
wide resource that has provided over 1.3 billion SUs in
2010 to researchers in the US and the world.

V. CONCLUSIONS

Marker association studies are one promising approach to
solving the problem of relating genotype to phenotype. This
challenge is fundamental to modern biology. While
potentially a very powerful tool in tackling this challenge,
association studies are computationally intense, and the
availability of better sequencing technologies will make
datasets available that can not be analyzed by conventional
means. In this paper, we have shown that for one type of
association study, detecting pairwise interactions, it is
feasible to take advantage of both on-node and inter-node
parallelism to effectively scale this analysis. Given the size
and capability of modern clusters, this puts this technique
within reach of biologists.

We live in a world wherein even transient food shortages
can lead to severe price hikes resulting in rioting, as has been
seen within the last few years. Climate changes that result in
crop performance reductions can exacerbate this effect,
unfortunately in parts of the world where the social
infrastructures are least able to absorb the strains. Effective
scaling and application of the code developed here could
simplify the task of molecular plant breeders in selecting the
most effective crosses, thus helping to accelerate crop yield
increases.

This paper also represents the result of a very fast
interdisciplinary collaboration; the team, working
exclusively by email and conference calls, produced these
results in 5 weeks of work (gathering the data initially took
substantially longer!). Application of this code to larger
datasets is coming soon; integration of visualization
techniques, and much wider dissemination will all be
pursued in the coming months.

ACKNOWLEDGMENT

This work was supported by the iPlant Collaborative,
National Science Foundation Award #0735191, and by the
National Science Foundation’s TeraGrid.

REFERENCES

[1] Khush GS. What it will take to feed 5.0 billion rice consumers in
2030. Plant Mol Biol. 2005 Sep;59:1-6.

[2] Craufurd PQ, Wheeler TR. Climate change and the flowering time of
annual crops. J Exp Bot. 2009;60(9):2529-39. Review.

[3] Cooper M. and Hammer G.L. (eds): Complex traits and plant
breeding—can we understand the complexities of gene-to-phenotype
relationships and use such knowledge to enhance plant breeding
outcomes. Aust J Agric Res. 2005;56:869–960.

[4] Long SP, Ainsworth EA, Leakey AD, Morgan PB. Global food
insecurity. treatment of major food crops with elevated carbon
dioxide or ozone under large-scale fully open-air conditions suggests
recent models may have overestimated future yields. Philos Trans R
Soc Lond B Biol Sci. 2005 Nov 29;360(1463):2011-20. Review.

[5] Hammer G, Cooper M, Tardieu F, Welch S, Walsh B, van Eeuwijk F,
Chapman S, Podlich D. Models for navigating biological complexity
in breeding improved crop plants. Trends Plant Sci. 2006
Dec;11(12):587-93. Epub 2006 Nov 7. Review.

[6] Mittler R, Blumwald E. Genetic engineering for modern agriculture:
challenges and perspectives. Annu Rev Plant Biol. 2010 Jun
2;61:443-62. Review.

[7] Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y,
Buckler ES. TASSEL: software for association mapping of complex

528524524

traits in diverse samples. Bioinformatics. 2007 Oct 1;23(19):2633-5.
Epub 2007 Jun 22.

[8] Cooper M, van Eeuwijk FA, Hammer GL, Podlich DW, Messina C.
Modeling QTL for complex traits: detection and context for plant
breeding. Curr Opin Plant Biol. 2009 Apr;12(2):231-40. Epub 2009
Mar 11.

[9] Sham PC, Cherny SS, Purcell S. Application of genome-wide SNP
data for uncovering pairwise relationships and quantitative trait loci.
Genetica. 2009 Jun;136(2):237-43. Epub 2009 Jan 7. Review

[10] van Eeuwijk FA, Bink MC, Chenu K, Chapman SC. Detection and
use of QTL for complex traits in multiple environments. Curr Opin
Plant Biol. 2010 Apr;13(2):193-205. Review.

[11] Arends D, Prins P, Jansen RC, Broman KW. R/qtl: high-throughput
multiple QTL mapping. Bioinformatics. 2010 Dec 1;26(23):2990-2.
Epub 2010 Oct 21.

[12] Da Costa e Silva L, Zeng ZB. Current progress on statistical methods
for mapping quantitative trait loci from inbred line crosses. J
Biopharm Stat. 2010 Mar;20(2):454-81. Review.

[13] Ma L, Runesha HB, Dvorkin D, Garbe JR, Da Y. Parallel and serial
computing tools for testing single-locus and epistatic SNP effects of
quantitative traits in genome-wide association studies. BMC
Bioinformatics. 2008 Jul 21;9:315.

[14] Peng T, Du P, Li Y. PBEAM: a parallel implementation of BEAM for
genome-wide inference of epistatic interactions. Bioinformation.
2009 Apr 21;3(8):349-51.

[15] Schüpbach T, Xenarios I, Bergmann S, Kapur K. FastEpistasis: a high
performance computing solution for quantitative trait epistasis.
Bioinformatics. 2010 Jun 1;26(11):1468-9. Epub 2010 Apr 7.

[16] Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA,
Hunter DJ, McCarthy MI, Ramos EM, Cardon LR, Chakravarti A,
Cho JH, Guttmacher AE, Kong A, Kruglyak L, Mardis E, Rotimi CN,
Slatkin M, Valle D, Whittemore AS, Boehnke M, Clark AG, Eichler
EE, Gibson G, Haines JL, Mackay TF, McCarroll SA, Visscher PM.
Finding the missing heritability of complex diseases. Nature. 2009
Oct 8;461(7265):747-53. Review.

[17] Li Z, Pinson SR, Park WD, Paterson AH, Stansel JW. Epistasis for
three grain yield components in rice (Oryza sativa L.). Genetics. 1997
Feb;145(2):453-65.

[18] Holland JB. Genetic architecture of complex traits in plants. Curr
Opin Plant Biol. 2007 Apr;10(2):156-61. Epub 2007 Feb 8. Review.

[19] Maher B. Personal genomes: The case of the missing heritability.
Nature. 2008 Nov 6;456(7218):18-21.

[20] National Research Council. Achievements of the National Plant
Genome Initiative and New Horizons in Plant Biology. The National
Academies Press, Washington, D.C. 2008.

[21] Churchill and Doerge. Empirical threshold values for quantitative
trait mapping. Genetics 138:963-971. 1994.

529525525

