
Fast Binding Site Mapping using GPUs and CUDA†*

†
This work was supported in part by the NIH through award #R01-

RR023168-01A1. Web: www.bu.edu/caadlab. Email: {herbordt|bharats} @bu.edu

Bharat Sukhwani Martin C. Herbordt

Computer Architecture and Automated Design Laboratory
Department of Electrical and Computer Engineering

Boston University, Boston, MA 02215

Abstract—Binding site mapping refers to the computational

prediction of the regions on a protein surface that are likely to

bind a small molecule with high affinity. The process involves

flexibly docking a variety of small molecule probes and finding

a consensus site that binds most of those probes. Due to the

computational complexity of flexible docking, the process is

often split into two steps: the first performs rigid docking

between the protein and the probe; the second models the side

chain flexibility by energy-minimizing the (few thousand) top

scoring protein-probe complexes generated by the first step.

Both these steps are computationally very expensive, requiring

many hours of runtime per probe on a serial CPU. In the

current article, we accelerate a production mapping software

program using NVIDIA GPUs. We accelerate both the rigid-

docking and the energy minimization steps of the program. The

result is a 30x speedup on rigid docking and 12x on energy

minimization, resulting in a 13x overall speedup over the

current single core implementation.

I. INTRODUCTION

Discovering a new drug involves finding a site on a given

protein that will bind a small molecule inhibitor with high

affinity. This involves docking the candidate inhibitor to the

protein, often requiring exhaustive 3D search. Moreover,

drug discovery also requires finding the appropriate small

molecule inhibitor, or the ligand, that will bind to that site

and alter the function of the protein, thus curing the disease.

Thus, discovering a new drug involves docking-based

screening of millions of candidate ligands for a given

protein, requiring many hours to days of CPU runtime.

An important observation, however, is that certain

regions on a protein surface, called “hotspots”, are major

contributors to the total binding energy between the protein

and the ligand, and that they bind a wide variety of small

molecule probes [2][11]. Thus, a hotspot on a protein

surface can be found by docking some number of small

molecule probes and finding a consensus region that binds

most of these probes with high affinity. This process is

called binding site mapping. The advantage of this scheme

is that the likely binding site on a protein surface can be

found independent of the actual ligand. During drug-

screening then, each ligand can be docked on this local

region or the hotspot, without having to search the entire 3D

space. This reduces the screening time significantly,

enabling faster drug discovery. Though the identification of

hotspots is also possible with experimental methods such as

NMR or X-ray crystallography, such methods are very

expensive and computational methods are explored as more

cost-effective alternatives.

Mapping of binding sites is a computationally

expensive process, requiring many hours of runtime on a

single CPU. In the current article, we present the GPU

based acceleration of a production mapping code called

FTMap [2]. FTMap employs a complex rigid docking

routine, followed by CHARMM-potential based

minimization of few thousand top scoring docked

conformations. On a single processor core, FTMap typically

requires around 18 hours to finish mapping of a protein.

FTMap is a production mapping code, with a web-based

server setup for free public use. Currently, it runs on a 1024

node IBM Blue Gene cluster. In the current article, we

present a more cost effective, desktop alternative to the

cluster implementation, with potential application as the

backend for the web-server on a GPU based cluster.

We present acceleration of both the rigid docking and

the energy minimization steps. In our previous work, we

have published acceleration of a rigid docking program

using GPUs [16] and preliminary results on the acceleration

of electrostatics energy computation for energy

minimization [17]. Here, we extend the acceleration of

energy minimization to include the van der Waals energy

evaluation on GPUs. Though the energy minimization uses

similar force fields as the widely studied molecular

dynamics simulation (MD), the underlying problem

geometry is very different and hence the acceleration

techniques used in MD are mostly not applicable here.

 Parallelization and acceleration of energy minimization

is difficult due to the very small amount of computation

performed per iteration and the large fraction that is serial

accumulations. Most parallel accumulation schemes on

GPUs require large amounts of data communication, leading

to poor overall performance. We address this by changing

the underlying data-structures and statically mapping the

work on GPU threads in a way that allows parallel energy

evaluations and fast, parallel accumulations. In this work,

we also integrate the accelerated energy minimization with

* For more details, please see TR2010_1 at www.bu.edu/caadlab/publications.html

accelerated rigid docking to enable fast mapping on a

desktop class workstation. We achieve a factor of 32x

speedup on the rigid docking step and 12.5x on the energy

minimization step, resulting in the overall speedup of 13x of

the FTMap program.

II. BINDING SITE MAPPING

Computational mapping refers to the process of finding

druggable binding-sites on the surface of a protein. Such

binding sites, or “hotspots”, are regions that bind inhibitor

molecules with high affinity. The process involves flexibly

docking a wide variety of small molecule probes to a given

protein and finding the consensus region that binds most of

these probes with high affinity. Due to the computational

complexity of flexible docking, the mapping task is usually

performed in two steps. The first step assumes the

interacting molecules to be rigid and performs exhaustive

3D search to find the best pocket on the protein that can fit

the probe. This step is called rigid docking. The top scoring

conformations from this step are saved for further

evaluation in the second step.

The second step models the flexibility in the side chains

of the probes by allowing them to move freely and

minimizing the energy between the protein-probe complex.

This is an iterative process wherein the side chains are

progressively moved towards the least energy conformation.

This is often referred to as CHARMM-potential

minimization or simply energy minimization. The FTMap

program also follows the two step approach just described.

A. Rigid Docking Using PIPER

The rigid docking step aims at finding a pocket on the

protein surface that can fit the small molecule. It follows the

lock-and-key model (see Figure 1), wherein the two

interacting molecules are considered to be rigid. The task is

to find the relative offset and rotation (pose) of one

molecule with respect to the other that results in the

strongest interaction between the two molecules. In addition

to the geometries of the two molecules, various other energy

functions, such as electrostatics and desolvation, are

modeled to determine the strength of the interaction

between the two molecules in a given orientation.

FTMap performs the rigid docking step using a

program called PIPER [10]. Like many other rigid docking

programs, PIPER maps the surface and other properties of

the two interacting proteins onto 3D grids. Exhaustive 3D

search is performed by rotating one of the grids by an

incremental angle and translating the grid with respect to the

other along the 3 axes.

The score of a pose (a rotation and a relative translation

α, β, γ of the small molecule relative to the protein) is

computed as a 3D correlation sum between the two grids

∑∑ +++=
p kji

PP kjiLkjiRE

,,

),,(),,(),,(γβαγβα (1)

where Rp(i,j,k) and Lp(i+α, j+β, k+γ) are the

components of the correlation function defined on the

protein and the small molecule, respectively.

Thus for each rotation, O(N
3
) translations are

performed, each requiring O(N
3
) computations. These are

performed using FFT, reducing the complexity for each

rotation to O(N
3
logN). By default, PIPER evaluates tens of

thousands of rotations, typically requiring many hours of

CPU time. To limit the computation requirements, FTMap

performs rotation at a higher granularity of incremental

angle, performing a total of 500 rotations. This results in

about 30 minutes of serial runtime per probe for the rigid

docking phase. From each rotation, the 4 top scoring poses

(relative translations) are retained for the energy

minimization phase.

Figure 1. Lock-and-Key Model for Rigid Docking

The scoring function used in PIPER is based on three

criteria: shape complementarity, electrostatic energy, and

desolvation energy. The total pose score is computed as a

weighted sum of these three energy functions (Equation 2).

desolelecshape EwEwEE 32 ++= (2)

Both the shape complementarity and the electrostatics

terms are computed as a weighted sum of two components

each and the desolvation energy is computed as a sum of 4

to 18 pairwise potential terms. Computing scores of each of

these terms requires independent correlation sums, leading

to up to 22 FFT correlations per rotation.

For every rotation, PIPER computes the ligand energy

function Lp on the grid and performs repeated FFT

correlations to compute the scores for the different energy

functions. For each pose, these energy functions are

combined to obtain the overall energy for that pose. Finally,

a filtering step returns some number of poses per rotation

based on score and distribution.

Figure 2. (a) Profiling of FTMap program, (b) Runtimes per rotation for

different steps in rigid docking

The distribution of time per rotation for different steps

of PIPER rigid-docking phase is shown in Figure 2 (b).

Clearly, the most time consuming step is FFT correlation,

requiring about 93% of the time. Of the remaining, almost

5% is spent in accumulation of pairwise potential terms for

desolvation energy and scoring and filtering. In our GPU

accelerated PIPER, we accelerate all these per rotation steps

except rotation and grid assignment. As discussed later, the

FFT correlation step is replaced with direct correlation.

2.3%
2.4% 2.3%

93%

FFT Correlations

 Rotation and Grid Assignments
 Accumulation

 Scoring and Filtering

 7%

93%

Energy Minimization
Rigid Docking

Protein

Ligand

Protein

Ligand

Protein

Ligand

B. FTMap Energy Minimization

In FTMap, the rigid docking step is followed by the

energy minimization of the top scoring conformations. From

each rotation of the rigid docking phase, FTMap retains 4

top scoring conformations. This results in 2000

conformations to be minimized per probe, with typical

runtimes of many hours per probe. With 16 probes to be

mapped, the energy minimization phase is clearly the more

time consuming step of the mapping task. As shown in

Figure 2 (a), energy minimization step constitutes about

93% of total FTMap runtime.

Energy minimization is an iterative process which aims

at computing the configuration of the atoms in a complex

that corresponds to the minimum potential energy [7]. It

involves computing the potential energy of the complex at a

point, updating the forces acting on the atoms, and adjusting

the atom-coordinates according to the total forces acting on

them. This process of energy evaluation and of force and

position updates is repeated for many iterations until the

energy of the system converges to within a threshold.

Note that though energy minimization superficially

seems similar to the widely studied molecular dynamics

(MD) simulations, the underlying geometry of the problem

and the computational structures are quite different. Unlike

MD, energy minimization is a refinement step and is

performed on a local region of the protein surface and the

motions are very small. Due to this, the filtering techniques

employed in MD, e.g. cell lists, are not employed in energy

minimization. Moreover, even though energy minimization,

like MD, uses neighbor-lists, they are seldom updated.

In energy minimization, the system to be simulated

consists of a number of atoms; the total energy of the system

is a sum of various bonded and non-bonded energies of all

the atoms (Equation 3).

444444 3444444 214434421
bonded

impropertorsionanglebond

bondednon

elecvdwtotal
EEEEEEE +++++=

−

 (3)

Minimization involves repeated evaluation of this

expression, once during each iteration. Figure 3 shows the

profiling results for the energy minimization step of the

FTMap program. As shown in Figure 3 (a), most of the

minimization runtime is spent in evaluating these energy

terms and the forces. Of these, the non-bonded energy

evaluation step is the most computationally intensive,

requiring more than 99% of total energy evaluation time

(Figure 3 (b)). This includes the electrostatics and the van

der Waals energies.

The non-bonded energy of each atom is the sum of the

contributions due to neighboring atoms within a cutoff

distance. The total non-bonded energy of the system is the

sum of the non-bonded energies of all the atoms. In the

current article, we accelerate the evaluation and

accumulation of these non-bonded energies and the

corresponding force calculations by mapping these

computations on a GPU. Bonded energy evaluation is a

small fraction of the total runtime and is left to be executed

on the host.

Figure 3: (a) Profiling of Energy Minimization step of Serial FTMap

program, (b) Distribution of the energy evaluation time.

As stated earlier, the non-bonded energy is a sum of the

electrostatic and van der Waals energy terms. The

electrostatic energy of a solute with N charges can be

decomposed into two components; a sum of the self

energies self
iE of all the charges and a sum of pairwise

interaction energies int
ijE [13]. (see Equation 4).

∑ ∑
<

+=
i ji

ij
self
i

elec EEE int (4)

For the computation of the electrostatic energy, FTMap

employs the Analytic Continuum Electrostatics (ACE)

model [13], wherein the self-energy of an atom is

represented as a sum of its Born self-energy in the solvent

and the sum of effective pairwise interactions, self
ik

E , due to

all the other solute atoms (see Equation 5) [13].

∑
≠

+=
ik

self
ik

is

iself
i E

R

q
E

ε2

2
 (5)

4

44

322

8

~
2

2















+
+=









−

ikik

ikki

r

ik

iself
ik

r

rVq
e

q
E ik

ik

µπ

τ

ω

τ σ (6)

Here qi represents the charge on atom ‘i’, rik is the

distance between atoms ‘i’ and ‘k’,
kV

~
 is the size of the

solute volume associated with atom ‘k’, ikω and

ikσ determine the height and width of the Gaussian that

approximates self
ik

E , and ikµ is an atom-atom parameter.

The pair-wise interaction energy is given by the

generalized Born (GB) equation, which is the sum of

Coulomb’s law in a dielectric and the Born equation [14]:

∑∑
≠









−≠

+

−=
ij r

jiij

ji

ij ij

ji
ij

ji

ij

er

qq

r

qq
E

αα
αα

τ

42

int

2

166332

 (7)

where
iα and

jα represent the Born radius for atoms ‘i’

and ‘j’, respectively. These in turn depend on the self-

energy of the atom.

For computing the van der Waals energies of the atoms,

FTMap uses a variant of the Lennard-Jones 6-12 potential.

This is shown in Equation (8).






























++−=

6

6

12

6

6

6

6

12

6 2
1

8

c

ik

c

ik

ik

c

ik

ik

ik
ikvdw

r

r

r

rm

r

r

rm

r

rm
epsE

ik

 (8)

kiik epsepseps .=
 (9)

2)(kiik rmrmrm += (10)

1.02%

98.98%

Energy Evaluation rest

94.4%

5.38% 0.2%

Electrostatics VDW Bonded

where epsi and rmi represent the van der Waals parameters

of atom ‘i’, rik is the distance between the two atoms and rc

is the cut-off distance.

 Equations (6), (7) and (8) represent the main

computations that need to be performed for all atom-atom

pairs to evaluate the total electrostatic and van der Waals

energies of a given conformation. In addition, the energy

gradients need to be computed to determine the forces

acting on the atoms and to update the atom coordinates.

III. RIGID DOCKING ON GPUs

As in the original FTMap software, we split the FTMap on

GPUs into two steps: rigid-docking and energy

minimization. Here we describe the mapping of rigid-

docking on GPUs. Energy minimization on GPUs is

discussed in section 4.

As stated earlier, the FTMap program performs rigid

docking using PIPER, which computes multiple FFT-

correlations to obtain the pose score for different energy

functions. Though FFT reduces the computational

complexity from O(N
6
) to O(N

3
logN), our prior work on

accelerating PIPER using FPGAs[15] and GPUs[16]

indicates that, if the ligand grid is smaller than a certain size,

direct correlation can perform better than FFT correlation,

especially if multiple correlations are to be performed. This

is due to many reasons: direct correlation lends itself well to

parallelization, multiple correlation scores can be computed

together, multiple rotations can be scored in a single pass of

the protein grid and large data reuse amortizes the overhead

of data fetch and kernel launch. Since the probes used by

FTMap are very small, we use direct correlation for docking

on GPUs.

A. Direct Correlation on GPUs

Direct correlation on a GPU replaces the steps of

forward FFT, modulation, and inverse FFT. It translates one

of the grids over the other and computes a sum of all the

voxel-voxel interactions for each translation. Note that

multiple energy functions can be evaluated together for each

translation, requiring only a single pass through the grids.

To distribute the task of computing the correlation

scores for all the translations along the 3-axes, we represent

the task as the 3D result grid that needs to be computed.

Here, each grid point represents the correlation score for a

translation (or multiples scores, one for each energy

function). The distribution of work on different GPU

threads can now be seen as distributing the computation of

different portions of the result grid across multiple threads

and thread blocks. This can be performed in various ways.

We tried two different schemes, as shown in Figure 4.

In both schemes, we launch the kernel with a 2D array

of thread blocks, each with a 3D array of threads. In the first

scheme, each thread block is responsible for computing a

part of the 2D result plane for all the 2D planes in the 3D

result grid. In the second scheme, we assign different 2D

planes to different thread-blocks. The threads on each of

those thread blocks compute a larger part of the 2D plane,

but only for the planes assigned to the current thread block.

Both distributions result in similar runtimes, though one or

the other can have better performance for various non-cubic

grids.

Figure 4. Distribution of work on a GPU for direct correlation.

As the protein and the probe grids are generated on the

host, they must be transferred from the host memory to the

GPU memory. In the case of the protein grid, this is done

only once. The ligand grid, however, is rotated on the host

and remapped. Thus, this transfer is required for every

rotation. Since every multiprocessor needs access to both

grids, they need to be stored either in the device’s global

memory, accessible by all the multiprocessors, or duplicated

in the local shared memory of each of the multiprocessor.

Due to the relatively large sizes of the protein grids and the

limited amount of shared memory, we store these grids on

the global memory. The ligand grids are much smaller,

however, and can fit in device’s shared memory or constant

cache. Both of these provide much faster access compared

with global memory. We found that access time from

constant memory and shared memory is identical.

Due to the small sizes of the shared and the constant

memories, we can fit a ligand grid of size up to 7
3
 in shared

memory and up to 8
3
 in constant memory. Since the probes

are never bigger than 4
3
 this is not an issue for mapping.

The small probe grids, in fact, allow us to perform a further

optimization: storing the voxel grids for multiple rotations

in the constant memory. This enables the correlation inner

loop to compute multiple scores in each iteration.

Storing and evaluating multiple rotations together has

two-fold benefits. First, the loop and kernel launch overhead

is amortized over multiple rotations. Second, each protein

voxel fetched from the global memory (which is not cached)

gets reused multiple times, reducing the number of higher

latency accesses to the global memory. This results in

significant performance improvement. For 4
3
–sized probe

grids, we can perform 8 rotations in each pass, achieving a

speedup of 2.7x over direct correlation performed one

rotation at a time.

B. Scoring and Filtering on GPUs

Scoring refers to computing the weighted sum of

correlation scores for different energy functions and filtering

refers to selecting the top scores from different regions on

the result map. Filtering is performed by selecting the best

score and then excluding its neighbors while selecting the

next best score. Such exclusion is done to avoid selecting

multiple best scores from the same region (see Figure 5).

Though scoring and filtering amount to a small fraction

of total runtime for rigid-docking, it is critical to accelerate

Result grid

SMP

SMP SMP SMP SMP SMP SMP SMP

this step to achieve overall good performance. Performing

filtering on the GPU has the further advantage of reducing

the amount of data that must be transferred back to the host

after correlation. After filtering, only the top few scores

need to be transferred, as opposed to the entire 3D score

grid.

Figure 5. Filtering of top-scores from different regions on the result map.

Cells surrounding the selected score are marked for exclusion.

As in the case of computing the correlation score, we

divide the N
3
 points of the result grid equally among M

threads. Each thread computes N
3
/M weighted scores, finds

the best scores within its subset and stores it in the shared

memory (Figure 6). These scores are then gathered by a

master thread and the best among these is selected. To

simplify this gather process, we distribute the scoring task to

threads on only one multiprocessor. Though this is a heavy

under-utilization of the available GPU computation power,

it simplifies the process of assembling these scores from

different threads. Distribution across multiple

multiprocessors would incur large communication overhead

and nullify any performance benefits achieved from the

increased parallelism.

Figure 6. Scoring and Filtering on a GPU. Scores distributed across

different threads and accumulated by a master thread.

The master thread (thread 0) performs an additional

task of flagging the cells for exclusion. Exclusion is

determined by maintaining an array of length N
3
, with one

entry for each of the cell, for constant time lookup. Since N

= 128 is typical, this array does not fit in the GPU shared

memory and is stored in the global memory.

IV. ENERGY MINIMIZATION ON GPUs

The computations to be performed per iteration of energy

minimization can be divided into six tasks: (i) computing

the self-energies for all the atoms, (ii) computing the

pairwise interactions energies, (iii) computing the van der

Waals energies, (iv) computing the energy gradients (v)

updating the forces acting on the atoms, and (vi) performing

the optimization move and updating the atom-coordinates

based on the force values. To amortize the GPU kernel

launch overhead and to reuse the common computations, we

divide the six tasks into three GPU kernels: (a) computing

atom self energies and the corresponding energy gradients,

(b) computing the pairwise interactions (which is a part of

the electrostatic energy) and the van der Waals energies

along with the energy gradients, and (c) updating the atom

forces. The computation structures used by these kernels are

similar and the techniques discussed here apply to all these

computations. Two computations - the optimization move

and the atom-coordinate updates, are left on the host, though

in the future we plan on performing these on the GPU as

well.

Figure 7. Array of Neighbor-Lists

For efficient computation of atom energies, serial

FTMap arranges the atoms in a neighbor list format, where

each atom (the “first” atom) has an associated list of

neighbors (the “second” atoms) that contribute to its energy

(see Figure 7). As the positions of the atoms change, the

neighbor lists are updated. The FTMap program cycles

through different atom-pairs in the neighbor-list and

computes the partial energies. These partial energies are

accumulated, as they are computed, into an array storing the

total energies of all the atoms. Though there are various

ways to map this neighbor-list computation structure onto

GPU threads for parallel energy evaluations, most of them

run into two serious problems: (i) memory conflicts during

parallel updates from different threads and (ii) serialization

during the accumulation of the partial energies into the

energy array.

There are several reasons why the neighbor-list

structure is not suited for mapping to the GPUs. First, we

need the individual total self energies of all the atoms, not

just the total self energy of the system. This requires

multiple accumulations, one for each entry of the energy

array. Second due to the random occurrences of the

“second” atoms in the neighbor-lists (see Figure 7), the

energy array cannot be distributed into the shared memories

of different GPU multiprocessors. Rather, it must be present

in the GPU global memory, accessible from all the

multiprocessors. And third, having the energy array in the

global memory can potentially lead to write conflicts, since

a particular “second” atom can be present in the neighbor-

lists of more than one “first” atom (see Figure 7).

For efficient mapping of these computations onto GPU

threads, and to enable fast and parallel energy updates and

accumulations, we modified the original neighbor-list into a

different data structure: we refer to it as a pairs-list. Before

we discuss this structure, we briefly describe our initial

solution for mapping the original neighbor-lists onto the

GPUs.

A. Mapping Neighbor-lists on GPUs

To enable parallel updates and accumulations on

different GPU multiprocessors, we map only one “first”

atom onto a multiprocessor at a time. On each

multiprocessor we have two different energy arrays in the

Second Atoms Atoms List

n-1

3

0
1
2

2

0

1

2
1

11
14

2
5

4
15

4

12

3

 Energies

T0 T1 T2 TM-2 TM-1

N
3
 Scores

T0

M

N
3

Shared Memory

Best Score

shared memory: one for the partial energies of the current

first atom and the second for the partial energies of all the

second atoms (Figure 8).

Figure 8. Mapping the Neighbor-lists onto GPU threads. Replicating

energy arrays to enable parallel updates.

Different threads of a thread group compute the partial

energy of the current atom due to one of the second atoms in

its neighbor-list and that of the second atom due to the first.

As the energies are computed by different threads, they are

updated in these shared memory arrays. Note that since a

second atom will appear in the neighbor list of a particular

atom only once, no two threads of a particular thread block

will update the same shared memory location at the same

time. This enables parallel, conflict free updates.

Once all the second atoms of the current first atom are

processed, a barrier is reached and a master thread

accumulates the partial energy of the first atom by

accumulating the values in the first atom energy array. The

energies in the second atom array, however, are for different

second atoms and are only partial. Analogous partial arrays

are present on the shared memories of all the other

multiprocessors and must be combined to compute the total

energies of the second atoms (see Figure 8). This is done by

copying the second atom arrays from the shared memories

of the different multiprocessors to the global memory. The

corresponding values from these arrays are then added to

obtain the total energies.

Though this scheme allows parallel execution and

updates, it has three problems. First, since only one first

atom is processed by a multiprocessor, the GPU threads are

heavily underutilized and the distribution of work on

different multiprocessor is uneven. This is because different

“first” atoms have widely varying number of “second”

atoms in their neighbor-lists, ranging from a few to a few

hundred. Second, transferring multiple large second atom

arrays from shared to global memory incurs high data

transfer cost per iteration. Finally, accumulation from the

global memory is slow. Overall this method results in poor

performance and is not preferred.

B. Improved Data-Structures for Efficient Mapping on

GPUs

Since the computation per iteration is very small, only a

few milliseconds on a serial computer, obtaining high

speed-up requires efficient distribution of work to maximize

parallelism and reduce the communication cost. We now

discuss two schemes for doing just that. Both modify the

original neighbor-list data structure to enable better

distribution of work over GPU threads and more efficient

accumulations.

Figure 9. Atom-pairs list

In the first scheme, we replace the neighbor-list

structure with a pairs-list. It contains a list of atom-pairs that

need to be processed, along with fields to store the partial

energies of the two atoms involved in the pair. This is

shown in Figure 9. Different atom-pairs are independent of

each other and can be processed in parallel. We distribute

these pairs equally among different GPU threads. The pairs-

list is stored in the GPU global memory. Each thread

processes the pair assigned to it and stores the partial

energies of the two atoms at the corresponding index in the

global memory.

Once all the pairs have been processed, we accumulate

these partial energies to compute the total energy of each

individual atom. This needs to be done serially, mainly due

to the unordered occurrences of the second atoms in the

pairs-list.

Since the energy values are stored in the GPU global

memory, accumulation requires multiple accesses to the

slow GPU global memory. Also, since the accumulation is

done serially by a single thread, it turns out that this

accumulation is actually faster on the host. Accumulation on

the host, however, requires transferring the two arrays of

atom-energies from the GPU to the host in each iteration.

This scheme thus enables parallel energy computation and

updates but still requires serial accumulation of energies.

With accumulation on the host, it results in a speedup of

around 3x over the original serial code.

To enable faster and parallel accumulations from the

GPU shared memory, we further modified the data structure.

In our second approach, we still use the pairs-list of Figure 9

but make two changes in how the pairs get mapped to the

GPU threads.

The first change is to split the pairs-list into two

separate pairs-lists. Notice that the serialization during

accumulation is mainly due to the random occurrences of

second atoms in the neighbor-lists (now the pairs-list). The

first atoms still appear in an ordered fashion. Thus, to add

determinism in how the atoms appear in the list, we split the

lists into two separate lists and process each one separately.

The first pairs-list is based on the original neighbor-list

and is called the forward list. The second list is generated by

reversing the original neighbor-list, i.e., by treating each

second atom of the original neighbor list as a first atom for

the reverse neighbor list. We call this second list the reverse

list. While processing a list, only the energy of the first atom

in each pair is computed and updated. This way, the

energies of the first atoms (in the original list) get updated

Atom 1 Atom 2 Pair Id Atom 1

Atom index

Atom 2

Atom Energy

0
1
2
3
4
5
6

0
0
0
0
1
1
2

7
8

9

2
2

3

2

1
11
14
2
5
4

15
12

4

First
Atom 1

First
Atom 2

First
Atom 3

Shared Memory for the
First Atom

Shared Memory for the
Second Atoms

First
Atom 0

Global Memory

SMP

Merge Copy

while processing the forward list and those of the second

atoms (in the original list) while processing the reverse list.

This is shown in Figure 10. Note that there is no column for

the energies of the second atom in the pair.

Figure 10. Split pairs-lists. (Left) Forward list, (Right) Reverse list.

The second modification involves statically mapping

the pairs from the new pairs-lists onto the GPU threads.

This comes from the observation that the pairs in the new

lists can be grouped by the first atoms. This can be done

since we now care only about computing the energies of the

first atoms in the pair and not the second atoms.

These two changes allow better and more uniform

distribution of atom-pairs on the GPU and enable parallel

and much faster accumulations in GPU shared memory, as

discussed next.

Once we have the forward and reverse pairs lists, we

statically distribute them to GPU threads running on

different multiprocessors. The static mapping scheme

groups together all the pairs in a list having the same first

atom and maps the entire group onto the threads in the same

thread block. More than one group of pairs can be mapped

onto a particular thread block, provided there are enough

threads to accommodate all the pairs of those groups. If the

current thread block does not have enough threads left to

accommodate the entire group, it is mapped onto the next

available thread block. Unused spaces on the thread blocks

are claimed by other smaller pair-groups. Having all the

pairs of a group on the same thread block allows us to

perform accumulation in the shared memory, since all the

partial energies are present within the same multiprocessor.

To determine the assignment of work for different GPU

threads, we generate a new data-structure called the

assignment table (see Figure 11). The table contains one

row per thread id which contain 5 fields: pair id, indices of

the two atoms, a master field indicating if this thread is the

first thread for this pairs-group, and the number of pairs in

the pair-group. The master thread field and the number of

pairs in group are used to accumulate the energies of the

atoms in the shared memory.

The table in Figure 11 is stored in the GPU global

memory. One table is generated from each of the forward

and the reverse pairs-lists and is transferred to the GPU only

once at the beginning of the minimization process. There is

no further data transfer per iteration, unless the neighbor list

is updated, in which case we regenerate the assignment

tables and transfer them to the GPU. This happens only a

few times per 1000 minimization iterations; thus the transfer

time is negligible.

Each thread works on the pair assigned to it in the

assignment table. In case the number of pairs is larger than

the number of threads, each thread would be responsible for

multiple rows. Energies computed by different threads are

stored in an array in the GPU shared memory. The length of

this array is equal to the number of threads in the thread

block, with each thread storing the computed energy at the

index equal to its local thread id (id within the block).

Figure 11. Work Assignment Table for the GPU.

Once all the threads have finished processing their

assigned pairs, the master threads execute the accumulation

round. Each master thread reads the number of atoms for the

group associated with it and accumulates that many values

from the shared memory, starting from its local thread id.

This way, many threads perform accumulation in parallel

and from the shared memory, resulting in significant

speedup compared to previous schemes. The master threads

then store the accumulated values in the GPU global

memory. Note that we can use this scheme only because we

are computing and updating the energies of only the first

atom. For the second atom, we repeat this process with the

assignment table corresponding to the reverse pairs-list.

Calling the kernel twice leads to repeating some of the

computations. We tried to avoid this by storing those values

in the GPU global memory during the first kernel call and

reusing them during the second call. This resulted, however,

in a slowdown due to slower global memory access.

V. RESULTS

We present our results from accelerating the rigid docking

and energy minimization steps of FTMap by mapping to the

NVIDIA GPUs. The serial times were obtained by running

the original unaccelerated FTMap code on a single core of a

3GHz quad-core Intel Xeon Harpertown processor. The

code is written in C language and was compiled using

Microsoft Visual Studio 8.

Currently the FTMap production code supports only

coarse-grained parallelism through distributing rotations

across nodes of a server. In previous work [15][16] we

created a multicore version of the docking phase for

comparison. The code was compiled using Microsoft Visual

Studio 8 with standard optimizations (release mode).

Docking, however, is only about 7% of the total

computation in mapping. For the energy minimization step,

creating an efficient multicore version appears to be

challenging because of the small ratio of computation to

communication.

 Our GPU-accelerated code runs on a NVIDIA TESLA

C1060 GPU, containing 240 processor cores @ 1.3 GHz.

The GPU is housed in a Dell Precision workstation with a

3GHz quad-core Intel Xeon Harpertown processor running

Windows XP. The GPU code was written using NVIDIA

CUDA and compiled using Microsoft Visual Studio 8 with

standard optimizations and the NVIDIA nvcc compiler.

Pairs

Thread
Block 0

Pair Id Atom 1

0
1
2
3
4
5
6

0

0
0
0
3
1
1

7
8
9

2
2
2

2
1
11
14
4
2
5
4
15
12

Thread Id

0
1
2
3
9
4
5
6
7
8

Master

1
0
0
0
1
1
0
1
0
0

4
4
4
4
1
2
2
3
3
3

Thread
Block 1

Group 0

Group 3

Group 1

Atom 2

Group 2

Atom 1 Pair id Atom 1

Atom index

Atom 2 Atom 1

Energy

0
1
2
3
4
5
6

0
0
0
0
1
1
2

7
8
9

2
2
3

2
1

11
14
2
5
4

15
12
4

Pair id Atom 1

Atom index

Atom 2

Energy

0
1
2
3
4
5
6

1
2
2

 4
4
5
11

7
8
9

12
14
15

0
0
1
2
3
1
0
2
0
2

A. Speed-ups on Rigid-Docking Step

Speedups achieved on various per-rotation tasks of the

docking phase are shown in Table 1. Rotation and grid

assignment are left on the host and thus have a speedup of 1.

Correlation on the original PIPER was performed using an

FFT whereas on the GPU it was implemented as direct

correlation. As discussed earlier, GPU resources are

underutilized during scoring and filtering leading to the

modest speedup. The overall speedup achieved in docking is

32x. The speedups reported are for a probe grid size of 4
3

and a total correlation grid size of 128
3
, which are typical

for FTMap probes and proteins.

Comparing against our FFT based multicore

implementation of PIPER, running on same quad-core

processor as before, the GPU PIPER speed-up reduces to

11x. On multicore, as in the case of GPUs, we observed that

for small ligand sizes, direct correlation is faster than FFT.

Comparing against direct correlation based PIPER on

multicore, the GPU PIPER speedup further reduces to 6x.

Table 1. Speedups for various computations in rigid docking.

Task (per rotation) CPU Time GPU Time Speedup

Rotation + grid assignment 80 ms 80 ms 1

Correlations 3600 ms 13.5 ms 267x

Accum. desolvation terms 180 ms 1 ms 180x

Scoring and Filtering 200 ms 30 ms 6.67x

Total time per rotation 4060 ms 125.5 ms 32.6x

B. Speed-ups on Energy Minimization Step

Table 2 shows the speedup achieved on various energy

and force computations mapped onto GPU kernels. The

runtimes presented are for a single iteration of energy

minimization, which involves performing around 10,000

atom-atom computations for each of the energy term. Force

update kernel updates forces for the 2200 atoms in the

complex.

We also measured the overall energy minimization

times for various different protein-probe complexes. The

average time for minimizing 2000 conformations of a

complex on the original FTMap program is around 400

minutes. On our GPU accelerated version, the energy

minimization time reduces to 32 minutes, representing an

overall speedup of 12.5x for the energy minimization phase.

Table 2. Speedups for different energy evaluation and force update steps of

energy minimization.

Computation Serial Time GPU Time Speedup

Self energies 6.15 ms 0.23 ms 26.7x

Pairwise 2.75 ms

van der Waals 0.5 ms
0.19 ms 17x

Force updates 0.95 ms 0.14 ms 6.7x

C. Overall Speed-up

On our GPU accelerated mapping program, the time for

mapping a probe on a protein reduces from 435 minutes to

33 minutes., representing an overall speedup 13x for the

entire FTMap program. Comparing to the multicore version

of the docking phase, the overall speed-up reduces to 12.3x.

VI. CONCLUSION

We present a fast, GPU-based implementation of FTMap, a

production binding site mapping program. Both the rigid-

docking and the energy minimization phases are

accelerated, resulting in a 13x overall speedup of the entire

application over the current single-core implementation.

While an efficient multicore implementation of FTMap may

be possible, it is certainly challenging: we estimate it would

require an effort greater than what we spent on the GPU

mapping.

 Overall, this work provides a cost-effective, desktop-

based alternative to the large clusters currently being used

by production mapping servers. Essential to the success of

this work is restructuring the original application in several

places, e.g., to avoid the use of neighbor lists.

 In the future, we plan on extending this work to a multi-

GPU implementation and integrating it into a production

web server.

VII. REFERENCES

[1] Born, M. Z. (1920) Physics, 1, 45.

[2] Brenke, R. et al. (2009) Fragment-based identification of druggable

‘hot spots’ of proteins using Fourier domain correlation techniques.

Bioinformatics, 25(5), 621-627.

[3] Brooks, B.R. et al. (1983) CHARMM: a program for macromolecular

energy, minimization, and dynamics calculations. J. Comp. Chem., 4,

187–217.

[4] Constanciel, R., and Contreras, R. (1984) Self consistent field theory

of solvent effects representation by continuum models: Introduction of

desolvation contribution. Theoret. Chim. Acta (Berl.), 65, 1-11.

[5] Cornell, W. D. et al. (1995) A Second Generation Force Field for the

Simulation of Proteins, Nucleic Acids, and Organic Molecules. J. Am.

Chem. Soc. 117, 5179-5197.

[6] Ershov, R. E. (1970) Self-energy of a “smeared” charge. Russian

Physics Journal, 13 (6), 813-813.

[7] http://en.wikipedia.org/wiki/Energy_minimization.

[8]http://farside.ph.utexas.edu/teaching/em/lectures/node56.html

[9]http://www.wag.caltech.edu/publications/theses/alan/subsectional_4_0_

2_1.html.

[10] Kozakov, D., Brenke, R., Comeau, S., and Vajda, S. (2006) PIPER:

an FFT-based protein docking program with pairwise potentials. Proteins

Structure, Function, Genetics, 65, 392-406.

[11] Landon, et. al. (2007) Identification of Hot Spots within Druggable

Binding Regions by Computational Solvent Mapping of Proteins. J. Med.

Chem., 50, 1231–1240.

[12] Pappu, R.V., Hart, R. K., and Ponder, J. W. (1998) Analysis and

Application of Potential Energy Smoothing and Search Methods for

Global Optimization. J. Phys. Chem. B, 102, 9725–9742.

[13] Schaefer, M. and Karplus, M. (1996) A Comprehensive Analytical

Treatment of Continuum Electrostatics. J. Phys. Chem., 100 (5), 1578-

1599.

[14] Still, W. C., et. al. (1990) Semianalytical treatment of solvation for

molecular mechanics and dynamics. J. Am. Chem. Soc., 112 (16), 6127-

6129.

[15] Sukhwani, B. and Herbordt, M. C. (2010) FPGA Acceleration of

Rigid Molecular Docking Codes. IET Computers and Digital Techniques

(in press).

[16] Sukhwani, B. and Herbordt, M. C. (2009) GPU Acceleration of a

Production Molecular Docking Code. In Proceedings of the Workshop on

General-Purpose Computation on GPUs.

[17] Sukhwani, B. Herbordt, M. C. (2009) Accelerating Energy

Minimization using Graphics Processors. In Proc. Symposium on

Application Accelerators in High Performance Computing.

