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Abstract—Binding site mapping refers to the computational 

prediction of the regions on a protein surface that are likely to 

bind a small molecule with high affinity. The process involves 

flexibly docking a variety of small molecule probes and finding 

a consensus site that binds most of those probes. Due to the 

computational complexity of flexible docking, the process is 

often split into two steps: the first performs rigid docking 

between the protein and the probe; the second models the side 

chain flexibility by energy-minimizing the (few thousand) top 

scoring protein-probe complexes generated by the first step. 

Both these steps are computationally very expensive, requiring 

many hours of runtime per probe on a serial CPU.  In the 

current article, we accelerate a production mapping software 

program using NVIDIA GPUs.  We accelerate both the rigid-

docking and the energy minimization steps of the program. The 

result is a 30x speedup on rigid docking and 12x on energy 

minimization, resulting in a 13x overall speedup over the 

current single core implementation. 

I. INTRODUCTION 

Discovering a new drug involves finding a site on a given 

protein that will bind a small molecule inhibitor with high 

affinity. This involves docking the candidate inhibitor to the 

protein, often requiring exhaustive 3D search. Moreover, 

drug discovery also requires finding the appropriate small 

molecule inhibitor, or the ligand, that will bind to that site 

and alter the function of the protein, thus curing the disease. 

Thus, discovering a new drug involves docking-based 

screening of millions of candidate ligands for a given 

protein, requiring many hours to days of CPU runtime. 

An important observation, however, is that certain 

regions on a protein surface, called “hotspots”, are major 

contributors to the total binding energy between the protein 

and the ligand, and that they bind a wide variety of small 

molecule probes [2][11]. Thus, a hotspot on a protein 

surface can be found by docking some number of small 

molecule probes and finding a consensus region that binds 

most of these probes with high affinity. This process is 

called binding site mapping. The advantage of this scheme 

is that the likely binding site on a protein surface can be 

found independent of the actual ligand. During drug-

screening then, each ligand can be docked on this local 

region or the hotspot, without having to search the entire 3D 

space. This reduces the screening time significantly, 

enabling faster drug discovery. Though the identification of 

hotspots is also possible with experimental methods such as 

NMR or X-ray crystallography, such methods are very 

expensive and computational methods are explored as more 

cost-effective alternatives. 

Mapping of binding sites is a computationally 

expensive process, requiring many hours of runtime on a 

single CPU. In the current article, we present the GPU 

based acceleration of a production mapping code called 

FTMap [2]. FTMap employs a complex rigid docking 

routine, followed by CHARMM-potential based 

minimization of few thousand top scoring docked 

conformations. On a single processor core, FTMap typically 

requires around 18 hours to finish mapping of a protein. 

FTMap is a production mapping code, with a web-based 

server setup for free public use. Currently, it runs on a 1024 

node IBM Blue Gene cluster. In the current article, we 

present a more cost effective, desktop alternative to the 

cluster implementation, with potential application as the 

backend for the web-server on a GPU based cluster. 

We present acceleration of both the rigid docking and 

the energy minimization steps. In our previous work, we 

have published acceleration of a rigid docking program 

using GPUs [16] and preliminary results on the acceleration 

of electrostatics energy computation for energy 

minimization [17]. Here, we extend the acceleration of 

energy minimization to include the van der Waals energy 

evaluation on GPUs. Though the energy minimization uses 

similar force fields as the widely studied molecular 

dynamics simulation (MD), the underlying problem 

geometry is very different and hence the acceleration 

techniques used in MD are mostly not applicable here. 

 Parallelization and acceleration of energy minimization 

is difficult due to the very small amount of computation 

performed per iteration and the large fraction that is serial 

accumulations. Most parallel accumulation schemes on 

GPUs require large amounts of data communication, leading 

to poor overall performance. We address this by changing 

the underlying data-structures and statically mapping the 

work on GPU threads in a way that allows parallel energy 

evaluations and fast, parallel accumulations.  In this work, 

we also integrate the accelerated energy minimization with

* For more details, please see TR2010_1 at www.bu.edu/caadlab/publications.html 



accelerated rigid docking to enable fast mapping on a 

desktop class workstation. We achieve a factor of 32x 

speedup on the rigid docking step and 12.5x on the energy 

minimization step, resulting in the overall speedup of 13x of 

the FTMap program. 

II. BINDING SITE MAPPING 

Computational mapping refers to the process of finding 

druggable binding-sites on the surface of a protein. Such 

binding sites, or “hotspots”, are regions that bind inhibitor 

molecules with high affinity. The process involves flexibly 

docking a wide variety of small molecule probes to a given 

protein and finding the consensus region that binds most of 

these probes with high affinity. Due to the computational 

complexity of flexible docking, the mapping task is usually 

performed in two steps. The first step assumes the 

interacting molecules to be rigid and performs exhaustive 

3D search to find the best pocket on the protein that can fit 

the probe. This step is called rigid docking. The top scoring 

conformations from this step are saved for further 

evaluation in the second step. 

The second step models the flexibility in the side chains 

of the probes by allowing them to move freely and 

minimizing the energy between the protein-probe complex. 

This is an iterative process wherein the side chains are 

progressively moved towards the least energy conformation. 

This is often referred to as CHARMM-potential 

minimization or simply energy minimization. The FTMap 

program also follows the two step approach just described. 

A. Rigid Docking Using PIPER 

The rigid docking step aims at finding a pocket on the 

protein surface that can fit the small molecule. It follows the 

lock-and-key model (see Figure 1), wherein the two 

interacting molecules are considered to be rigid. The task is 

to find the relative offset and rotation (pose) of one 

molecule with respect to the other that results in the 

strongest interaction between the two molecules. In addition 

to the geometries of the two molecules, various other energy 

functions, such as electrostatics and desolvation, are 

modeled to determine the strength of the interaction 

between the two molecules in a given orientation. 

FTMap performs the rigid docking step using a 

program called PIPER [10]. Like many other rigid docking 

programs, PIPER maps the surface and other properties of 

the two interacting proteins onto 3D grids. Exhaustive 3D 

search is performed by rotating one of the grids by an 

incremental angle and translating the grid with respect to the 

other along the 3 axes. 

The score of a pose (a rotation and a relative translation 

α, β, γ of the small molecule relative to the protein) is 

computed as a 3D correlation sum between the two grids 
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where Rp(i,j,k) and Lp(i+α, j+β, k+γ) are the 

components of the correlation function defined on the 

protein and the small molecule, respectively. 

Thus for each rotation, O(N
3
) translations are 

performed, each requiring O(N
3
) computations. These are 

performed using FFT, reducing the complexity for each 

rotation to O(N
3
logN). By default, PIPER evaluates tens of 

thousands of rotations, typically requiring many hours of 

CPU time. To limit the computation requirements, FTMap 

performs rotation at a higher granularity of incremental 

angle, performing a total of 500 rotations. This results in 

about 30 minutes of serial runtime per probe for the rigid 

docking phase. From each rotation, the 4 top scoring poses 

(relative translations) are retained for the energy 

minimization phase. 

 

Figure 1. Lock-and-Key Model for Rigid Docking 

The scoring function used in PIPER is based on three 

criteria: shape complementarity, electrostatic energy, and 

desolvation energy. The total pose score is computed as a 

weighted sum of these three energy functions (Equation 2). 
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Both the shape complementarity and the electrostatics 

terms are computed as a weighted sum of two components 

each and the desolvation energy is computed as a sum of 4 

to 18 pairwise potential terms. Computing scores of each of 

these terms requires independent correlation sums, leading 

to up to 22 FFT correlations per rotation. 

For every rotation, PIPER computes the ligand energy 

function Lp on the grid and performs repeated FFT 

correlations to compute the scores for the different energy 

functions. For each pose, these energy functions are 

combined to obtain the overall energy for that pose. Finally, 

a filtering step returns some number of poses per rotation 

based on score and distribution. 

 

Figure 2. (a) Profiling of FTMap program, (b) Runtimes per rotation for 

different steps in rigid docking 

The distribution of time per rotation for different steps 

of PIPER rigid-docking phase is shown in Figure 2 (b). 

Clearly, the most time consuming step is FFT correlation, 

requiring about 93% of the time. Of the remaining, almost 

5% is spent in accumulation of pairwise potential terms for 

desolvation energy and scoring and filtering. In our GPU 

accelerated PIPER, we accelerate all these per rotation steps 

except rotation and grid assignment. As discussed later, the 

FFT correlation step is replaced with direct correlation. 
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B. FTMap Energy Minimization 

In FTMap, the rigid docking step is followed by the 

energy minimization of the top scoring conformations. From 

each rotation of the rigid docking phase, FTMap retains 4 

top scoring conformations. This results in 2000 

conformations to be minimized per probe, with typical 

runtimes of many hours per probe. With 16 probes to be 

mapped, the energy minimization phase is clearly the more 

time consuming step of the mapping task. As shown in 

Figure 2 (a), energy minimization step constitutes about 

93% of total FTMap runtime. 

Energy minimization is an iterative process which aims 

at computing the configuration of the atoms in a complex 

that corresponds to the minimum potential energy [7]. It 

involves computing the potential energy of the complex at a 

point, updating the forces acting on the atoms, and adjusting 

the atom-coordinates according to the total forces acting on 

them. This process of energy evaluation and of force and 

position updates is repeated for many iterations until the 

energy of the system converges to within a threshold. 

Note that though energy minimization superficially 

seems similar to the widely studied molecular dynamics 

(MD) simulations, the underlying geometry of the problem 

and the computational structures are quite different. Unlike 

MD, energy minimization is a refinement step and is 

performed on a local region of the protein surface and the 

motions are very small. Due to this, the filtering techniques 

employed in MD, e.g. cell lists, are not employed in energy 

minimization. Moreover, even though energy minimization, 

like MD, uses neighbor-lists, they are seldom updated. 

In energy minimization, the system to be simulated 

consists of a number of atoms; the total energy of the system 

is a sum of various bonded and non-bonded energies of all 

the atoms (Equation 3). 
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Minimization involves repeated evaluation of this 

expression, once during each iteration. Figure 3 shows the 

profiling results for the energy minimization step of the 

FTMap program. As shown in Figure 3 (a), most of the 

minimization runtime is spent in evaluating these energy 

terms and the forces. Of these, the non-bonded energy 

evaluation step is the most computationally intensive, 

requiring more than 99% of total energy evaluation time 

(Figure 3 (b)). This includes the electrostatics and the van 

der Waals energies. 

The non-bonded energy of each atom is the sum of the 

contributions due to neighboring atoms within a cutoff 

distance. The total non-bonded energy of the system is the 

sum of the non-bonded energies of all the atoms. In the 

current article, we accelerate the evaluation and 

accumulation of these non-bonded energies and the 

corresponding force calculations by mapping these 

computations on a GPU. Bonded energy evaluation is a 

small fraction of the total runtime and is left to be executed 

on the host. 

 

Figure 3: (a) Profiling of Energy Minimization step of Serial FTMap 

program, (b) Distribution of the energy evaluation time. 

As stated earlier, the non-bonded energy is a sum of the 

electrostatic and van der Waals energy terms. The 

electrostatic energy of a solute with N charges can be 

decomposed into two components; a sum of the self 

energies self
iE of all the charges and a sum of pairwise 

interaction energies int
ijE [13]. (see Equation 4). 
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For the computation of the electrostatic energy, FTMap 

employs the Analytic Continuum Electrostatics (ACE) 

model [13], wherein the self-energy of an atom is 

represented as a sum of its Born self-energy in the solvent 

and the sum of effective pairwise interactions, self
ik

E , due to 

all the other solute atoms (see Equation 5) [13]. 
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Here qi represents the charge on atom ‘i’, rik is the 

distance between atoms ‘i’ and ‘k’, 
kV

~
 is the size of the 

solute volume associated with atom ‘k’, ikω  and 

ikσ determine the height and width of the Gaussian that 

approximates self
ik

E , and ikµ  is an atom-atom parameter. 

The pair-wise interaction energy is given by the 

generalized Born (GB) equation, which is the sum of 

Coulomb’s law in a dielectric and the Born equation [14]: 
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where 
iα  and 

jα  represent the Born radius for atoms ‘i’ 

and ‘j’, respectively. These in turn depend on the self-

energy of the atom. 

For computing the van der Waals energies of the atoms, 

FTMap uses a variant of the Lennard-Jones 6-12 potential. 

This is shown in Equation (8). 
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where epsi and rmi represent the van der Waals parameters 

of atom ‘i’,  rik is the distance between the two atoms and rc 

is the cut-off distance. 

  Equations (6), (7) and (8) represent the main 

computations that need to be performed for all atom-atom 

pairs to evaluate the total electrostatic and van der Waals 

energies of a given conformation. In addition, the energy 

gradients need to be computed to determine the forces 

acting on the atoms and to update the atom coordinates. 

III. RIGID DOCKING ON GPUs 

As in the original FTMap software, we split the FTMap on 

GPUs into two steps:  rigid-docking and energy 

minimization. Here we describe the mapping of rigid-

docking on GPUs. Energy minimization on GPUs is 

discussed in section 4. 

As stated earlier, the FTMap program performs rigid 

docking using PIPER, which computes multiple FFT-

correlations to obtain the pose score for different energy 

functions. Though FFT reduces the computational 

complexity from O(N
6
) to O(N

3
logN), our prior work on 

accelerating PIPER using FPGAs[15] and GPUs[16] 

indicates that, if the ligand grid is smaller than a certain size, 

direct correlation can perform better than FFT correlation, 

especially if multiple correlations are to be performed. This 

is due to many reasons: direct correlation lends itself well to 

parallelization, multiple correlation scores can be computed 

together, multiple rotations can be scored in a single pass of 

the protein grid and large data reuse amortizes the overhead 

of data fetch and kernel launch. Since the probes used by 

FTMap are very small, we use direct correlation for docking 

on GPUs. 

A. Direct Correlation on GPUs 

Direct correlation on a GPU replaces the steps of 

forward FFT, modulation, and inverse FFT. It translates one 

of the grids over the other and computes a sum of all the 

voxel-voxel interactions for each translation. Note that 

multiple energy functions can be evaluated together for each 

translation, requiring only a single pass through the grids. 

To distribute the task of computing the correlation 

scores for all the translations along the 3-axes, we represent 

the task as the 3D result grid that needs to be computed. 

Here, each grid point represents the correlation score for a 

translation (or multiples scores, one for each energy 

function). The distribution of work on different GPU 

threads can now be seen as distributing the computation of 

different portions of the result grid across multiple threads 

and thread blocks. This can be performed in various ways. 

We tried two different schemes, as shown in Figure 4. 

In both schemes, we launch the kernel with a 2D array 

of thread blocks, each with a 3D array of threads. In the first 

scheme, each thread block is responsible for computing a 

part of the 2D result plane for all the 2D planes in the 3D 

result grid. In the second scheme, we assign different 2D 

planes to different thread-blocks. The threads on each of 

those thread blocks compute a larger part of the 2D plane, 

but only for the planes assigned to the current thread block. 

Both distributions result in similar runtimes, though one or 

the other can have better performance for various non-cubic 

grids. 

 

Figure 4. Distribution of work on a GPU for direct correlation. 

As the protein and the probe grids are generated on the 

host, they must be transferred from the host memory to the 

GPU memory. In the case of the protein grid, this is done 

only once. The ligand grid, however, is rotated on the host 

and remapped. Thus, this transfer is required for every 

rotation. Since every multiprocessor needs access to both 

grids, they need to be stored either in the device’s global 

memory, accessible by all the multiprocessors, or duplicated 

in the local shared memory of each of the multiprocessor. 

Due to the relatively large sizes of the protein grids and the 

limited amount of shared memory, we store these grids on 

the global memory. The ligand grids are much smaller, 

however, and can fit in device’s shared memory or constant 

cache. Both of these provide much faster access compared 

with global memory. We found that access time from 

constant memory and shared memory is identical.  

Due to the small sizes of the shared and the constant 

memories, we can fit a ligand grid of size up to 7
3
 in shared 

memory and up to 8
3
 in constant memory. Since the probes 

are never bigger than 4
3
 this is not an issue for mapping. 

The small probe grids, in fact, allow us to perform a further 

optimization:  storing the voxel grids for multiple rotations 

in the constant memory. This enables the correlation inner 

loop to compute multiple scores in each iteration. 

Storing and evaluating multiple rotations together has 

two-fold benefits. First, the loop and kernel launch overhead 

is amortized over multiple rotations. Second, each protein 

voxel fetched from the global memory (which is not cached) 

gets reused multiple times, reducing the number of higher 

latency accesses to the global memory. This results in 

significant performance improvement. For 4
3
–sized probe 

grids, we can perform 8 rotations in each pass, achieving a 

speedup of 2.7x over direct correlation performed one 

rotation at a time. 

B. Scoring and Filtering on GPUs 

Scoring refers to computing the weighted sum of 

correlation scores for different energy functions and filtering 

refers to selecting the top scores from different regions on 

the result map. Filtering is performed by selecting the best 

score and then excluding its neighbors while selecting the 

next best score. Such exclusion is done to avoid selecting 

multiple best scores from the same region (see Figure 5). 

Though scoring and filtering amount to a small fraction 

of total runtime for rigid-docking, it is critical to accelerate 
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this step to achieve overall good performance. Performing 

filtering on the GPU has the further advantage of reducing 

the amount of data that must be transferred back to the host 

after correlation. After filtering, only the top few scores 

need to be transferred, as opposed to the entire 3D score 

grid. 

 

Figure 5. Filtering of top-scores from different regions on the result map. 

Cells surrounding the selected score are marked for exclusion. 

As in the case of computing the correlation score, we 

divide the N
3
 points of the result grid equally among M 

threads. Each thread computes N
3
/M weighted scores, finds 

the best scores within its subset and stores it in the shared 

memory (Figure 6). These scores are then gathered by a 

master thread and the best among these is selected. To 

simplify this gather process, we distribute the scoring task to 

threads on only one multiprocessor. Though this is a heavy 

under-utilization of the available GPU computation power, 

it simplifies the process of assembling these scores from 

different threads. Distribution across multiple 

multiprocessors would incur large communication overhead 

and nullify any performance benefits achieved from the 

increased parallelism. 

 
Figure 6. Scoring and Filtering on a GPU. Scores distributed across 

different threads and accumulated by a master thread. 

The master thread (thread 0) performs an additional 

task of flagging the cells for exclusion. Exclusion is 

determined by maintaining an array of length N
3
, with one 

entry for each of the cell, for constant time lookup. Since N 

= 128 is typical, this array does not fit in the GPU shared 

memory and is stored in the global memory. 

IV. ENERGY MINIMIZATION ON GPUs 

The computations to be performed per iteration of energy 

minimization can be divided into six tasks: (i) computing 

the self-energies for all the atoms, (ii) computing the 

pairwise interactions energies, (iii) computing the van der 

Waals energies, (iv) computing the energy gradients (v) 

updating the forces acting on the atoms, and (vi) performing 

the optimization move and updating the atom-coordinates 

based on the force values. To amortize the GPU kernel 

launch overhead and to reuse the common computations, we 

divide the six tasks into three GPU kernels: (a) computing 

atom self energies and the corresponding energy gradients, 

(b) computing the pairwise interactions (which is a part of 

the electrostatic energy) and the van der Waals energies 

along with the energy gradients, and (c) updating the atom 

forces. The computation structures used by these kernels are 

similar and the techniques discussed here apply to all these 

computations. Two computations - the optimization move 

and the atom-coordinate updates, are left on the host, though 

in the future we plan on performing these on the GPU as 

well.

 
Figure 7. Array of Neighbor-Lists 

For efficient computation of atom energies, serial 

FTMap arranges the atoms in a neighbor list format, where 

each atom (the “first” atom) has an associated list of 

neighbors (the “second” atoms) that contribute to its energy 

(see Figure 7). As the positions of the atoms change, the 

neighbor lists are updated. The FTMap program cycles 

through different atom-pairs in the neighbor-list and 

computes the partial energies. These partial energies are 

accumulated, as they are computed, into an array storing the 

total energies of all the atoms. Though there are various 

ways to map this neighbor-list computation structure onto 

GPU threads for parallel energy evaluations, most of them 

run into two serious problems:  (i) memory conflicts during 

parallel updates from different threads and (ii) serialization 

during the accumulation of the partial energies into the 

energy array. 

There are several reasons why the neighbor-list 

structure is not suited for mapping to the GPUs. First, we 

need the individual total self energies of all the atoms, not 

just the total self energy of the system. This requires 

multiple accumulations, one for each entry of the energy 

array. Second due to the random occurrences of the 

“second” atoms in the neighbor-lists (see Figure 7), the 

energy array cannot be distributed into the shared memories 

of different GPU multiprocessors. Rather, it must be present 

in the GPU global memory, accessible from all the 

multiprocessors. And third, having the energy array in the 

global memory can potentially lead to write conflicts, since 

a particular “second” atom can be present in the neighbor-

lists of more than one “first” atom (see Figure 7). 

For efficient mapping of these computations onto GPU 

threads, and to enable fast and parallel energy updates and 

accumulations, we modified the original neighbor-list into a 

different data structure:  we refer to it as a pairs-list. Before 

we discuss this structure, we briefly describe our initial 

solution for mapping the original neighbor-lists onto the 

GPUs. 

A. Mapping Neighbor-lists on GPUs 

To enable parallel updates and accumulations on 

different GPU multiprocessors, we map only one “first” 

atom onto a multiprocessor at a time. On each 

multiprocessor we have two different energy arrays in the 
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shared memory:  one for the partial energies of the current 

first atom and the second for the partial energies of all the 

second atoms (Figure 8). 

 
Figure 8. Mapping the Neighbor-lists onto GPU threads. Replicating 

energy arrays to enable parallel updates. 

Different threads of a thread group compute the partial 

energy of the current atom due to one of the second atoms in 

its neighbor-list and that of the second atom due to the first. 

As the energies are computed by different threads, they are 

updated in these shared memory arrays. Note that since a 

second atom will appear in the neighbor list of a particular 

atom only once, no two threads of a particular thread block 

will update the same shared memory location at the same 

time. This enables parallel, conflict free updates. 

Once all the second atoms of the current first atom are 

processed, a barrier is reached and a master thread 

accumulates the partial energy of the first atom by 

accumulating the values in the first atom energy array. The 

energies in the second atom array, however, are for different 

second atoms and are only partial. Analogous partial arrays 

are present on the shared memories of all the other 

multiprocessors and must be combined to compute the total 

energies of the second atoms (see Figure 8). This is done by 

copying the second atom arrays from the shared memories 

of the different multiprocessors to the global memory. The 

corresponding values from these arrays are then added to 

obtain the total energies. 

Though this scheme allows parallel execution and 

updates, it has three problems. First, since only one first 

atom is processed by a multiprocessor, the GPU threads are 

heavily underutilized and the distribution of work on 

different multiprocessor is uneven. This is because different 

“first” atoms have widely varying number of “second” 

atoms in their neighbor-lists, ranging from a few to a few 

hundred. Second, transferring multiple large second atom 

arrays from shared to global memory incurs high data 

transfer cost per iteration. Finally, accumulation from the 

global memory is slow. Overall this method results in poor 

performance and is not preferred. 

B. Improved Data-Structures for Efficient Mapping on 

GPUs 

Since the computation per iteration is very small, only a 

few milliseconds on a serial computer, obtaining high 

speed-up requires efficient distribution of work to maximize 

parallelism and reduce the communication cost. We now 

discuss two schemes for doing just that. Both modify the 

original neighbor-list data structure to enable better 

distribution of work over GPU threads and more efficient 

accumulations. 

 
Figure 9. Atom-pairs list 

In the first scheme, we replace the neighbor-list 

structure with a pairs-list. It contains a list of atom-pairs that 

need to be processed, along with fields to store the partial 

energies of the two atoms involved in the pair. This is 

shown in Figure 9. Different atom-pairs are independent of 

each other and can be processed in parallel. We distribute 

these pairs equally among different GPU threads. The pairs-

list is stored in the GPU global memory. Each thread 

processes the pair assigned to it and stores the partial 

energies of the two atoms at the corresponding index in the 

global memory. 

Once all the pairs have been processed, we accumulate 

these partial energies to compute the total energy of each 

individual atom. This needs to be done serially, mainly due 

to the unordered occurrences of the second atoms in the 

pairs-list.  

Since the energy values are stored in the GPU global 

memory, accumulation requires multiple accesses to the 

slow GPU global memory. Also, since the accumulation is 

done serially by a single thread, it turns out that this 

accumulation is actually faster on the host. Accumulation on 

the host, however, requires transferring the two arrays of 

atom-energies from the GPU to the host in each iteration. 

This scheme thus enables parallel energy computation and 

updates but still requires serial accumulation of energies. 

With accumulation on the host, it results in a speedup of 

around 3x over the original serial code. 

To enable faster and parallel accumulations from the 

GPU shared memory, we further modified the data structure. 

In our second approach, we still use the pairs-list of Figure 9 

but make two changes in how the pairs get mapped to the 

GPU threads.  

The first change is to split the pairs-list into two 

separate pairs-lists. Notice that the serialization during 

accumulation is mainly due to the random occurrences of 

second atoms in the neighbor-lists (now the pairs-list). The 

first atoms still appear in an ordered fashion. Thus, to add 

determinism in how the atoms appear in the list, we split the 

lists into two separate lists and process each one separately. 

The first pairs-list is based on the original neighbor-list 

and is called the forward list. The second list is generated by 

reversing the original neighbor-list, i.e., by treating each 

second atom of the original neighbor list as a first atom for 

the reverse neighbor list. We call this second list the reverse 

list. While processing a list, only the energy of the first atom 

in each pair is computed and updated. This way, the 

energies of the first atoms (in the original list) get updated 
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while processing the forward list and those of the second 

atoms (in the original list) while processing the reverse list. 

This is shown in Figure 10. Note that there is no column for 

the energies of the second atom in the pair.  

 
Figure 10. Split pairs-lists. (Left) Forward list, (Right) Reverse list. 

The second modification involves statically mapping 

the pairs from the new pairs-lists onto the GPU threads. 

This comes from the observation that the pairs in the new 

lists can be grouped by the first atoms. This can be done 

since we now care only about computing the energies of the 

first atoms in the pair and not the second atoms.  

These two changes allow better and more uniform 

distribution of atom-pairs on the GPU and enable parallel 

and much faster accumulations in GPU shared memory, as 

discussed next. 

Once we have the forward and reverse pairs lists, we 

statically distribute them to GPU threads running on 

different multiprocessors. The static mapping scheme 

groups together all the pairs in a list having the same first 

atom and maps the entire group onto the threads in the same 

thread block. More than one group of pairs can be mapped 

onto a particular thread block, provided there are enough 

threads to accommodate all the pairs of those groups. If the 

current thread block does not have enough threads left to 

accommodate the entire group, it is mapped onto the next 

available thread block. Unused spaces on the thread blocks 

are claimed by other smaller pair-groups. Having all the 

pairs of a group on the same thread block allows us to 

perform accumulation in the shared memory, since all the 

partial energies are present within the same multiprocessor. 

To determine the assignment of work for different GPU 

threads, we generate a new data-structure called the 

assignment table (see Figure 11). The table contains one 

row per  thread id which contain 5 fields: pair id, indices of 

the two atoms, a master field indicating if this thread is the 

first thread for this pairs-group, and the number of pairs in 

the pair-group. The master thread field and the number of 

pairs in group are used to accumulate the energies of the 

atoms in the shared memory. 

The table in Figure 11 is stored in the GPU global 

memory. One table is generated from each of the forward 

and the reverse pairs-lists and is transferred to the GPU only 

once at the beginning of the minimization process. There is 

no further data transfer per iteration, unless the neighbor list 

is updated, in which case we regenerate the assignment 

tables and transfer them to the GPU. This happens only a 

few times per 1000 minimization iterations; thus the transfer 

time is negligible. 

Each thread works on the pair assigned to it in the 

assignment table. In case the number of pairs is larger than 

the number of threads, each thread would be responsible for 

multiple rows. Energies computed by different threads are 

stored in an array in the GPU shared memory. The length of 

this array is equal to the number of threads in the thread 

block, with each thread storing the computed energy at the 

index equal to its local thread id (id within the block). 

Figure 11. Work Assignment Table for the GPU. 

Once all the threads have finished processing their 

assigned pairs, the master threads execute the accumulation 

round. Each master thread reads the number of atoms for the 

group associated with it and accumulates that many values 

from the shared memory, starting from its local thread id. 

This way, many threads perform accumulation in parallel 

and from the shared memory, resulting in significant 

speedup compared to previous schemes. The master threads 

then store the accumulated values in the GPU global 

memory. Note that we can use this scheme only because we 

are computing and updating the energies of only the first 

atom. For the second atom, we repeat this process with the 

assignment table corresponding to the reverse pairs-list. 

Calling the kernel twice leads to repeating some of the 

computations. We tried to avoid this by storing those values 

in the GPU global memory during the first kernel call and 

reusing them during the second call. This resulted, however, 

in a slowdown due to slower global memory access. 

V. RESULTS 

We present our results from accelerating the rigid docking 

and energy minimization steps of FTMap by mapping to the 

NVIDIA GPUs. The serial times were obtained by running 

the original unaccelerated FTMap code on a single core of a 

3GHz quad-core Intel Xeon Harpertown processor. The 

code is written in C language and was compiled using 

Microsoft Visual Studio 8. 

Currently the FTMap production code supports only 

coarse-grained parallelism through distributing rotations 

across nodes of a server. In previous work [15][16] we 

created a multicore version of the docking phase for 

comparison. The code was compiled using Microsoft Visual 

Studio 8 with standard optimizations (release mode). 

Docking, however, is only about 7% of the total 

computation in mapping. For the energy minimization step, 

creating an efficient multicore version appears to be 

challenging because of the small ratio of computation to 

communication. 

  Our GPU-accelerated code runs on a NVIDIA TESLA 

C1060 GPU, containing 240 processor cores @ 1.3 GHz. 

The GPU is housed in a Dell Precision workstation with a 

3GHz quad-core Intel Xeon Harpertown processor running 

Windows XP. The GPU code was written using NVIDIA 

CUDA and compiled using Microsoft Visual Studio 8 with 

standard optimizations and the NVIDIA nvcc compiler. 
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A. Speed-ups on Rigid-Docking Step 

Speedups achieved on various per-rotation tasks of the 

docking phase are shown in Table 1. Rotation and grid 

assignment are left on the host and thus have a speedup of 1. 

Correlation on the original PIPER was performed using an 

FFT whereas on the GPU it was implemented as direct 

correlation. As discussed earlier, GPU resources are 

underutilized during scoring and filtering leading to the 

modest speedup. The overall speedup achieved in docking is 

32x. The speedups reported are for a probe grid size of 4
3
 

and a total correlation grid size of 128
3
, which are typical 

for FTMap probes and proteins. 

Comparing against our FFT based multicore 

implementation of PIPER, running on same quad-core 

processor as before, the GPU PIPER speed-up reduces to 

11x. On multicore, as in the case of GPUs, we observed that 

for small ligand sizes, direct correlation is faster than FFT. 

Comparing against direct correlation based PIPER on 

multicore, the GPU PIPER speedup further reduces to 6x. 

Table 1. Speedups for various computations in rigid docking. 

Task (per rotation) CPU Time GPU Time Speedup 

Rotation + grid assignment 80 ms 80 ms 1 

Correlations 3600 ms 13.5 ms 267x 

Accum. desolvation terms 180 ms 1 ms 180x 

Scoring and Filtering 200 ms 30 ms 6.67x 

Total time per rotation 4060 ms 125.5 ms 32.6x 

B. Speed-ups on Energy Minimization Step 

Table 2 shows the speedup achieved on various energy 

and force computations mapped onto GPU kernels. The 

runtimes presented are for a single iteration of energy 

minimization, which involves performing around 10,000 

atom-atom computations for each of the energy term. Force 

update kernel updates forces for the 2200 atoms in the 

complex. 

We also measured the overall energy minimization 

times for various different protein-probe complexes. The 

average time for minimizing 2000 conformations of a 

complex on the original FTMap program is around 400 

minutes. On our GPU accelerated version, the energy 

minimization time reduces to 32 minutes, representing an 

overall speedup of 12.5x for the energy minimization phase. 

Table 2. Speedups for different energy evaluation and force update steps of 

energy minimization. 

Computation Serial Time GPU Time Speedup 

Self energies 6.15 ms 0.23 ms 26.7x 

Pairwise 2.75 ms 

van der Waals 0.5 ms 
0.19 ms 17x 

Force updates 0.95 ms 0.14 ms 6.7x 

C. Overall Speed-up 

On our GPU accelerated mapping program, the time for 

mapping a probe on a protein reduces from 435 minutes to 

33 minutes., representing an overall speedup 13x for the 

entire FTMap program. Comparing to the multicore version 

of the docking phase, the overall speed-up reduces to 12.3x. 

VI. CONCLUSION 

We present a fast, GPU-based implementation of FTMap, a 

production binding site mapping program. Both the rigid-

docking and the energy minimization phases are 

accelerated, resulting in a 13x overall speedup of the entire 

application over the current single-core implementation. 

While an efficient multicore implementation of FTMap may 

be possible, it is certainly challenging: we estimate it would 

require an effort greater than what we spent on the GPU 

mapping. 

     Overall, this work provides a cost-effective, desktop-

based alternative to the large clusters currently being used 

by production mapping servers. Essential to the success of 

this work is restructuring the original application in several 

places, e.g., to avoid the use of neighbor lists. 

     In the future, we plan on extending this work to a multi-

GPU implementation and integrating it into a production 

web server. 
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