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Abstract 
 

Processing nodes of the Cray XT and IBM Blue 

Gene Massively Parallel Processing (MPP) systems 

are composed of multiple execution units, sharing 

memory and network subsystems.  These multicore 

processors offer greater computational power, but may 

be hindered by resource contention.  In order to 

understand and avoid such situations, we investigate 

the impact of resource contention on three scalable 

molecular dynamics suites: AMBER (PMEMD 

module), LAMMPS, and NAMD.  The results reveal the 

factors that can inhibit scaling and performance 

efficiency on emerging multicore processors. 

  

 

1. Introduction 
 

Massively Parallel Processing (MPP) systems, 

composed of thousands of multicore processing 

devices, are becoming a dominant architectural 

paradigm in high performance computing.  The shift in 

processor architecture focus from the traditional 

improvement in clock speed to using multiple cores 

introduces another level of parallelism at the 

processing layer.  As the number of cores increases per 

chip, data locality, shared cache, bus contention, and 

memory bandwidth limits become even more difficult 

to manage due to increases in resource sharing.  

Additionally, from a parallel application’s perspective, 

the increase in number of cores indicates that there will 

be more intensive intra-node communication.  

Therefore, it is important to identify the factors that 

could potentially limit the performance and scalability 

of applications. 

 

In this study, we aim to quantify the costs across 

different variants of multicore devices and molecular 

dynamics (MD) frameworks through a comprehensive 

measurement.  MD simulations typically repeat 

identical sequences of operations and run for extended 

periods.  Therefore, a small improvement or 

degradation in performance could have significant 

implications.  Performance and scaling improvements 

across different multicore devices could be achieved by 

identifying bottlenecks and by understanding and 

identifying the cost factor in hardware and software 

stack as well as the application implementation.  In 

particular, we present a methodology for characterizing 

the performance of a diverse range of multicore devices 

in the context of three scalable, production-level MD 

simulation frameworks.   

 

We use the JAC (Joint Amber [13] and CHARMM 

[12]) test case [6], which contains 23,558 total atoms, 

as an input to the two parallel versions of the MD 

simulation frameworks, Amber PMEMD, and 

LAMMPS [5][17].  NAMD [8][16] is another well-

known framework based on the Charm++ runtime 

system.  For MPP runs, we selected medium-scale 

biological systems of few hundred thousands atoms to 

large-scale systems of up to 3 million atoms.  We 

analyze performance and scaling of MD test cases on 

these tightly integrated MPP systems and compare and 

contrast these with emerging, stand-alone multicore 

microprocessors.  On the emerging quad-core 

microprocessors systems [2], our finding indicates that 

the MD applications performance is highly sensitive to 

the MPI communication library implementation, 

tuning, and usage in the application.  MPP systems, 

including Cray XT [3][9][10] and IBM Blue Gene 

[4][15], offer high network injection and bisection 

bandwidth to tens of thousands of processing cores.  

We subsequently evaluate the impact of network 

performance on scalable MD applications.  The unique 

contribution of this study is a comprehensive 

evaluation and analysis of a range of biological systems 

using the major scalable MD frameworks on emerging 

multicore and MPP systems.   

 



The paper outline is as follows: Section II provides 

an overview of the scalable MD frameworks and the 

motivation of the proposed study. Section III describes 

the testing environment, including the hardware, 

software, and test cases. Performance evaluation results 

and analysis of simulation runs is presented in section 

IV. Section V concludes with the key findings of this 

study and directions for future plans. 

 

2. Background and Mativation 
 

MD simulations enable the study of complex, 

dynamic processes that occur in biological systems.  

MD methods are now routinely used to investigate the 

structure, dynamics, function, and thermodynamics of 

biological molecules and their complexes.  A typical 

bimolecular simulation contains atoms for the solute, 

ions, and the solvent molecules.  The motions of 

individual atoms can be determined by numerically 

solving Newton’s equations of motion, which relate the 

total force on an atom to its mass and acceleration. 

 

maFi   

 

The total force on each atom is a contribution from 

individual forces due to chemical bonds, as well as 

non-bonded interactions with all other atoms.  The 

force is calculated from the negative gradient of the 

potential energy function, U, which is given by, 
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The latter two terms represent the van der Waals 

and electrostatics terms, respectively.  Although forces 

are defined among all atom pairs, in practice, MD 

simulations evaluate only those pairs within a cutoff 

distance for computational efficiency.  Each particle 

interacts with the nearest images of the other N-1 

particles only in a sphere of radius Rcutoff.  The cutoff 

limits the number of non-bonded interactions in the 

sum to be Nρ, with ρ the atom density, as compared to   

N(N-1) interactions without the cutoff.  For the van der 

Waals interactions, the cutoff error is negligible within 

a reasonable distance since it is proportional to rij
-6

.  

However, the electrostatic sum has a much larger error, 

as it is proportional to rij
-1

.  Ignoring the electrostatic 

interactions beyond the cutoff can introduce spurious 

effects in the energy and forces, resulting in artificial 

force magnitudes.  The Particle Mesh Ewald (PME) 

method provides a solution to this problem by 

interpolating energies to a grid and then using a fast 

Fourier transform for the calculations. PME is nearly as 

accurate as computing all pairs, but reduces the number 

of non-bonded interactions to N log N [11][14].  A 

number of established MD codes implement PME, 

including AMBER, LAMMPS, and NAMD. 

 

3. Testing Environment 
 

Hardware 
 

The experimental data collection for this study is 

undertaken on x86-based standalone systems, Cray 

XT3 [9], Cray XT4 [10], IBM Blue Gene/L [15], and 

Blue Gene/P [4] systems.  The x86-based standalone 

systems include an eight socket, dual-core AMD 

Opteron 8216 [2], an eight socket, quad-core AMD 

Opteron 8350 [1], and an Intel quad-core Clovertown 

system [18].  The AMD based systems use PGI 

compilers, whereas the Intel compiler is used on their 

platform.  The cluster systems run standard versions of 

the Linux operating system.  The Cray XT3 and XT4 

systems are composed of dual-core Opteron processors.  

Cray XT4 contains Rev F Opteron while the Cray XT3 

system is composed of an earlier release of dual-core 

Opteron processor.  Additionally, the XT3 uses the 

SeaStar NIC, while the XT4 uses the SeaStar2 NIC.  

The SeaStar2 increases the peak network injection 

bandwidth of each node from 2.2 GB/s to 4 GB/s when 

compared to SeaStar, and increases the sustained 

network performance from 4 GB/s to 6 GB/s.  The 

IBM Blue Gene/L and Blue Gene/P systems are 

composed of PowerPC processors.  The Blue Gene/L 

systems has 2 compute cores per processing node, 

while the Blue Gene/P system, a predecessor of the 

Blue Gene/L system with higher frequency, has 4 

execution cores per processing node.  IBM compilers 

are used on the Blue Gene systems.  Note that many of 

the results on the MPP systems were collected as a part 

of the early performance evaluation effort.  We 

anticipate that the achievable performance and scaling 

could be improved by system-specific optimization and 

tuning as well as with the maturity of the software stack 

including compilers, operating and runtime systems 

that control the mapping and placement of parallel MPI 

tasks. 

 

Software 
 

The three MD frameworks that we used are PMEMD, 

LAMMPS, and NAMD.  PMEMD is a module of 



AMBER that has been written with the major goal of 

improving performance of PME in molecular dynamics 

simulations and minimizations by Robert E. Duke and 

Lee G. Pedersen.  PMEMD is implemented in Fortran 

90 and MPI. LAMMPS models an ensemble of 

particles in a liquid, solid, or gaseous state, and can be 

used to model atomic, polymeric, biological, metallic 

or granular systems.  The version we used for our 

experiments is written in C++ and MPI.  It is the only 

implementation that is reported to scale to 64K Blue 

Gene/L processors.  It should be noted that the scaling 

numbers are reported in the weak scaling mode, i.e., 

not for a fixed-size problem.  NAMD is a C++ based 

parallel program, implemented using the Charm++ 

parallel programming system.  It uses object-based 

decomposition methods and measurement-based 

dynamic load balancing to achieve its high 

performance.  NAMD uses a combination of spatial 

decomposition and force decomposition techniques to 

generate a high degree of parallelism.  NAMD 

developers describe several techniques to scale it to 

8,192 processors on Blue Gene/L. 

 

Test Cases 
 

The bio-molecular systems used for our experiments 

were designed to represent the variety of complexes 

routinely investigated by computational biologists.  We 

considered the following three test cases for our 

experiments:  

 

• Small: 23,558 atoms (JAC) and 61,641 atoms 

(HhaI).  

• Medium: 290,220 atoms (RuBisCO).  

• Large: 1,066,628 atoms and 2,640,030 atoms 

 

The smallest system is the JAC (Joint Amber 

CHARMM) benchmark.  JAC is a dihydrofolate 

reductase (159 residue protein) in TIP3P water (23,558 

total atoms), in a periodic box with constant volume 

and explicit solvent.  PME is used for electrostatics, 

and van der Waals interactions are truncated at 9Å.  

The HhaI system is a model for protein-DNA complex 

(enzyme m5C-methyltransferase M. HhaI with its 

target DNA sequence), in explicit solvent and counter-

ions to allow the system to be charge neutral.  This 

model consists of 61,641 atoms with explicit treatment 

of solvent using the TIP3P water model.  AMBER’s 

tleap module was used for system preparation and the 

AMBER parm98 force-field was used.  The system was 

equilibrated before benchmarking runs.  The time-step 

is   (10
-15

 seconds).  The long-range forces are 

calculated using PME.  A medium-scale system we 

considered is the RuBisCO enzyme, which is based on 

the crystal structure 1RCX.  The RAQ system is a 

model of the RuBisCO enzyme in explicit solvent and 

was prepared in a way similar to the HhaI system.  This 

model consists of 290,220 atoms with explicit 

treatment of solvent.  The time-step for each run is also  

1 fs.  We consider two representative large-scale 

biological systems with 1,066,628 atoms and 2,640,030 

atoms, respectively.  The first test case models Satellite 

Tobacco Mosaic Virus (STMV) [7].  It uses periodic 

boundary conditions and the PME for electrostatics.  

The other test case has a similar configuration except 

that it uses slightly different PME parameters. 

 

4. Experiments and Results 
 

To understand the impact of multicore technologies 

on MD simulation, we evaluate performance of two 

out-of-the-box applications on an AMD quad-core 

processor.  Figure 1 shows the parallel efficiency 

results (speedup/number of cores).  Note that these 

results compare performance starting from 2 cores 

rather than 1 core.  This is because PMEMD requires a 

minimum of 2 MPI tasks.  Therefore the actual 

efficiency could be in fact slightly smaller.  We ran a 

small (JAC, 24K atoms) and a medium (RUB, 290K 

atoms) size problem on two scalable MD frameworks, 

LAMMPS and PMEMD.  We observe that on a system 

with 8 quad-core processors connected in a SMP 

manner, the efficiency could be lower than 50% just by 

using only half of the total cores. 

 

 
 

Figure 1: Parallel Efficiency on a quad-core 

processor 
 

Quadcore Performance and Scaling  
 

We begin by evaluating performance and scaling of 

a small-scale test case, JAC, using the PMEMD and 

LAMMPS frameworks.  A single MPI task is mapped 

onto a single core in all test cases.  We compare these 



results with the Cray XT3 and XT4 results, systems 

that have similar characteristics except for a high 

memory bandwidth and high network injection 

bandwidth.  The bisection bandwidth of the XT3 and 

XT4 systems is the same.  Figure 2 shows performance 

results in   (10
-12

  seconds) per simulation day on a 

dual-core AMD Opteron and two contemporary quad-

core systems along with MPP system results by 

simulating the JAC benchmark in LAMMPS 

framework.  On smaller core count, we observe that the 

Intel Clovertown system outperforms all other 

multicore systems as a result of a higher clock 

frequency system and a large shared cache per die.  

However, as all cores begin sharing the bus and cache, 

the resource contentions result in slower performance 

and limit scaling to large number of cores.  The 

Opteron systems, on the other hand, have relatively low 

clock frequencies, but the on-chip memory controller 

and the Hyper-transport (HT) links provide better 

scaling.  Still at the higher core count, scaling in the 

SMP configuration of 8 cores suffer while the 100 

series single-chip, dual-core XT3 and XT4 systems that 

are connected to the network via HT links provide 

much higher efficiencies. 

 

 
 

Figure 2: Per core (x-axis) performance in 

pico-seconds per day (y-axis) LAMMPS 

simulation of the JAC test case. 
 

To quantify and understand the scaling behavior of the 

results presented in Figure 2, we calculated speedup on 

multiple cores or MPI tasks with respect to single core 

runtimes (speedup equals time on one core divided by 

time on P cores).  The results are shown in Figure 3.  

The speedup on the XT4 system is the highest while 

the Clovertown system is the lowest.  The two Opteron 

SMP systems with 8 sockets provide similar levels of 

scaling despite having different number of cores per 

socket and slightly lower frequency on the quad-core 

system.  In other words, the performance of this 

simulation run is probably less sensitive to sharing 

resources per socket than sharing resources across 

sockets. 

 

 
 

Figure 3: Speedup (Y-axis) on number of cores 

(X-axis) for JAC simulation using LAMMPS 

 
We repeat the similar set of experiments with the 

PMEMD simulations of the JAC benchmark. The 

results are shown in Figure 4.  Although the 

implementation of LAMMPS and PMEMD are 

significantly different, the scaling behavior of these 

applications is similar across the five targeted 

multicore platforms.  In other words, the Clovertown 

system outperforms the other multicore platforms on 

smaller core counts but the scaling is limited to a few 

cores.  Another interesting observation is the scaling of 

the PMEMD simulation runs on the target multicore 

systems.  Despite the different usage patterns of MPI 

communication operations in PMEMD and LAMMPS, 

these exhibit similar scaling behavior for simulating 

JAC on up to 32 cores. 

 

 
 

Figure 4: Per core (x-axis) performance in 

pico-seconds per day (y-axis) PMEMD 

simulation of the JAC test case 

 



Scaling with Workload Size  
 

Since JAC is a small problem case, one could argue 

that it is not capable of exploiting and saturating the 

computing resources available on the multicore 

systems.  At the same time, we are also interested in 

understanding the scaling behavior and impact of 

resource contention on multicore systems with 

increased workload volume.  We therefore ran 

experiments on the AMD quad-core system and 

compared results of two test cases, small (JAC) and 

medium (RUB) using LAMMPS and PMEMD.  

Results are shown in Figure 5.  Here we note that the 

scaling of PMEMD is not sensitive to the problem size 

(24K atoms as compared to 290K atoms) while the 

LAMMPS scaling behavior changes significantly on 

the higher processor count.  We attribute this behavior 

to the increase in the workload volume as a function of 

problem size.  In LAMMPS the workload volume per 

processor does not increase with the same rate as the 

PMEMD communication volume.  Increase in the 

computation volume, however, is proportional in the 

two implementations. 

 

 
 

Figure 5: Per core (x-axis) performance in 

pico-seconds per day (y-axis) on AMD quad-

core system 
 

Parallel Efficiency on MPP Systems  
 

We compare applications performance and scaling on 

Teraflop-scale contemporary MPP systems.  For these 

experiments, we selected medium to large-scale test 

cases (up to 3M atoms) and ran experiments using the 

simulation frameworks that are known to scale to tens 

of thousands of MPI tasks.  

 

A set of experiments is conducted using LAMMPS 

with a   atom system (HhaI) and   atom system (RUB), 

both with explicit solvent.  The sizes of the FFT grid in 

these simulations determine the scaling limits.  The 

HhaI system could scale to 1024 MPI tasks while the   

system could scale to 4096 MPI tasks.  Figure 6 shows 

performance slowdown for HhaI and RUB runs using 

LAMMPS on Cray XT3 and XT4 systems.  These 

results on the dual-core systems show that the 

performance slow-down could be as high as 50% if an 

application is built and run in the default mode.  Our 

earlier results showed that this slowdown could be even 

higher for the quad-core processors. 

 

 
 

Figure 6: Per core (x-axis) performance 

slowdown with respect to single core (y-axis) 

LAMMPS simulation 
 

No system specific modifications and optimizations are 

performed for these simulation runs.  It is worth noting 

here that all these results are collected as part of early 

system evaluation and subsequent upgrades could 

result in significant performance improvements, as we 

note for the case of XT3 and XT4 runs.  

 

We compare performance and scaling of the RUB test 

case on the target MPP systems in Figure 7.  Here we 

note that subsequent generations of the systems, XT 

series and Blue Gene series, result in performance 

improvements for applications particularly on large 

number of MPI tasks mainly due to improvements in 

network and memory bandwidth.  At the same time, 

there are smaller changes in the speedup ratios 

comparing the subsequent generations of the two 

systems suggesting that additional efforts are needed to 

exploit the enhanced architectural features of the target 

systems efficiently.  In the case of MD applications, 

this is particularly challenging since the number of 

atoms or workload volume per processor is not fixed 

throughout the simulation runs.  The result is load 

imbalances in computation as well as in 

communication.  Our next set of experiments show that 

the scaling and performance benefits could be seriously 

limited due to the load imbalance and synchronization 

on large number of cores. 

 



 
 

Figure 7: Per core (x-axis) performance in psec 

per day (y-axis) LAMMPS simulation of the 

RUB test case 
 

The analysis of NAMD simulation runs reveals a 

slightly different set of issues.  Unlike LAMMPS and 

PMEMD, NAMD is built on the Charm++ execution 

and runtime framework, which is being built on XT and 

Blue Gene MPI libraries.  Charm++ employs 

virtualization techniques such that the programmer 

divides the program into a large number of parts 

independent of the number of processors.  The scaling 

on NAMD simulation on large-scale test cases (3M 

atoms) is shown in Figure 8.  In this particular case, we 

observe the performance results converge especially at 

higher number of MPI tasks.  We used standard 

runtime and MPI profiling tools and the Charm++ 

projection tool to understand the cause of this 

performance behavior.  Our analysis reveals that there 

are some severe load balancing issues and the 

difference between communication volume assigned to 

one MPI task or core can vary significantly as the 

numbers of cores increase. 

 

 
 

Figure 8: Per core (x-axis) performance in time 

per simulation step (y-axis) NAMD simulation 

of the 3M atoms test case 
 

 

5. Conclusions and Future Plans 
  

There are many benchmarking tools for evaluating the 

performance of hardware and software components.  

However, a majority of these benchmarking tools 

primarily focus on a particular system component.  

Thus, these tools often do not present a holistic view of 

a multicore based MPP system.   This study showed 

that a systematic evaluation of the interaction and 

discovering the critical performance path is crucial to 

solve the problem at hand.  

 

We have shown that the performance and scaling of the 

MD simulations on multicore platforms depend on a 

range of factors including the hardware design features, 

software stack and implementation of the simulation 

framework.  On stand-alone dual and quad-core 

systems, the applications showed sensitivity to the 

implementation and usage of the MPI communication 

library.  On the other hand, on the large-scale MPP 

systems based on the multicore processors, the load 

balancing and maturity of the software stack is more 

critical for sustaining performance and scaling MD 

applications.  Our results capture the workload 

characteristics of a production-level application and 

scaling limiting factors for existing test cases and future 

problem configurations.  

 

We plan to develop platform-independent symbolic 

models for our target applications to identify and to 

subsequently address scaling-limiting features in their 

computation and communication behavior. On the 

multicore platforms, we will experiment with alternate 

MPI library implementations and configurations.  We 

also plan to explore system software stack for optimal 

scheduling and mapping of MPI tasks in MD 

simulations.  On the application front, particularly at 

large scale, we anticipate that alternate algorithms, 

programming models and implementation will be 

investigated to reduce the load balancing problems.  
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