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Abstract

Studies of gene expression using high-density oligonu-
cleotide microarrays have become standard in a variety of
biological contexts. The data recorded using the microarray
technique are characterized by high levels of noise and bias.
These failures have to be removed, therefore preprocessing
of raw data has been a research topic of high priority over
the past few years.

Actual research and computations are limited by the
available computer hardware. Furthermore most of the ex-
isting preprocessing methods are very time consuming. To
solve these problems, the potential of parallel computing
should be used. For parallelization on multicomputers, the
communication protocol MPI (Message Passing Interface)
and the R language will be used.

This paper proposes the new R language package
affyPara for parallelized preprocessing of high-density
oligonucleotide microarray data. Partition of data could be
done on arrays and therefore parallelization of algorithms
gets intuitive possible. The partition of data and distribu-
tion to several nodes solves the main memory problems and
accelerates the methods by up to the factor ten.

1. Introduction

Studies of gene expression using high-density oligonu-

cleotide microarrays have become standard in a variety of

biological contexts. They enable scientists to investigate

the functional relationship between the cellular and phys-

iological processes of biological organisms and their genes

at genome-wide system levels.

For this purpose, a variety of microarray technology plat-

forms are used. The most popular microarray application is

based on measuring genome-wide expression levels. High-

density oligonucleotide expression microarrays are com-

monly used for this purpose. There are a lot of chips made

by different manufacturers. Affymetrix GeneChip c© arrays

dominate this market.

The data recorded by means of the microarray tech-

nique are characterized by high levels of noise induced by

the preparation, hybridization and measurement processes.

These failures have to be removed, therefore preprocessing

of raw-data has been a research topic of high priority over

the past few years. Preprocessing usually involves three

steps: Background correction, normalization and summa-

rization. For more details and a brief introduction see e.g.

[4].

The open source projects R [15] and Bioconductor [5]

are tools in the fields of computational biology and bioin-

formatics. R is a free software environment and provides

a wide range of statistical and graphical techniques and is

highly extensible. Bioconductor is an open source and open

development software project for the analysis and compre-

hension of genomic data. Bioconductor is primarily based

on the R programming language. Both support the rapid

developments in microarray technologies. For each step of

preprocessing, a large number of methods are implemented

and stored in the affy package [8].

2. Problems

Actual research and computations are limited by the

available computer hardware. For many users the avail-

able main memory - mostly 1 GB at a workstation - limits

the number of arrays that may be quantified. Furthermore,

most of the existing preprocessing methods are very time

consuming and thus not useful for first and fast checks in

laboratories.

2.1. Memory limits

The main memory limits are caused by the structure of

the AffyBatch class. The AffyBatch will be created by im-

porting CEL files (specially coded ASCII files containing

fluorescence intensities for each probe on the microarray)



Table 1. Maximum number of CEL files HGU-133A for creating an AffyBatch at different computer
systems.

System max. CEL files

64-bit linux system with 4 GB main memory 400

32-bit linux system with 4 GB main memory 160

32-bit Microsoft Windows XP system with 1 GB main memory 60

into the R software and is a container for storing probe-level

data, related phenotypic information and MIAME (Mini-

mum Information About a Microarray Experiment). The

number of arrays which can be imported strongly depends

on the architecture of the computer system. Table 1 shows

some maximum numbers of CEL files HGU-133A which

can be used for creating an AffyBatch at different computer

systems. The same machine can yield results differing by

up to 5%. Because of the different amount of ’outliers’ the

CEL file size can change by up to 3-5%. Using more arrays,

a segmentation fault occurs in the R function ReadAffy.

Differences in system architecture and configuration render

any prediction of the maximum number of CEL files im-

possible. Calculations like preprocessing methods on the

AffyBatch require more main memory, which means that the

amount of usable arrays will be smaller (see Table 2).

2.2. Computation time

Computation time is the time a computer needs to com-

plete a program. This closely depends on the speed of the

computer processor. Different measurements show a nearly

linear relation between computation time and the amount of

arrays. The gradient depends on the kind of method used

and the speed of the processor. Figure 1 shows the compu-

tation time in relation to the amount of CEL files for several

preprocessing methods. The time measurements were done

at one node of the workstation cluster described in section

4.

2.3. Existing solutions

There is a number of preprocessing methods included in

the affy and affyPLM packages which try to solve these

problems. For example, justRMA reads CEL files directly

in the working directory and converts the raw data - with-

out using an AffyBatch - to an expression measure using

robust multi-array average (RMA)[9]. The threestep
function [1] is primarily implemented in C code and is typ-

ically faster than expresso or RMA. It is an alternative

method of computing expression measures using the three

described preprocessing steps. Table 2 shows the improve-

ments which may be achieved for HGU-133A chips. The
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Figure 1. Computation time in relation to
the amount of CEL files for several prepro-
cessing methods. expresso(..., bgcorrect.method=’rma’,

normalize.method=’quantiles’, pmcorrect.method=’pmonly’,

summary.method=’avgdiff’); computeExprSet(..., pmcor-

rect.method=’pmonly’, summary.method=’avgdiff’)

results were calculated at one node of the workstation clus-

ter described in section 4.

Unfortunately there are only a few methods available

which are designed for fast computations on a large amount

of data.

2.4. Further challenges

A further challenge is the fact that microarray

experiments are becoming increasingly popular. The large

number of publications with the keyword ’microarray’ pub-

lished in PubMed shows the rapid development in this

field during the last ten years (see Figure 2). In addi-

tion, microarray chips are becoming cheaper and the num-

ber of chips used in experiments is growing. The tech-

nology for creating chips is improving daily and the num-

ber of probes per chip is growing too. Therefore, more

and more data have to be managed and processed. Fig-



Table 2. Improvements by special methods (system specific).
100 CEL files 150 CEL files 200 CEL files

expresso 9.3 min 29.6 min segmentation fault

threestep 0.8 min 1.2 min 1.6 min

max. CEL files

rma 250

justrma more than 1500
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Figure 2. Publications with the keyword ’mi-
croarray’ published in PubMed between 1997
and 2007.

ure 3 shows the box-and-whisker diagrams1 for the size of

experiments published in the database ArrayExpress [11]

between 2003 and 2007. There is only a slight increase

in the mean size of experiments; however, the number of

big experiments is growing. For instance, in 2007 the

EMBLs European Bioinformatics Institute (EMBL-EBI)

(Cambridge, UK) launched an experiment containing 5896

CEL files (Affymetrix HG-U133A) to create a human gene

expression atlas [10], [11, E-TABM-185].

3. Solutions

These problems could be solved by using faster com-

puter processors and bigger main memories (e.g. 128 GB).

1In descriptive statistics, a boxplot (also known as a box-and-whisker

diagram) is a convenient way of graphically depicting groups of numeri-

cal data through their summaries: smallest observation, outliers (circles),

whiskers (extend to the most extreme data point which is no more than 1.5

times the interquartile range from the box), lower quartile, median, upper

quartile, and largest observation.
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Figure 3. Size of experiments published in Ar-
rayExpress between 1997 and 2007.

But as microarray experiments are becoming increasingly

popular, buying a better computer can only be a temporary

solution.

3.1. Parallel computing

Another option would be using the potential of paral-

lel computing. In microarray technologies and statistical

computing, parallel computing does not appear to have been

used extensively up to now [13]. For parallelization on mul-

ticomputers (distributed memory systems), message pass-

ing methods are mostly used. In the R language, basic li-

braries like the Rmpi[16] and Snow [12] packages are still

available for parallelization on process layer.

MPI (Message Passing Interface) is a well-known

language-independent communication protocol used to pro-

gram parallel computers. Message-passing systems are

used especially on distributed machines with a separate

memory for executing parallel applications. Each execut-

ing process will communicate and share its data with others

by sending and receiving messages. MPI’s goals are high



performance, scalability and portability. MPI is currently

available in version 2; several implementations (LAM/MPI

[14], Open MPI [3], MPICH2, ...) exist and are becoming

more and more a de facto standard. For the R language the

Rmpi package is a wrapper for LAM/MPI and MPICH2.

The Snow package (Simple network of workstations) is a

simple supporting framework for doing parallel computing

with the R programming language. Snow is a wrapper for

the low-level communication mechanisms: sockets, MPI

and PVM.

All these approaches are based on the master-slave de-

sign. A master process creates an universum of slave-

processes, which perform computation on demand of their

master.

3.2. Partition

For parallelization, the input data have to be partitioned.

The easiest and most natural way of doing this is to carry out

a partition on arrays and to distribute the arrays equally to

all nodes. Partition on probes and other partition strategies

have not yet been tested or implemented. In this context,

a new data structure in the R programming language has

to be developed and all preprocessing functions have to be

reimplemented.

However, partitioning the AffyBatch at the master and

distributing split AffyBatches to the slaves does not solve the

problem of limited main memory. It creates a lot of network

traffic, and therefore the processes start at the slaves with a

certain delay. It is more efficient to partition the vector of

CEL files and to create the split AffyBatches at the slaves. In

the affyPara package all functions for preprocessing can

get a partitioned list of CEL files or an AffyBatch as input

data. For background correction, in Figure 4, the computa-

tion time for different numbers of CEL files is compared to

an AffyBatch and a partitioned list of CEL files as input data.

Doing this, the typical and expected logarithmic graphs are

obtained. Computation time is similar for both types of in-

put data, but using an AffyBatch makes the process more

than 20% slower than using a partitioned list of CEL files

as input data. This is mainly caused by the amount of net-

work traffic for sending the AffyBatches to the slaves. The

computation time for different input data and different num-

bers of microarrays is shown in table 3.

At the used workstation cluster, the CEL files are made

available by a shared memory system. At a workstation

cluster, this is often done by a samba device. But this could

be the bottle neck for communication traffic. For distributed

memory systems, the function distributeFiles for

(hierarchically) distributing files from the master to a spe-

cial directory (e.g. /tmp/) at all slaves was designed. R or

the faster network protocol RCP can be used for the process

of distributing.
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Figure 4. Computation time for parallelized
background correction (rma) methods with an
AffyBatch and a partitioned list of CEL files
(CELFileVec) as input data.

Table 3. Tabularly computation time for par-
allelized background correction (rma) meth-
ods with an AffyBatch and a partitioned list
of CEL files (CELFileVec) as input data.

Arrays 50 100 200

Processors 9 11 17

AffyBatch 37.9 sec 58.1 sec 91.1 sec

CELFileVec 30.7 sec 42.8 sec 62.9 sec

The size of the split AffyBatches and the number of parts

is essential for the performance of the parallelized methods.

In section 4 the partition will be discussed.

3.3. Background correction

Background correction (BGC) methods are used to ad-

just intensities observed by means of image analysis to give

an accurate measurement of specific hybridization. There-

fore BGC is essential, since part of the measured probe in-

tensities are due to non-specific hybridization and the noise

in the optical detection system. The BGC methods RMA,

MAS 5.0 and Ideal Mismatch are implemented in the func-

tion bg.correction in the affy package. These meth-

ods are dependent on the actual sample only, and it is easy

to parallelize them: Partition of the data, initialization of



the AffyBatch at slaves, calling at slaves BGC methods at

the parts of AffyBatches, sending results back to master and

rebuilding the AffyBatch. Figure 5 shows the programming

Partition

START
bgCorrectPara

STOP
bgCorrectPara

Rebuild AffyBatch

Initialize AffyBatch

bg.correct()

Initialize AffyBatch

bg.correct()

Initialize AffyBatch

bg.correct()

…

Figure 5. Flowchart for parallelized back-
ground correction methods.

flowchart of the parallelized background correction func-

tion. Parallelized BGC methods are available in the func-

tion bgCorrectPara.

3.4. Normalization

Normalization methods make measurements from

different arrays comparable. Multi-chip methods have

proved to perform very well. We parallelized the methods

contrast, invariantset and quantile available from the

affy package in the function normalize. For these

parallelized functions, first of all the data have to be dis-

tributed to the slaves, and some model parameters have to

be calculated. Sending these parameters back to the master,

the parameters for the whole normalization model can be

computed. Back at the slaves the normalization can be done

with the complete parameters. Finally the AffyBatch has to

be rebuilt at the master. Figure 6 shows the programming

flowchart for the parallelized quantile normalization func-

tion. Parallelized normalization methods are available in

the functions normalizeAffyBatchConstantPara,

normalizeAffyBatchInvariantsetPara and

normalizeAffyBatchQuantilesPara.

3.5. Summarization

Summarization is the final step in preprocessing raw

data. It combines the multiple probe intensities for each

probeset to produce expression values. These values will be

stored in the class called ExpressionSet. Compared to the

AffyBatch class, the ExpressionSet requires much less main

memory, because there are no more multiple data. In the

Partition

START
normalizeAffyBatchQuantilesPara

STOP
normalizeAffyBatchQuantilesPara

Rebuild AffyBatch

Initialize AffyBatch

Sort Columns

Calculate row means

Calculate full row means

Normalize

Initialize AffyBatch

Sort Columns

Calculate row means

Initialize AffyBatch

Sort Columns

Calculate row means

Normalize Normalize

…

…

Figure 6. Flowchart for parallelized quantile
normalization.

parallelized method, the required probes will be collected

from the slaves, and by means of the standard summariza-

tion methods (avgdiff, liwong, mas, medianpolish), one ex-

pression value will be calculated. Parallelized summariza-

tion methods are available in computeExprSetPara.

3.6. preproPara

By combining the background correction, normaliza-

tion and summarization methods to one single method for

preprocessing an efficient method can be obtained. For

parallelization, the combination has the big advantage of

reducing the exchange of data between master and slaves.

Moreover, at no point a complete AffyBatch needs to

be built, and the time-consuming rebuilding of the Affy-
Batches is no longer necessary. A parallelized complete

preprocessing method is available in the function called

preproPara. This function can compute the preprocess-

ing steps proposed in sections 3.3, 3.4 and 3.5.

For more details on the functions, see the help or

vignettes of the affyPara package.

4. Results and discussion

This article proposes the new package called affyPara
for parallelized preprocessing of high-density oligonu-

cleotide microarrays. Parallelization of existing preprocess-

ing methods produces, in view of machine accuracy, the

same results as serialized methods. The partition of data

and distribution to several nodes solves the main memory

problems and accelerates the methods.

All examples and results are computed on a worksta-

tion cluster with a 64 bit linux system, LAM/MPI (Version

7.1.3), R 2.5.0 and the package Snow (Version 0.2-9, used



the package Rmpi 0.5-5) and affy (Version 1.14.2). The

cluster consists of 32 personal computers with 8 GB main

memory and two dual core Intel Xeon DP 5150 proces-

sors. Using this cluster at the Department for Medical In-

formation, Biometrics and Epidemiology (IBE, University

of Munich), about 16.000 (32 nodes · approximately 500

CEL files) microarrays of the type HGU-133A can be pre-

processed using the function preproPara. By expanding

the cluster, the number of microarrays can be increased to

any given number.

In the published results, only one processor per node

was used because the R software has not as yet been imple-

mented for multiprocessors. The attempt of extending the

R language to this task is currently being made. This can

be supported by using libraries such as openMP [2]. How-

ever, parallelization using multiprocessors (shared memory)

will not solve the mentioned main memory problems. Us-

ing the power of multiprocessors for accelerating methods

in R packages will be tested in the near future.

There will be a new limitation imposed by the memory

size of the ExpressionSet class and the analysis to be done

on the new big size of expression sets. However, there is

currently no dataset on the market that would cause main

memory problems with the ExpressionSet class.

4.1. Choice of partition and efficiency

It is very difficult to choose the right size and number

of partitions. Figure 7 shows the computation time for par-

allelized normalization methods, Figure 4 the computation

time for a parallelized background correction method de-

pending on the partition size. The methods and data are

distributed to n processors, which means that an improve-

ment of the factor n should be achievable. However, due to

not optimal load balancing and communication overhead,

this can generally not be achieved. For BGC and normal-

ization, the last step is the rebuilding of the whole AffyBatch
out of a list of AffyBatches. This is a time-consuming pro-

cess, which can take up to 35% of the whole computation

time. For this reason and because of communication over-

head, the computation time for many partitions is growing.

Having too big partitions (only a few nodes), the computa-

tion time at the slaves is longer and also the communication

traffic is higher. This means that, for partitions of big size,

the computation time is longer. In order to illustrate by how

much the parallel algorithms are faster than the correspond-

ing sequential algorithms, Figure 8 shows the speedup for

the parallelized preprocessing methods for 50, 100 and 200

CEL files. An average speedup of up to the factor 10 may

be achieved.
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Figure 8. Speedup for the parallelized prepro-
cessing methods for 100 and 200 CEL files.

4.2. Conclusion

In summary, a package of parallelized and efficient pre-

processing methods for high-density oligonucleotide mi-

croarrays was presented. In the future, parallelization

is supposed to be extended to several other well-known

and approved methods (e.g. VSN [7], FARMS [6]).

The combination of multiprocessors and message-passing

parallelization will most likely yield much more efficient

preprocessing algorithms.

The basic framework introduced in this article has been

adapted to R, using the affy and Snow packages. Table 4

shows the currently available parallelized preprocessing

functions. The affyPara library will be available as of

April 2008 in the Bioconductor Project.
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