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Abstract1 
 
Multi-paradigm, multi-threaded and multi-core 

computing devices available today provide several orders 
of magnitude performance improvement over mainstream 
microprocessors. These devices include the STI Cell 
Broadband Engine, Graphical Processing Units (GPU) 
and the Cray massively-multithreaded processors—
available in desktop computing systems as well as 
proposed for supercomputing platforms. The main 
challenge in utilizing these powerful devices is their 
unique programming paradigms. GPUs and the Cell 
systems require code developers to manage code and data 
explicitly, while the Cray multithreaded architecture 
requires them to generate a very large number of threads 
or independent tasks concurrently. In this paper, we 
explain strategies for optimizing a molecular dynamics 
(MD) calculation that is used in bio-molecular simulations 
on three devices: Cell, GPU and MTA-2. We show that the 
Cray MTA-2 system requires minimal code modification 
and does not outperform the microprocessor runs; but it 
demonstrates an improved workload scaling behavior over 
the microprocessor implementation. On the other hand, 
substantial porting and optimization efforts on the Cell 
and the GPU systems result in a 5x to 6x improvement, 
respectively, over a 2.2 GHz Opteron system.  

 

1 Introduction 
Multi-paradigm, multi-threaded and multi-core 

computing devices available today provide several orders 
of magnitude performance improvement over mainstream 
microprocessors. These devices include the STI Cell 
Broadband Engine (BE) [15], Graphical Processing Units 
(GPUs) [8] and the Cray XMT [1] (Eldorado[12]) systems 
—available in desktop computing systems as well as 
proposed for Petaflops-scale supercomputing platforms. 
The Cell processor is a heterogeneous multi-core system, 
which is capable of yielding 256 GFLOPS for single-
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precision floating-point calculations. Presently multi-core 
system designs, although planned for virtually all future 
processing systems, are only available as homogeneous 
dual-core processors from Intel and AMD for general-
purpose processing. These devices provide only 
incremental performance benefits as compared to 
emerging, unconventional processing devices like the Cell 
BE, GPU and the Cray Extreme Multi-threaded (XMT) 
systems. Note that the XMT system is a follow on of the 
MTA-2 system. The MTA-2 system, not as powerful in 
terms of the peak FLOPS as the Cell BE and GPUs, 
addresses the ‘memory wall’ problem by providing a 
uniform memory hierarchy and a latency tolerant 
multithreaded architecture. 

The paper outline is as follows: section 2 outlines 
motivation for our research efforts. In section 3, we 
provide details of the three target systems:, Cell, GPU and 
MTA-2, and the MD calculation. The related research is 
presented in section 4. Section 5 outlines implementation 
and optimization details for of the MD calculation on the 
three target systems. Conclusions and future plans are 
outlined in section 6. 

2 Motivation 
The biological processes within a cell occur at 

multiple lengths and times scales. The processing 
requirements for bio-molecular simulations, particularly at 
large length and time scales, far exceed the available 
computing capabilities of the most powerful computing 
platforms today. Another challenge is scaling limits of 
popular bio-molecular simulation frameworks, which have 
not kept pace with the scaling of high-end, massively-
parallel processing (MPP) systems [9]. Blue Gene/L, the 
most powerful supercomputer system today, has 64K 
processing cores, while the current scaling limits of most 
MD algorithms available in popular bio-molecular 
simulation frameworks is a few hundred processors. At the 
same time however, we recognize that a number of 
simulation users will not have access to these high-end 
supercomputing platforms. We therefore target extremely 
powerful, emerging processing technologies that can 
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benefit a large community of desktop and small cluster 
users. The focus of this study is to characterize an MD 
calculation that is used in bio-molecular simulations on 
processing devices that offer: (1) a substantial theoretical 
speedup over the mainstream processor technologies, and 
(2) programming paradigms and interfaces that are 
considerably different from mainstream micro-processor 
architectures. 

3 Background 

3.1 The Cell Broadband Engine Processor 
The Cell Broadband Engine processor is a 

heterogeneous multicore processor, with one 64-bit Power 
Processing Element (PPE) and eight Synergistic 
Processing Elements (SPEs) as shown in Figure 1. The 
PPE is a dual-threaded Power Architecture core 
containing extensions for SIMD instructions (VMX) [13]. 
The SPEs are less traditional, in that they are lightweight 
processors with a simple, heavily SIMD-focused 
instruction set, with a small (256KB) fixed-latency local 
store (LS), a dual-issue pipeline, no branch prediction, and 
a uniform 128-bit 128 entry register file [14]. 

The SPEs operate independently from the PPE and 
from each other, have an extremely high bandwidth DMA 
engine for transferring data between main memory and 
other SPE local stores, and are heavily optimized for 
single-precision vector arithmetic. Regrettably, these 
SPEs are not optimized for double-precision floating point 
calculations, making the Cell an uncertain target for 
scientific applications in the minds of many developers. 

3.1.1 Programming the Cell Processor 

Our Cell hardware (i.e. blade servers) runs a 
PowerPC Linux operating system, with a 2.6 series kernel 
modified to be aware of the SPEs, available at the 
Barcelona Supercomputing Center. Standard compilers, 
such as the 4.x series GNU development tool chain, are 
available, which currently are unable to perform 
significant code optimization for PPEs and SPEs. At the 
time of this writing, IBM also offers its XL C/C++ 
compilers – however, as they are an Alpha Edition, and 
not native to the Cell platform (only as cross-compilers 
from x86), we are not evaluating them here. To create 
code that can execute on an SPE, one must use the SPE-
specific compiler from these toolchains. A SPE-specific 
port of the GNU and IBM compilers can both generate the 
requisite object code and link against SPE-specific 
libraries to produce code that can be loaded and run on the 
SPEs.  

The Cell processor architecture enables great 
flexibility with respect to programming models [7]. From 
one perspective, the fact that each SPE has its own 
memory that is not automatically kept coherent with main 
memory makes the collection of SPEs within a single 

processor look like a distributed memory system-on-a-
chip. This view of the architecture suggests task parallel 
programming models, where each SPE operates more-or-
less independently of the other SPEs, possibly with 
orchestration by a master thread running on the PPE. 
Because of the high concurrent bandwidth of the Element 
Interconnect Bus that connects the SPEs, and because SPE 
DMA transfers are cache coherent, data parallel 
programming models like that of OpenMP are also an 
attractive approach for programming the Cell processor. 
For our application case study, we used the 
“Asynchronous Thread Runtime” programming model, 
creating SPE threads as needed, starting the new threads at 
the address of a performance critical application function 
that has been ported to run on the SPE. 

3.2 The GPU Architecture 
The origin of Graphics Processing Units, or GPUs, is in 
accelerating the real-time graphics rendering pipeline.  
As developers demanded more power and 
programmability from graphics cards, these cards 
became appealing for general purpose computation, 
especially as mass markets force even high-end GPUs 
into low price points [5]. The high number of FLOPS 
in GPUs comes from the parallelism in the 
architecture.   

Figure 2 shows an earlier generation high-end part 
from NVIDIA, with 16 parallel pixel pipelines.  It is these 
programmable pipelines that form the basis of general 
purpose computation on GPUs, and the parallelism is 
increasing; the next generation from NVIDIA contained 
24 pipelines, and that number is growing.  Typical high 
end cards today have 512MB of local memory or more, 

Figure 1: Design components of the Cell BE 
[http://www.research.ibm.com/cell/heterogeneousCMP.html]
.



 - 3 - 

and support from 8-bit integer to 32-bit floating point data 
types, with 1, 2, or 4 component SIMD operations. 

 
3.2.1 Programming GPUs 

There are several ways to program the parallel 
pipelines of a GPU.  The most direct way is to use a GPU 
oriented assembler or a compiled C-like language with 
graphics related intrinsics, like Cg from NVIDIA [8].  
Furthermore, as GPUs are coprocessors, they require 
interaction from the CPU to handle high level tasks such 
as moving data to and from the card and setting up these 
“shader programs” to execute on the pixel pipelines.  At 
this high level, GPUs have typically required 
programming in a graphics oriented API, such as OpenGL 
or DirectX.  Graphics card manufacturers and third parties 
have recognized the need for non-graphics oriented APIs 
at every level, and a variety of solutions have now been 
announced or released to abstract or bypass the specialized 
graphics knowledge traditionally needed to make use of 
the computational horsepower of these cards. 

Inherently, GPUs are stream processors, as a shader 
program cannot read and write to the same memory 
location.  Thus, arrays must be designated as either input 
or output, but not both.  There are technical limitations on 
the number of input and output arrays addressable in any 
particular shader program.  Furthermore, the execution 
paradigm is inherently a gather-based system: a shader 
program may read from any input locations, but it has only 
one location in each output array to which it may write, 
and this location is designated before the shader program 
begins execution.  Together these restrictions form a set of 
design challenges for accelerating a variety of algorithms 
using GPUs. 

3.3 The MTA-2 System 
The Multi-Threaded Architecture (MTA) uses a high 

degree of multi-threading instead of data caches to address 
the gap between the rate at which modern processors can 

execute instructions and the rate at which data can be 
transferred between the processor and main memory. The 
MTA uses processors that support a high degree of multi-
threading compared to current commercial off-the-shel 
processors (as shown in Figure 3) [2]. An MTA processor 
tolerates memory access latency by supporting many 
concurrent streams of execution (128 in the MTA-2 
system processors). A processor can switch between 
streams on each clock cycle. To enable such rapid 
switching between streams, each processor maintains a 
complete thread execution context for each of its 128 
streams. An MTA-2 system consists of a collection of 
processor modules and a collection of memory modules, 
connected by an interconnection network. Unlike 
conventional designs, MTA-2 processor modules contain 
no local memory; it does include an instruction stream 
shared between all of its hardware streams [4]. 

3.3.1 Programming the Cray MTA-2 

The Cray MTA-2 platform is significantly different 
from contemporary, cache-based microprocessor 
architectures. These differences are reflected in the MTA-
2 programming model and, consequently, its software 
development environment [3]. The key to obtaining high 
performance on the MTA-2 is to keep its processors 
saturated, so that each processor always has a thread 
whose next instruction can be executed. If the collection of 
threads presented to a given processor is not large enough 
to ensure this condition the processor will be under-
utilized.  

In the high-level language source code of an MTA-2 
program, parallelism can be expressed both implicitly and 
explicitly. Implicit parallelism is expressed using the 
source language’s loop constructs, such as a C for loop 
or Fortran DO loop. The MTA-2 compilers automatically 
parallelize the body of such loops so that a collection of 
threads executes the loop, with each thread executing 
some of the loop iterations. There are some restrictions on 
the types of loops the MTA-2 compilers can parallelize 
automatically due to data and control dependencies, and 
sometimes compiler directives must be used to indicate 
that a given loop can be parallelized. 

The MTA-2 is no longer an active product in the Cray 
product line. However, an extreme multi-threaded 
processor is recently announced as the Cray XMT system. 
Although the XMT system uses multithreaded processors 
similar to the MTA-2, there are several important 
differences in the memory and network architecture; it will 
not have the MTA-2’s nearly uniform memory access 
latency, so data placement and access locality will be an 
important consideration when programming these systems. 
The XMT multithreaded processors will operate at a 
higher clock rate and the XMT design allows systems with 
up to 8000 processors, whereas the largest possible MTA-
2 system contains only 256 processors.  

 
Figure 2: The NVIDIA GeForce 6800 GPU 
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Figure 3: Block diagram of the MTA-2 system 

 

3.4 Molecular Dynamics Calculations 
Molecular Dynamics (MD) is a computer simulation 

technique where the time evolution of a set of interacting 
atoms is followed by integrating the equations of motion 
[16]. In the Newtonian interpretation of dynamics, the 
translational motion of a molecule is caused by force 
exerted by some external agent. The motion and the 
applied force are explicitly related through Newton’s 
second law: iii amF = . im is the atom’s mass, 

2

2

dt
rda i

i = is its acceleration, and iF is the force acting 

upon it due to the interactions with other atoms. MD 
techniques are extensively used in many areas of scientific 
simulations including biology, chemistry and materials.  

MD simulations are computationally very expensive. 
Typically the computational cost is proportional to N2, 
where N is the number of atoms in the system. In order to 
reduce the computational cost, a number of algorithm-
oriented techniques such as a cutoff limit are used. It is 
assumed that atoms within a cutoff limit contribute to the 
force and energy calculations on an atom. As a result, the 
MD simulations do not exhibit a cache friendly memory 
access pattern. An atom and its neighbors continuously 
move during a simulation run, and an atom does not 
interact with a fixed pair or set of atoms. Since the 
positions of atoms are usually stored in arrays, multiple 
accesses to the position arrays in a random manner is 
required to calculate the cutoff distance, and subsequently 
to perform force calculations.  

Several techniques have been proposed and 
implemented in bio-molecular frameworks to address the 
unfriendly and unpredictable cache behavior of the MD 

calculations. One of the most common techniques is the 
neighboring atom pairlist construction, which is updated 
every few simulation time steps. This scheme results in a 
small memory and computation overhead. We do not 
employ any optimization technique that has been proposed 
for cache-based systems. Instead, we calculate the 
distances on the fly and perform calculations accordingly. 

3.5 MD Kernel 
Our MD kernel contains two important parts of an 

MD calculation: force evaluation and integration. 
Calculation of forces between bonded atoms is 
straightforward and less computationally intensive as there 
are only a very small numbers of bonded interactions as 
compared to the non-bonded interactions. The effect of 
non-bonded interactions are modeled by a 6-12 Lennard-
Jones (LJ) potential model: 
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LJ potential combines large distance attractive forces 
(r-6 term) and short distance repulsive force (r-12 term) 
between two atoms. The integration in our kernel is 
implemented using the velocity Verlet algorithm, which 
calculates the trajectories of atoms from the forces. The 
Verlet algorithm uses positions and acceleration at time t 
and positions from time tt δ+ to calculate new positions 
at time tt δ+ . The pseudo code for our implementation is 
given in Figure 4. Steps are repeated for n simulation time 
steps. n depends on the time-scale of the simulated system 
and the value of δt. 
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Figure 4: MD kernel implemented on MTA-2  

The most time-consuming part of the calculation is 
step 2, in which an atom’s neighbors are determined using 
the cutoff distance and subsequently the calculations are 
performed (N2 complexity). We attempt to optimize this 
calculation on the target platforms, and we compare the 
performance to the reference implementation on a 2.2 GHz 
Opteron. Note that we implement single-precision versions 
of the calculations on the Cell BE and the GPU 
accelerated system, while the MTA-2 implementation is in 
double-precision. 

4 Related work 
The three systems presented in this paper have been 

targeted and evaluated by researchers for a range of 
scientific kernels. The focus of much of this research is 
numerical functions such as the Basic Linear Algebra 
Subroutine (BLAS) functions, equation solvers and 
integer-based bio-informatics search and sequence 
alignment methods. Here we highlight recent efforts in the 
areas of computational biology and bio-informatics 
calculations. For example, W. Liu et. al. [17] and Y. Liu 
et. al. [18] presented mapping and performance results of 
Smith-Waterman calculations onto the GPU devices, and 
showed a substantial speedup over the contemporary 
processors. I. Buck presents acceleration strategies for 
GROMACS [6], an MD framework, on GPU using a 
streaming language, Brook [11]. 

Similarly, due to the raw processing power of the Cell 
system, 256 GFLOPS for single-precision floating-point 
calculations and the availability of SIMD units, it has been 
evaluated for scientific applications. Williams et. al. [19] 
present a performance model for the Cell system and 
validation results from a Cell simulator for four scientific 
kernels. Although the authors identify different 
programming environments for the Cell system, they only 
consider one programming model, the data-parallel 
programming model, which is widely used for parallel 
scientific calculations. Likewise, the MTA-2 system and 
its predecessor have been investigated extensively for 
scientific computing. Bokhari and Sauer [10] investigated 
dynamic programming sequence alignment algorithms for 
DNA sequences on the Cray MTA-2 system. Their 
algorithms are reported to scale to up to eight MTA-2 
processors and the implementation relies extensively on 

the use of full/empty bits in MTA-2 memory to facilitate 
parallel execution in the dynamic programming 
algorithms.  

Our research follows these earlier investigations on 
evaluating the feasibility of scientific calculations on 
unconventional processing architectures. The unique 
contribution of our study is that it provides an insight into 
programming and optimization strategies, and 
performance potential of three powerful emerging but 
significantly different systems for a floating-point 
intensive bio-molecular simulation kernel. The systems 
evaluated in this paper are available and planned for 
desktop system users as well as high-end, petaFLOPS-
scale parallel systems.  

5 Experiments and Results 

5.1 The Cell System 
Our programming model for the Cell processor 

involves finding time consuming functions that map well 
to the SPE cores, and instead of calculating these functions 
on the PPE, we launch “threads” on the SPEs to read the 
necessary information into their local stores, perform the 
calculations, and write the results back into main memory 
for the next calculation steps on the PPE.  Because of its 
high percentage of the total runtime, the acceleration 
computation piece alone was offloaded to SPEs. 

The molecular dynamics application kernel deals with 
three dimensional positions, velocities, accelerations, 
forces, and other vectors, so the most natural way to make 
use of the 4-component SIMD operations on the SPE is to 
use the first three components of the inherent SIMD data 
types for the x, y, and z components of each of these 
arrays.  Figure 5 shows the runtime of the acceleration 
computation function for 2048 atoms, when running on a 
single SPE, across various SIMD optimizations. 
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Figure 5: SIMD optimization for the MD kernel. 
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compute distance with all other N-1 atoms 
  if(distance within cutoff limits) 

compute forces 
3. move atoms based on their position,  
    velocities & forces 
4. update positions 
5. calculate new kinetic and total energies 



 - 6 - 

One expensive part of this acceleration computation is 
searching the 27 neighboring unit cells for the instances of 
each atom pair which are closest.  The first step in 
optimizing this piece was to replace an “if” test in that 
section with extra math; as the SPEs lack branch 
prediction, this provided a small speedup.  However, the 
real advantage here was that instead of looping over all 
three dimensions, all three axes could be searched 
simultaneously using the SIMD intrinsics on the SPE.  
This further optimization provided a very large speedup, 
running over 1.5x faster than the original.  The next two 
optimizations replaced loops over the three components 
for finding the direction and calculating its length with 
SIMD versions, resulting in 21% and 15% improvements, 
respectively. 

Once an interacting atom pair is found, the force 
between them must be converted into a 3D acceleration 
vector. The SIMDization of this operation is the final 
optimization step in this figure.  Unfortunately, since so 
few of the tested atoms interact, very little runtime is 
actually spent in this loop, and so the total improvement in 
runtime was only 3%. 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1 SPE 8 SPEs 1 SPE 8 SPEs

R
un

tim
e 

(s
ec

)

Total Runtime

SPE Launch Overhead

Respawn every time step Launch only first time step  
Figure 6: SPE launch overhead on MD using 

newer Linux kernel. 
Figure 6 shows the total runtime of the whole 

program, and the percentage which is devoted to launching 
SPE threads. In the first case, we see that when a single 
SPE is tasked to compute all accelerations, it takes enough 
time to execute that the thread launch overhead is a small 
fraction of the runtime. In the second case, we see that 
parallelization across all 8 SPEs on the Cell processor 
scales well; each SPE checks approximately one eighth of 
the total number (N2) of atom pairs.  However, the thread 
launch overhead grows by a factor of eight, which makes 
even an efficient parallelization run only about 1.5x faster 
using all SPEs.  In this case, however, there is a simple 
solution.  The communication between the PPE and SPEs 
is not limited to large asynchronous DMA transfers; there 
are other channels (“mailboxes”) that can be used for 

blocking sends or receives of information on the order of 
bytes.  As we are offloading only a single function, we can 
launch the SPE threads only on the first time step, and 
signal them using mailboxes when there is more data to 
process. Thus the thread launch overhead is amortized 
across all time steps. This helps the scaling greatly – this 
eight-SPE version is now 4.5x faster than this single-SPE 
version.   

Thanks to its effective use of SIMD intrinsics on the 
SPE, even a single SPE just edges out the Opteron in total 
performance.  Runtime results are listed in Table 1 for a 
2048-atom experiment that runs for 10 simulation time 
steps. With an efficient parallelization, using all 8 SPEs 
results in a better than 5x performance improvement 
relative to the Opteron, and 26x faster than the PPE alone.  
Amortizing the thread launch overhead across even more 
time steps would further increase this performance gap. 

 
5.2 The GPU Architecture 

Like the Cell implementation, step 2 was offloaded to 
the GPU, which is the part of the algorithm that calculates 
new accelerations from only the locations of the atoms and 
several constants.  For our streaming processor, then, the 
obvious choice is to have one input array comprising the 
positions, and one output array comprising the new 
accelerations.  The constants were compiled into the 
shader program source using the provided JIT compiler at 
program initialization. 

We set up the GPU to execute our shader program 
exactly once for each location in the output array, i.e. each 
shader program calculates the acceleration for one atom.  
This shader program scans the entire input array, i.e. all 
the atom positions, for atoms close enough to interact, and 
accumulates their contributed forces into a single 
acceleration value.  After the GPU is finished, the 
resulting accelerations are read back into main memory 
where the CPU proceeds with the current time step.  At the 
next time step, the updated positions are re-sent to the 
GPU and new accelerations computed again. 

There is one complexity here; the potential energy 
(PE) of the system is calculated every time step, and every 
interacting atom pair contributes to this sum.  It is most 
naturally calculated as part of the acceleration 
computation, where the interactions from each atom are 
accumulated into a single potential energy value.  
However, in the GPU programming paradigm, there is no 

Number of Atoms 2048 
Opteron 0.925 sec 

Cell, 1 SPE 0.816 sec 
Cell, 8 SPEs 0.181 sec 

Cell, PPE only 4.701 sec 
Table 1: Performance comparison of MD 

calculations. 
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communication between the executing instances of the 
shader programs, so a sum across all atoms directly on the 
GPU is impossible in a single pass.  One option is to 
introduce one or more additional passes to accumulate 
each atom’s contribution to the total PE in a gather-type 
fashion, called a reduction operation.  However, this 
method introduces significant overheads.  Instead, since 
we must perform a readback from the GPU to retrieve the 
accelerations anyway, it makes more sense to simply read 
back each atom’s contribution to PE as well and sum them 
in linear time on the CPU, which is well suited to this 
scalar task.  There is a subtlety which makes this even less 
expensive: the accelerations are 3-component vectors, but 
on a GPU we must use 4-component arrays.  Thus, we can 
simply store each atom’s PE contribution in the fourth 
component, and when we read back the accelerations these 
values are retrieved for free. 

Figure 7 shows performance results using an NVIDIA 
GeForce 7900GTX GPU versus a 2.2GHz Opteron.  There 
is a startup cost associated with the GPU implementation; 
however, it is a fraction of a second, and since it occurs 
only once it will be quickly amortized across the time 
steps for any non-trivial runtime, so it is not included in 
these results. 
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Figure 7: Performance results on GPU 

However, there are other constant and O(N) costs 
associated with each time step on the GPU, and these costs 
are included.  These include sending the position array and 
reading the acceleration array across the PCIe bus every 
time step.  It is these costs which make the GPU 
implementation take longer to run than the CPU version at 
very small numbers of atoms, despite the massive 
parallelism of the GPU we use to speed up the actual 
computation of the accelerations.  For a run of 2048 
atoms, the GPU implementation is almost 6x faster than 
the CPU. 

 

5.3 The MTA-2 system 
The MTA-2 architecture provides an optimal mapping 

to the MD calculations because of its uniform memory 
latency architecture. In other words, there is no penalty for 
accessing atoms outside the cutoff limit or the cache 
boundaries, in an irregular fashion, as in the 
microprocessor-based systems. 

Nevertheless, the most time consuming part, i.e. step 
2 of the kernel, was not automatically parallelized by the 
MTA compiler because it found a dependency on the 
reduction operation. The rest of the kernel is parallelized 
by the MTA compiler without any code modification. In 
order to parallelize calculations in step 2, we moved the 
reduction operation inside the loop body. Moreover, we 
hinted the compiler using an MTA directive that the loop 
has no dependencies and hence it is parallelizable.  
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Figure 8: Performance comparison of fully vs. 

partially multithreaded versions of the MD kernel 

Figure 8 shows the performance difference before and 
after the code modification. The figure also shows the 
importance of exploiting the multi-threaded feature of the 
MTA system, since the performance of the fully multi-
threaded version can be significantly higher than of that of 
a partially multithreaded version for a similar application. 
In case of the MD kernel, the performance difference 
increases with the increase in the number of atoms in the 
system. 

We then compared performance of the optimized 
version with a contemporary Opteron processor. Note that 
the clock speed of the 200 GHz MTA-2 system is about 
11x slower than the 2.2 GHz Opteron processor. We 
observe that the runtime on the Opteron processor 
increases at a relatively faster rate by increasing the 
number of atoms in the system as shown in Figure 9. In 
other words, the effect of cache misses are shown in the 
Opteron processor runs as the array sizes become larger 
than the cache capacities of the Opteron processor. The 
increases in the MTA runtime, on the other hand, are 
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proportional to the increase in the floating-point 
computation requirements.  
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Figure 9: Increase in runtime with respect to 

simulation run with 256 atoms 

6 Conclusions and Future Plans 
We investigated and explored the performance 

attributes of emerging, high-performance processing 
devices for bio-molecular MD calculations. We identified 
that the traditional micro-processor optimization and 
mapping strategies are not applicable to systems like Cell 
and GPU that require explicit data management and 
control. Although these requirements resulted in additional 
porting and optimization effort, we showed a 5x to 6x gain 
in performance of the total runtime from these 
architectures.  The MTA-2 architecture was relatively 
straightforward to program, but did not show similar 
performance gains; it, on the other hand, demonstrates an 
improved workload scaling behavior. We anticipate 
significant performance gains from the upcoming XMT 
technology, however. In conclusion, the three devices are 
capable of providing supercomputing-scale power to 
biological simulations users that have access to desktop 
and small cluster systems. Currently, the outstanding 
issues are the availability and support for double-precision 
floating-point calculations and a standard programming 
interface to these diverse set of high-performance 
computing platforms. We plan to investigate the 
performance potential of these devices for full-scale bio-
molecular simulation frameworks using high-level 
language interfaces. 
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