
 - 1 -

Analysis of a Computational Biology Simulation Technique on Emerging
Processing Architectures

Jeremy S. Meredith, Sadaf R. Alam and Jeffrey S. Vetter

Computer Science and Mathematics Division
Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA

{jsmeredith,alamsr,vetter}@ornl.gov

Abstract1

Multi-paradigm, multi-threaded and multi-core

computing devices available today provide several orders
of magnitude performance improvement over mainstream
microprocessors. These devices include the STI Cell
Broadband Engine, Graphical Processing Units (GPU)
and the Cray massively-multithreaded processors—
available in desktop computing systems as well as
proposed for supercomputing platforms. The main
challenge in utilizing these powerful devices is their
unique programming paradigms. GPUs and the Cell
systems require code developers to manage code and data
explicitly, while the Cray multithreaded architecture
requires them to generate a very large number of threads
or independent tasks concurrently. In this paper, we
explain strategies for optimizing a molecular dynamics
(MD) calculation that is used in bio-molecular simulations
on three devices: Cell, GPU and MTA-2. We show that the
Cray MTA-2 system requires minimal code modification
and does not outperform the microprocessor runs; but it
demonstrates an improved workload scaling behavior over
the microprocessor implementation. On the other hand,
substantial porting and optimization efforts on the Cell
and the GPU systems result in a 5x to 6x improvement,
respectively, over a 2.2 GHz Opteron system.

1 Introduction
Multi-paradigm, multi-threaded and multi-core

computing devices available today provide several orders
of magnitude performance improvement over mainstream
microprocessors. These devices include the STI Cell
Broadband Engine (BE) [15], Graphical Processing Units
(GPUs) [8] and the Cray XMT [1] (Eldorado[12]) systems
—available in desktop computing systems as well as
proposed for Petaflops-scale supercomputing platforms.
The Cell processor is a heterogeneous multi-core system,
which is capable of yielding 256 GFLOPS for single-

1-4244-0910-1/07/$20.00 ©2007 IEEE

precision floating-point calculations. Presently multi-core
system designs, although planned for virtually all future
processing systems, are only available as homogeneous
dual-core processors from Intel and AMD for general-
purpose processing. These devices provide only
incremental performance benefits as compared to
emerging, unconventional processing devices like the Cell
BE, GPU and the Cray Extreme Multi-threaded (XMT)
systems. Note that the XMT system is a follow on of the
MTA-2 system. The MTA-2 system, not as powerful in
terms of the peak FLOPS as the Cell BE and GPUs,
addresses the ‘memory wall’ problem by providing a
uniform memory hierarchy and a latency tolerant
multithreaded architecture.

The paper outline is as follows: section 2 outlines
motivation for our research efforts. In section 3, we
provide details of the three target systems:, Cell, GPU and
MTA-2, and the MD calculation. The related research is
presented in section 4. Section 5 outlines implementation
and optimization details for of the MD calculation on the
three target systems. Conclusions and future plans are
outlined in section 6.

2 Motivation
The biological processes within a cell occur at

multiple lengths and times scales. The processing
requirements for bio-molecular simulations, particularly at
large length and time scales, far exceed the available
computing capabilities of the most powerful computing
platforms today. Another challenge is scaling limits of
popular bio-molecular simulation frameworks, which have
not kept pace with the scaling of high-end, massively-
parallel processing (MPP) systems [9]. Blue Gene/L, the
most powerful supercomputer system today, has 64K
processing cores, while the current scaling limits of most
MD algorithms available in popular bio-molecular
simulation frameworks is a few hundred processors. At the
same time however, we recognize that a number of
simulation users will not have access to these high-end
supercomputing platforms. We therefore target extremely
powerful, emerging processing technologies that can

 - 2 -

benefit a large community of desktop and small cluster
users. The focus of this study is to characterize an MD
calculation that is used in bio-molecular simulations on
processing devices that offer: (1) a substantial theoretical
speedup over the mainstream processor technologies, and
(2) programming paradigms and interfaces that are
considerably different from mainstream micro-processor
architectures.

3 Background

3.1 The Cell Broadband Engine Processor
The Cell Broadband Engine processor is a

heterogeneous multicore processor, with one 64-bit Power
Processing Element (PPE) and eight Synergistic
Processing Elements (SPEs) as shown in Figure 1. The
PPE is a dual-threaded Power Architecture core
containing extensions for SIMD instructions (VMX) [13].
The SPEs are less traditional, in that they are lightweight
processors with a simple, heavily SIMD-focused
instruction set, with a small (256KB) fixed-latency local
store (LS), a dual-issue pipeline, no branch prediction, and
a uniform 128-bit 128 entry register file [14].

The SPEs operate independently from the PPE and
from each other, have an extremely high bandwidth DMA
engine for transferring data between main memory and
other SPE local stores, and are heavily optimized for
single-precision vector arithmetic. Regrettably, these
SPEs are not optimized for double-precision floating point
calculations, making the Cell an uncertain target for
scientific applications in the minds of many developers.

3.1.1 Programming the Cell Processor

Our Cell hardware (i.e. blade servers) runs a
PowerPC Linux operating system, with a 2.6 series kernel
modified to be aware of the SPEs, available at the
Barcelona Supercomputing Center. Standard compilers,
such as the 4.x series GNU development tool chain, are
available, which currently are unable to perform
significant code optimization for PPEs and SPEs. At the
time of this writing, IBM also offers its XL C/C++
compilers – however, as they are an Alpha Edition, and
not native to the Cell platform (only as cross-compilers
from x86), we are not evaluating them here. To create
code that can execute on an SPE, one must use the SPE-
specific compiler from these toolchains. A SPE-specific
port of the GNU and IBM compilers can both generate the
requisite object code and link against SPE-specific
libraries to produce code that can be loaded and run on the
SPEs.

The Cell processor architecture enables great
flexibility with respect to programming models [7]. From
one perspective, the fact that each SPE has its own
memory that is not automatically kept coherent with main
memory makes the collection of SPEs within a single

processor look like a distributed memory system-on-a-
chip. This view of the architecture suggests task parallel
programming models, where each SPE operates more-or-
less independently of the other SPEs, possibly with
orchestration by a master thread running on the PPE.
Because of the high concurrent bandwidth of the Element
Interconnect Bus that connects the SPEs, and because SPE
DMA transfers are cache coherent, data parallel
programming models like that of OpenMP are also an
attractive approach for programming the Cell processor.
For our application case study, we used the
“Asynchronous Thread Runtime” programming model,
creating SPE threads as needed, starting the new threads at
the address of a performance critical application function
that has been ported to run on the SPE.

3.2 The GPU Architecture
The origin of Graphics Processing Units, or GPUs, is in
accelerating the real-time graphics rendering pipeline.
As developers demanded more power and
programmability from graphics cards, these cards
became appealing for general purpose computation,
especially as mass markets force even high-end GPUs
into low price points [5]. The high number of FLOPS
in GPUs comes from the parallelism in the
architecture.

Figure 2 shows an earlier generation high-end part
from NVIDIA, with 16 parallel pixel pipelines. It is these
programmable pipelines that form the basis of general
purpose computation on GPUs, and the parallelism is
increasing; the next generation from NVIDIA contained
24 pipelines, and that number is growing. Typical high
end cards today have 512MB of local memory or more,

Figure 1: Design components of the Cell BE
[http://www.research.ibm.com/cell/heterogeneousCMP.html]
.

 - 3 -

and support from 8-bit integer to 32-bit floating point data
types, with 1, 2, or 4 component SIMD operations.

3.2.1 Programming GPUs

There are several ways to program the parallel
pipelines of a GPU. The most direct way is to use a GPU
oriented assembler or a compiled C-like language with
graphics related intrinsics, like Cg from NVIDIA [8].
Furthermore, as GPUs are coprocessors, they require
interaction from the CPU to handle high level tasks such
as moving data to and from the card and setting up these
“shader programs” to execute on the pixel pipelines. At
this high level, GPUs have typically required
programming in a graphics oriented API, such as OpenGL
or DirectX. Graphics card manufacturers and third parties
have recognized the need for non-graphics oriented APIs
at every level, and a variety of solutions have now been
announced or released to abstract or bypass the specialized
graphics knowledge traditionally needed to make use of
the computational horsepower of these cards.

Inherently, GPUs are stream processors, as a shader
program cannot read and write to the same memory
location. Thus, arrays must be designated as either input
or output, but not both. There are technical limitations on
the number of input and output arrays addressable in any
particular shader program. Furthermore, the execution
paradigm is inherently a gather-based system: a shader
program may read from any input locations, but it has only
one location in each output array to which it may write,
and this location is designated before the shader program
begins execution. Together these restrictions form a set of
design challenges for accelerating a variety of algorithms
using GPUs.

3.3 The MTA-2 System
The Multi-Threaded Architecture (MTA) uses a high

degree of multi-threading instead of data caches to address
the gap between the rate at which modern processors can

execute instructions and the rate at which data can be
transferred between the processor and main memory. The
MTA uses processors that support a high degree of multi-
threading compared to current commercial off-the-shel
processors (as shown in Figure 3) [2]. An MTA processor
tolerates memory access latency by supporting many
concurrent streams of execution (128 in the MTA-2
system processors). A processor can switch between
streams on each clock cycle. To enable such rapid
switching between streams, each processor maintains a
complete thread execution context for each of its 128
streams. An MTA-2 system consists of a collection of
processor modules and a collection of memory modules,
connected by an interconnection network. Unlike
conventional designs, MTA-2 processor modules contain
no local memory; it does include an instruction stream
shared between all of its hardware streams [4].

3.3.1 Programming the Cray MTA-2

The Cray MTA-2 platform is significantly different
from contemporary, cache-based microprocessor
architectures. These differences are reflected in the MTA-
2 programming model and, consequently, its software
development environment [3]. The key to obtaining high
performance on the MTA-2 is to keep its processors
saturated, so that each processor always has a thread
whose next instruction can be executed. If the collection of
threads presented to a given processor is not large enough
to ensure this condition the processor will be under-
utilized.

In the high-level language source code of an MTA-2
program, parallelism can be expressed both implicitly and
explicitly. Implicit parallelism is expressed using the
source language’s loop constructs, such as a C for loop
or Fortran DO loop. The MTA-2 compilers automatically
parallelize the body of such loops so that a collection of
threads executes the loop, with each thread executing
some of the loop iterations. There are some restrictions on
the types of loops the MTA-2 compilers can parallelize
automatically due to data and control dependencies, and
sometimes compiler directives must be used to indicate
that a given loop can be parallelized.

The MTA-2 is no longer an active product in the Cray
product line. However, an extreme multi-threaded
processor is recently announced as the Cray XMT system.
Although the XMT system uses multithreaded processors
similar to the MTA-2, there are several important
differences in the memory and network architecture; it will
not have the MTA-2’s nearly uniform memory access
latency, so data placement and access locality will be an
important consideration when programming these systems.
The XMT multithreaded processors will operate at a
higher clock rate and the XMT design allows systems with
up to 8000 processors, whereas the largest possible MTA-
2 system contains only 256 processors.

Figure 2: The NVIDIA GeForce 6800 GPU

 - 4 -

Figure 3: Block diagram of the MTA-2 system

3.4 Molecular Dynamics Calculations
Molecular Dynamics (MD) is a computer simulation

technique where the time evolution of a set of interacting
atoms is followed by integrating the equations of motion
[16]. In the Newtonian interpretation of dynamics, the
translational motion of a molecule is caused by force
exerted by some external agent. The motion and the
applied force are explicitly related through Newton’s
second law: iii amF = . im is the atom’s mass,

2

2

dt
rda i

i = is its acceleration, and iF is the force acting

upon it due to the interactions with other atoms. MD
techniques are extensively used in many areas of scientific
simulations including biology, chemistry and materials.

MD simulations are computationally very expensive.
Typically the computational cost is proportional to N2,
where N is the number of atoms in the system. In order to
reduce the computational cost, a number of algorithm-
oriented techniques such as a cutoff limit are used. It is
assumed that atoms within a cutoff limit contribute to the
force and energy calculations on an atom. As a result, the
MD simulations do not exhibit a cache friendly memory
access pattern. An atom and its neighbors continuously
move during a simulation run, and an atom does not
interact with a fixed pair or set of atoms. Since the
positions of atoms are usually stored in arrays, multiple
accesses to the position arrays in a random manner is
required to calculate the cutoff distance, and subsequently
to perform force calculations.

Several techniques have been proposed and
implemented in bio-molecular frameworks to address the
unfriendly and unpredictable cache behavior of the MD

calculations. One of the most common techniques is the
neighboring atom pairlist construction, which is updated
every few simulation time steps. This scheme results in a
small memory and computation overhead. We do not
employ any optimization technique that has been proposed
for cache-based systems. Instead, we calculate the
distances on the fly and perform calculations accordingly.

3.5 MD Kernel
Our MD kernel contains two important parts of an

MD calculation: force evaluation and integration.
Calculation of forces between bonded atoms is
straightforward and less computationally intensive as there
are only a very small numbers of bonded interactions as
compared to the non-bonded interactions. The effect of
non-bonded interactions are modeled by a 6-12 Lennard-
Jones (LJ) potential model:

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛=

612

4)(
rr

rV σσε .

LJ potential combines large distance attractive forces
(r-6 term) and short distance repulsive force (r-12 term)
between two atoms. The integration in our kernel is
implemented using the velocity Verlet algorithm, which
calculates the trajectories of atoms from the forces. The
Verlet algorithm uses positions and acceleration at time t
and positions from time tt δ+ to calculate new positions
at time tt δ+ . The pseudo code for our implementation is
given in Figure 4. Steps are repeated for n simulation time
steps. n depends on the time-scale of the simulated system
and the value of δt.

i = n

i = 3

i = 2

i = 1

. . .

 1 2 3 4

Sub-
problem

A

i = n

i = 1

i = 0

. . .
Sub-

problem
B

Subproblem A

Serial
Code

Unused streams

. . . .

Programs
running in
parallel

Concurrent
threads of
computation

Hardware
streams
(128)

Instruction
Ready
Pool;

Pipeline of
executing
instructions

 - 5 -

Figure 4: MD kernel implemented on MTA-2

The most time-consuming part of the calculation is
step 2, in which an atom’s neighbors are determined using
the cutoff distance and subsequently the calculations are
performed (N2 complexity). We attempt to optimize this
calculation on the target platforms, and we compare the
performance to the reference implementation on a 2.2 GHz
Opteron. Note that we implement single-precision versions
of the calculations on the Cell BE and the GPU
accelerated system, while the MTA-2 implementation is in
double-precision.

4 Related work
The three systems presented in this paper have been

targeted and evaluated by researchers for a range of
scientific kernels. The focus of much of this research is
numerical functions such as the Basic Linear Algebra
Subroutine (BLAS) functions, equation solvers and
integer-based bio-informatics search and sequence
alignment methods. Here we highlight recent efforts in the
areas of computational biology and bio-informatics
calculations. For example, W. Liu et. al. [17] and Y. Liu
et. al. [18] presented mapping and performance results of
Smith-Waterman calculations onto the GPU devices, and
showed a substantial speedup over the contemporary
processors. I. Buck presents acceleration strategies for
GROMACS [6], an MD framework, on GPU using a
streaming language, Brook [11].

Similarly, due to the raw processing power of the Cell
system, 256 GFLOPS for single-precision floating-point
calculations and the availability of SIMD units, it has been
evaluated for scientific applications. Williams et. al. [19]
present a performance model for the Cell system and
validation results from a Cell simulator for four scientific
kernels. Although the authors identify different
programming environments for the Cell system, they only
consider one programming model, the data-parallel
programming model, which is widely used for parallel
scientific calculations. Likewise, the MTA-2 system and
its predecessor have been investigated extensively for
scientific computing. Bokhari and Sauer [10] investigated
dynamic programming sequence alignment algorithms for
DNA sequences on the Cray MTA-2 system. Their
algorithms are reported to scale to up to eight MTA-2
processors and the implementation relies extensively on

the use of full/empty bits in MTA-2 memory to facilitate
parallel execution in the dynamic programming
algorithms.

Our research follows these earlier investigations on
evaluating the feasibility of scientific calculations on
unconventional processing architectures. The unique
contribution of our study is that it provides an insight into
programming and optimization strategies, and
performance potential of three powerful emerging but
significantly different systems for a floating-point
intensive bio-molecular simulation kernel. The systems
evaluated in this paper are available and planned for
desktop system users as well as high-end, petaFLOPS-
scale parallel systems.

5 Experiments and Results

5.1 The Cell System
Our programming model for the Cell processor

involves finding time consuming functions that map well
to the SPE cores, and instead of calculating these functions
on the PPE, we launch “threads” on the SPEs to read the
necessary information into their local stores, perform the
calculations, and write the results back into main memory
for the next calculation steps on the PPE. Because of its
high percentage of the total runtime, the acceleration
computation piece alone was offloaded to SPEs.

The molecular dynamics application kernel deals with
three dimensional positions, velocities, accelerations,
forces, and other vectors, so the most natural way to make
use of the 4-component SIMD operations on the SPE is to
use the first three components of the inherent SIMD data
types for the x, y, and z components of each of these
arrays. Figure 5 shows the runtime of the acceleration
computation function for 2048 atoms, when running on a
single SPE, across various SIMD optimizations.

0.00

0.05

0.10

0.15

0.20

original replace "if"
with

"copysign"

SIMD
unit cell

reflection

SIMD
direction

vector

SIMD
length

calculation

SIMD
acceleration

R
un

tim
e

(s
ec

)

Figure 5: SIMD optimization for the MD kernel.

1. advance velocities
2. calculate forces on each of the N atoms

compute distance with all other N-1 atoms
 if(distance within cutoff limits)

compute forces
3. move atoms based on their position,
 velocities & forces
4. update positions
5. calculate new kinetic and total energies

 - 6 -

One expensive part of this acceleration computation is
searching the 27 neighboring unit cells for the instances of
each atom pair which are closest. The first step in
optimizing this piece was to replace an “if” test in that
section with extra math; as the SPEs lack branch
prediction, this provided a small speedup. However, the
real advantage here was that instead of looping over all
three dimensions, all three axes could be searched
simultaneously using the SIMD intrinsics on the SPE.
This further optimization provided a very large speedup,
running over 1.5x faster than the original. The next two
optimizations replaced loops over the three components
for finding the direction and calculating its length with
SIMD versions, resulting in 21% and 15% improvements,
respectively.

Once an interacting atom pair is found, the force
between them must be converted into a 3D acceleration
vector. The SIMDization of this operation is the final
optimization step in this figure. Unfortunately, since so
few of the tested atoms interact, very little runtime is
actually spent in this loop, and so the total improvement in
runtime was only 3%.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1 SPE 8 SPEs 1 SPE 8 SPEs

R
un

tim
e

(s
ec

)

Total Runtime

SPE Launch Overhead

Respawn every time step Launch only first time step
Figure 6: SPE launch overhead on MD using

newer Linux kernel.
Figure 6 shows the total runtime of the whole

program, and the percentage which is devoted to launching
SPE threads. In the first case, we see that when a single
SPE is tasked to compute all accelerations, it takes enough
time to execute that the thread launch overhead is a small
fraction of the runtime. In the second case, we see that
parallelization across all 8 SPEs on the Cell processor
scales well; each SPE checks approximately one eighth of
the total number (N2) of atom pairs. However, the thread
launch overhead grows by a factor of eight, which makes
even an efficient parallelization run only about 1.5x faster
using all SPEs. In this case, however, there is a simple
solution. The communication between the PPE and SPEs
is not limited to large asynchronous DMA transfers; there
are other channels (“mailboxes”) that can be used for

blocking sends or receives of information on the order of
bytes. As we are offloading only a single function, we can
launch the SPE threads only on the first time step, and
signal them using mailboxes when there is more data to
process. Thus the thread launch overhead is amortized
across all time steps. This helps the scaling greatly – this
eight-SPE version is now 4.5x faster than this single-SPE
version.

Thanks to its effective use of SIMD intrinsics on the
SPE, even a single SPE just edges out the Opteron in total
performance. Runtime results are listed in Table 1 for a
2048-atom experiment that runs for 10 simulation time
steps. With an efficient parallelization, using all 8 SPEs
results in a better than 5x performance improvement
relative to the Opteron, and 26x faster than the PPE alone.
Amortizing the thread launch overhead across even more
time steps would further increase this performance gap.

5.2 The GPU Architecture

Like the Cell implementation, step 2 was offloaded to
the GPU, which is the part of the algorithm that calculates
new accelerations from only the locations of the atoms and
several constants. For our streaming processor, then, the
obvious choice is to have one input array comprising the
positions, and one output array comprising the new
accelerations. The constants were compiled into the
shader program source using the provided JIT compiler at
program initialization.

We set up the GPU to execute our shader program
exactly once for each location in the output array, i.e. each
shader program calculates the acceleration for one atom.
This shader program scans the entire input array, i.e. all
the atom positions, for atoms close enough to interact, and
accumulates their contributed forces into a single
acceleration value. After the GPU is finished, the
resulting accelerations are read back into main memory
where the CPU proceeds with the current time step. At the
next time step, the updated positions are re-sent to the
GPU and new accelerations computed again.

There is one complexity here; the potential energy
(PE) of the system is calculated every time step, and every
interacting atom pair contributes to this sum. It is most
naturally calculated as part of the acceleration
computation, where the interactions from each atom are
accumulated into a single potential energy value.
However, in the GPU programming paradigm, there is no

Number of Atoms 2048
Opteron 0.925 sec

Cell, 1 SPE 0.816 sec
Cell, 8 SPEs 0.181 sec

Cell, PPE only 4.701 sec
Table 1: Performance comparison of MD

calculations.

 - 7 -

communication between the executing instances of the
shader programs, so a sum across all atoms directly on the
GPU is impossible in a single pass. One option is to
introduce one or more additional passes to accumulate
each atom’s contribution to the total PE in a gather-type
fashion, called a reduction operation. However, this
method introduces significant overheads. Instead, since
we must perform a readback from the GPU to retrieve the
accelerations anyway, it makes more sense to simply read
back each atom’s contribution to PE as well and sum them
in linear time on the CPU, which is well suited to this
scalar task. There is a subtlety which makes this even less
expensive: the accelerations are 3-component vectors, but
on a GPU we must use 4-component arrays. Thus, we can
simply store each atom’s PE contribution in the fourth
component, and when we read back the accelerations these
values are retrieved for free.

Figure 7 shows performance results using an NVIDIA
GeForce 7900GTX GPU versus a 2.2GHz Opteron. There
is a startup cost associated with the GPU implementation;
however, it is a fraction of a second, and since it occurs
only once it will be quickly amortized across the time
steps for any non-trivial runtime, so it is not included in
these results.

0.0
0.1
0.2

0.3
0.4
0.5
0.6
0.7

0.8
0.9
1.0

256 512 1024 2048

Number of atoms

R
un

tim
e

(s
ec

)

Opteron
NVIDIA GPU

Figure 7: Performance results on GPU

However, there are other constant and O(N) costs
associated with each time step on the GPU, and these costs
are included. These include sending the position array and
reading the acceleration array across the PCIe bus every
time step. It is these costs which make the GPU
implementation take longer to run than the CPU version at
very small numbers of atoms, despite the massive
parallelism of the GPU we use to speed up the actual
computation of the accelerations. For a run of 2048
atoms, the GPU implementation is almost 6x faster than
the CPU.

5.3 The MTA-2 system
The MTA-2 architecture provides an optimal mapping

to the MD calculations because of its uniform memory
latency architecture. In other words, there is no penalty for
accessing atoms outside the cutoff limit or the cache
boundaries, in an irregular fashion, as in the
microprocessor-based systems.

Nevertheless, the most time consuming part, i.e. step
2 of the kernel, was not automatically parallelized by the
MTA compiler because it found a dependency on the
reduction operation. The rest of the kernel is parallelized
by the MTA compiler without any code modification. In
order to parallelize calculations in step 2, we moved the
reduction operation inside the loop body. Moreover, we
hinted the compiler using an MTA directive that the loop
has no dependencies and hence it is parallelizable.

0
20
40
60
80

100
120
140
160
180
200

256 512 1024 2048

Number of atoms

R
un

tim
e

(s
ec

on
ds

)

Fully Multithreaded Partially Multithreaded

Figure 8: Performance comparison of fully vs.

partially multithreaded versions of the MD kernel

Figure 8 shows the performance difference before and
after the code modification. The figure also shows the
importance of exploiting the multi-threaded feature of the
MTA system, since the performance of the fully multi-
threaded version can be significantly higher than of that of
a partially multithreaded version for a similar application.
In case of the MD kernel, the performance difference
increases with the increase in the number of atoms in the
system.

We then compared performance of the optimized
version with a contemporary Opteron processor. Note that
the clock speed of the 200 GHz MTA-2 system is about
11x slower than the 2.2 GHz Opteron processor. We
observe that the runtime on the Opteron processor
increases at a relatively faster rate by increasing the
number of atoms in the system as shown in Figure 9. In
other words, the effect of cache misses are shown in the
Opteron processor runs as the array sizes become larger
than the cache capacities of the Opteron processor. The
increases in the MTA runtime, on the other hand, are

 - 8 -

proportional to the increase in the floating-point
computation requirements.

0
20
40
60
80

100
120
140
160
180
200
220

256 512 1024 2048 4096

Number of atoms

In
cr

ea
se

 in
 ru

nt
im

e

MTA Opteron

Figure 9: Increase in runtime with respect to

simulation run with 256 atoms

6 Conclusions and Future Plans
We investigated and explored the performance

attributes of emerging, high-performance processing
devices for bio-molecular MD calculations. We identified
that the traditional micro-processor optimization and
mapping strategies are not applicable to systems like Cell
and GPU that require explicit data management and
control. Although these requirements resulted in additional
porting and optimization effort, we showed a 5x to 6x gain
in performance of the total runtime from these
architectures. The MTA-2 architecture was relatively
straightforward to program, but did not show similar
performance gains; it, on the other hand, demonstrates an
improved workload scaling behavior. We anticipate
significant performance gains from the upcoming XMT
technology, however. In conclusion, the three devices are
capable of providing supercomputing-scale power to
biological simulations users that have access to desktop
and small cluster systems. Currently, the outstanding
issues are the availability and support for double-precision
floating-point calculations and a standard programming
interface to these diverse set of high-performance
computing platforms. We plan to investigate the
performance potential of these devices for full-scale bio-
molecular simulation frameworks using high-level
language interfaces.

Acknowledgements
The submitted manuscript has been authored by a

contractor of the U.S. Government under Contract No.
DE-AC05-00OR22725. Accordingly, the U.S.
Government retains a non-exclusive, royalty-free license
to publish or reproduce the published form of this
contribution, or allow others to do so, for U.S.
Government purposes.

References
[1] Cray Inc. “Cray XMT Platform”, available at

http://www.cray.com/products/xmt/index.html
[2] Cray Inc., “Cray MTA-2 Computer System User's

Guide,” Cray Inc. S-2317-10, 2005.
[3] Cray Inc., “Cray MTA-2 Programmer's Guide,” Cray

Inc. S-2320-10, 2005.
[4] Cray Inc., “Cray MTA-2 System - HPC Technology

Initiatives,”
http://www.cray.com/products/programs/mta_2/, 2006.

[5] GPGPU (General Purpose computation using GPU
hardware, http://www.gpgpu.org/

[6] GROMACS, http://www.gromacs.org/
[7] International Business Machines Corporation, “Cell

Broadband Engine Programming Tutorial Version
1.0,” 2005.

[8] http://www.nvidia.com
[9] S. R. Alam, P. K. Agarwal, et. al., “Performance

Characterization of Bio-molecular Simulations using
Molecular Dynamics,” ACM Symposium of Principle
and Practices of Parallel Programming, 2006.

[10] S. Bokhari and J. Sauer, “Sequence alignment on the
Cray MTA-2,” Concurrency and Computation:
Practice and Experience (Special issue on High
Performance Computational Biology), 16(9):823–39,
2004.

[11] I. Buck, “Brook—Data Parallel Computation on
Graphics Hardware,” Workshop on Parallel
Visualization and Graphics, 2003.

[12] J. Feo, D. Harper et al., “ELDORADO,” Conference
on Computing Frontiers. Italy: ACM Press, 2005.

[13] B. Flachs, S. Asano et al., “The microarchitecture of
the synergistic processor for a cell processor,” IEEE
Journal of Solid-State Circuits, 41(1):63-70, 2006.

[14] O. Hwa-Joon, S.M. Mueller et al., “A fully pipelined
single-precision floating-point unit in the synergistic
processor element of a CELL processor,” IEEE
Journal of Solid-State Circuits, 41(4):759-71, 2006.

[15] J. A. Kahle, M.N. Day et al., “Introduction to the Cell
Microprocessor,” IBM Journal of Research and
Development, 49(4/5):589-604, 2005.

[16] A. R. Leach, Molecular modeling: principles and
applications, 2nd ed: Prentice Hall, 2001.

[17] W. Liu, et. al. “Bio-Sequence Database Scanning on a
GPU”, IEEE International Workshop on High
Performance Computational Biology, 2006.

[18] Y. Liu, et. al. “GPU Accelerated Smith-Waterman.”
International Conference on Computational Science,
2006.

[19] S. Williams, J. Shalf et al., “The Potential of the Cell
Processor for Scientific Computing,” Proc. of
Computing Frontiers, 2006.

