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Abstract 

This work presents the architecture of PROSIDIS, a 
special purpose processor designed to search for the 
occurrence of substrings similar to a given ‘template 
string’ within a proteome.  

The paper recalls the basis of the PHG tool, developed 
in the framework of the HADES project, which 
automatically designs a parallel hardware starting from 
recurrence equations. In this work we present a special 
purpose processor, designed by PHG, which faces the 
protein similarity discovery problem.  

Some results are given, reporting the time spent by 
several microprocessors and by the PROSIDIS processor 
to solve the same protein analysis problem.  

 
Keywords biological sequence analysis, FPGA, systolic 
architecture, System of Affine Recurrence Equations. 

 
 

1. Introduction 
 
According to the trends in electronic system design, 

which foresee the use of high level synthesis 
methodologies and of FPGA technology to have short 
developing times, in the HADES project (HArdware 
DEsign for Scientific applications) we developed a tool to 
support the fast design and prototyping of dedicated co-
processors to be implemented on FPGA. The tool, called 
PHG (Parallel Hardware Generator), is able to perform 
the high level synthesis of iterative algorithms starting 
from high level specifications and produces the VHDL 
code which describes the implementation of the hardware 
device. Such VHDL code is then processed by standard 
CAD tools and implemented on the FPGA.  

Because of their programmability, FPGA are clocked 
at frequency significantly smaller than the clock 
frequency of general purpose processors. For this reason 
exploiting as much as possible the algorithm parallelism 
is the only way to make a FPGA-based implementation 
more effective than the processor based implementation 
of the same algorithm. For this reason PHG has been 
designed to produce architectures which are composed by 

several cooperating computing units implementing the 
starting iterative algorithm. 

In this work we report the results achieved in the 
implementation of a specialized hardware device for 
“proteomic computation”: the PROSIDIS device 
(PROtein SImilarity DIScovery), designed to compute the 
best matching region between a short amino-acid 
sequence and a whole proteome (section 3). Searching for 
the best matching between two biological sequences is 
one of the most used operations for protein analysis [4], 
as usually biologists try to infer the shape (i.e. the folding) 
and the function of a new protein by shape and 
functionalities of similar proteins. Computations involved 
in protein similarity analysis are based on the sum of the 
‘similarity’ between each pair of amino-acids, thus 
requiring the accumulation of similarity data represented 
with very few bits. Furthermore, searching for the 
similarity between two proteomes requires O(n2) 
similarity comparisons, being n the length of both the 
proteomes. PROSIDIS can be used as HW booster for 
protein analysis algorithms as its operations are not 
efficiently supported by conventional processors which 
are deployed with very low efficiency in limited precision 
arithmetic. 

In order to give a short overview about similar projects 
on configurable computing, we recall 1) the Cameron 
Project (http://www.cs.colostate.edu/cameron) in which a 
framework to automatically compile C programs onto 
programmable devices was developed, 2) the NAPA 
architecture [1] with the NAPA C compiler [2] which 
allows the partitioning of applications between fixed 
instruction processors and configurable coprocessors, 3) 
the DEFACTO project (see www.isi.edu/asd/defacto/) in 
which, starting from C or MATLAB specifications and 
using the SUIF compiler (http://suif.stanford.edu/) to 
extract the parallelism from the applications, the 
application is mapped onto a target Hardware Description 
Language which will be compiled onto a programmable 
device. A detailed review on configurable computing can 
be found in [3]. 

 
 



2. The PHG package 
 
The Parallel Hardware Generator (PHG) package has 

been developed in the framework of the HADES project  
(HArdware DEsign for Scientific applications). The PHG 
theoretical framework is described in [5,6] while the 
detailed theory is reported in [7]. The PHG is based on the 
design flow shown in figure 1. 
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Figure 1. Layout of the design flow. 

Starting from high level specifications of the problem, 
PHG produces a synthesizable VHDL [8]. High level 
specifications are given by means of a System of Affine 
Recurrence Equations (SARE) [9,10]. The SARE is 
specified through the SIMPLE (Sare IMPLEmentation) 
language (details on the SIMPLE language can be found 
in [7,11]).  

In order to achieve the final circuit description, PHG 
performs the following steps (figure 1): 
− parsing of the SARE describing the algorithm through 

the SIMPLE compiler and generation of the 
intermediate format; 

− automatic extraction of parallelism by allocating and 
scheduling the computations through a processor-time 
mapping [6,7]. The mapping is represented by an 
integer unimodular matrix derived through an 
optimization process [12]. This step produces the 
architecture of the system expressed as a set of 
interconnected functional units (data path) managed by 
a control Finite State Machine (FSM) (data path 
controller) which enforces the scheduling; 

− generation of the synthesizable VHDL representing the 
architecture determined in the previous step. 

− The VHDL code is then synthesized through the 
standard Electronic Design Automation (EDA) tools. 
We used the Synopsys FPGA compiler II to produce 
the optimized netlist and the Xilinx Foundation 
Express 4 to place and route it into the target FPGA. 

The theoretical foundations of the PHG derive from 
the works on systolic arrays conducted by many 
researcher in the last years [13-16]. Such works are 
mainly based on the projection of a regular computation 
domain onto a time-processor space in order to exploit the 
algorithm parallelism. The resulting architecture, the so-
called systolic arrays, are synchronous circuits composed 
by a set of locally interconnected functional units. In the 
context of the HADES project, many efforts have been 
done to improve such methodologies. First of all, we 
considered the class of System of Affine Recurrence 
Equations (SARE) algorithms in order to widen the 
applicability domain of the synthesis methodology. In 
fact, using SARE, we override the local interconnectivity 
constraint allowing the generation of synchronous 
architectures with local and not local interconnections 
(e.g. data buses) [5,6]. 

An efficient optimization strategy to solve the problem 
of finding nearly optimal allocation and scheduling has 
been developed: the method is based on the simulated 
annealing algorithm and on a mathematical framework 
which allows to strongly reduce the number of candidate 
scheduling/allocation solutions [17].  

Finally, due to the elimination of the local 
interconnection constraint, a new methodology has been 
formulated [5] in order to minimize the resources needed 
to implement not local communications. 

The collection of the previous experiences and of the 
new improvements developed in the HADES project 
produced a visual CAD tool, the PHG, which enables the 
development of dedicated parallel hardware devices 
within a few days.  

 
3. The PROSIDIS problem 

 
The PROSIDIS (PROtein SImilarity DIScovery) faces 

the problem of finding the “degree of similarity” between 
a short sequence s of amino acids having length m, called 
peptide, and a long sequence p of amino acids having 
length n, representing a proteome. Each amino acid 
constituting the sequences can be represented as a 
character belonging to the alphabet 

A = {I,F,V,L,W,M,A,G,C,Y,P,T,S,H,E,D,Q,N,K,R} 
The typical length of p is n = 106 ÷ 107 characters. 

Given a peptide of length m, s ∈ Am, the PROSIDIS 
problem can be stated as the computation of the n-m 
values 
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which measures the ‘similarity’ between the peptide s and 
a segment of  p. DM(a,b) is a weighting matrix which, for 
any pair of amino acids a and b, returns an integer number 
representing the degree of similarity between them; we 
used the Blosum62 matrix [18]. During the sum 



operation, whenever the partial value of M(i) becomes 
smaller than 0, it is set to 0. 

A pseudo code to solve the problem is given in fig. 2. 
input

Proteome p(i) i=0,1,...,n-1
Peptide s(i) i=0,1,...,m-1
Weigthing matrix DM(i,j)

output
Similarity M(i) i=0,1,...,n-n-1

begin
for i = 0 to n-m-1

M(i) = 0
for j=0 to m-1

M(i) = M(i) + DM(p(i+j),s(j))
if M(i) < 0 then

M(i) = 0
endif

endfor
endfor

end  
Figure 2: pseudo-code for the PROSIDIS Problem 

Let us consider the data widths needed to correctly 
implement the PROSIDIS problem. Peptide and proteome 
sequence characters belong to the alphabet A which is 
constituted by 20 characters; hence each amino acid in p 
and s can be represented with a word length of log220 = 
5 bits. We suppose the values of the weighting matrix DM 
to be in the range [–8,7] and, hence, they can be 
represented through 4 bits in the two complement notation 
(weighting matrices having values outside the range [–
8,7] can be appropriately scaled down). Assuming the 
maximum value of m = 32, the maximum allowed value 
for similarity measure M is 224 which can be represented 
with 8 bits (remember that no negative values are allowed 
for M). 

 
4. Rationale to develop the PROSIDIS 

architecture 
 

Let us introduce some notations in order to analyze if 
and when it is possible to obtain performance 
improvement adopting dedicated parallel devices instead 
of conventional COTS processors. 

A program P is constituted by a partially ordered set of 
operations P={opi, i=1,2,...,N} and, due to data 
dependencies among operations, requires a set of data 
transfers T={IOi, i=1,2,...,M}; t(opi) is the reciprocal of 
the number of operations opi executed per second by the 
system at the maximal efficiency, ηi is the efficiency with 
which opi is implemented in a certain section of P (it will 
depend on pipeline status, data dependencies,...) and 
DS(IOi) denotes the data size of the IOi data expressed in 
bits. 

A single-processor computing system is characterized 
by the tuple (fck,Rck, Rck, Rck), where fck is the system main 
clock frequency, Rck is the factor to obtain the main 

memory clock (the system accesses main memory at the 

frequency 
ck

ck

R

f
), Rck is the data bus width (expressed in 

bits) and Rck is the system Peak Speed (expressed in 
operations per second). As we are interested in 
investigating processor influence on performances, we do 
not take into account caches and memory size. In this 
paragraph we always refer to burst memory accesses, so 
in the evaluations of communication times the startup 
time for memory access is neglected; this assumption is 
justified by the class of problems we are referring to 
(iterative problems often originates sequential memory 
accesses). 

The actual execution time Texe of P on the system is 
within the range 

max(Tcomp,Tcomm)≤Texe≤Tcomp+Tcomm,    (2) 
being  
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(we are assuming that DS(IOi)≤W i=1,2,...,M, so one 
memory access is needed to perform one I/O operation). 
The left term of (2) corresponds to perfect overlapping 
between communication and computation phases, the 
right side term corresponds to the complete serialization 
of computing and communication phases. Both the terms 
are minimized when the system resources are used at their 
maximum efficiency, i.e. when PS operations per second 

are executed and when W
R

f
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transferred. In such a case we have  
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As we see from expression (3), data transfer time is 
likely to become the actual bottleneck in system 

utilization, resulting 
ck

ck

R

f
PS >>  for the current 

microelectronic technology. We may refer to system 
granularity GS, defined as the ratio between the processor 
peak speed and the maximal memory bandwidth (i.e. 

ck

ck
S f

PSR
G = ), to have a measure of the relative 

influence of the communication time on the computing 
time: the largest is GS, the more the communications 
could be the bottleneck. More precisely, starting from 
expression (3) we derive that communications become a 
bottleneck whenever GS is larger than the program 
granularity GP, defined as the average number of words to 



be transferred for each operation of P, 
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In order to override inefficiency of commercial 
processors, due both to the mismatch between program 
and system granularity and/or to the mismatch between 
the type of operations required by the program and the 
ones implemented by the system, we may design 
Dedicated Parallel Systems (DPS) to be implemented as 
Systems on a Chip. Such systems will be characterized by 
the right balance between computational power and 
processor-to-memory bandwidth: according to the number 
of gates available to implement the system and on the 
number of I/O pins for the memory interface, the system 
will be designed to have the largest computing power 
compatible with the available I/O bandwidth. 
Furthermore, such dedicated systems will implement in 
HW the operations of the algorithm, avoiding any 
mismatch between algorithm and system instructions. 

In order to introduce a performance comparison 
between DPS and a single-processor computing system, 
let us model a DPS through the tuple (fck, Rck, W, NU), 
where fck is the clock frequency controlling the system, 
Rck is the factor to obtain the main memory clock (usually 
Rck = 1), W is the global I/O width (expressed in bits) and 
in general it encloses as many buses as they are necessary 
to feed the internal circuits, NU is the number of the 
computing units (potentially different) which form the 
system data path. The system peak speed is given by 
PS=NU×fck  -in the case that each computing unit executes 
one operation. 

We start analyzing the computing behavior of the two 
systems. Referring to the conventional single-processor 
system, the sustained computational speed is given by 
PSCPU×ηCPU, being ηCPU the efficiency with which the 
processor is used. The computational speed sustained by 
the dedicated parallel system is given by 

NUDPS× DPS
ckf ×ηDPS. The ratio between the computational 

speeds sustained by the dedicated parallel system and by 
the single processor system is 

R=
CPUCPU

DPSDPS
ck

DPS

PS

fNU

η

η

×

××
.      (4) 

In order to have a significant performance 
improvement from the adoption of the dedicated parallel 
system, R>>1 must result. ηDPS is typically larger or equal 
to ηCPU because the dedicated system is designed to 
efficiently implement only the needed operations (often 
we have ηDPS≈1 while ηCPU is seldom greater than 0.5). 
Being the clock frequency of FPGA significantly smaller 
than the clock frequency of commercial processors, the 
key issue to have performance improvements is to exploit 

as much as possible the parallelism of the algorithm, i.e. it 
must result 

DPS
ck

CPUCPU
DPS

f

PS
NU

η×
>>       (5) 

Previous relation explains why the Protein Similarity 
Discovery problem is very likely to obtain performance 
improvements from FPGA implementation: in fact, being 
the parallel implementation based on the repetition of the 
simple (and small) building block executing the statement 
M(i)8=M(i)8+DM(p(i+j),s(j))4, NUDPS can be 
significantly large, thus satisfying relation (5) (the 
subscript n in notation Xn indicates the number of bits 
used to represent X). 

In order to evaluate the right-hand term of expression 
(5), we need to fix a reasonable value for both 

the CPUCPUPS η× term and for the operative clock 

frequency of the FPGA configured with the DPS we are 
going to design. Taking as reference processor the 
ALPHA EV6.7 clocked at 667 MHz, we have 

CPUPS =1.3; furthermore we assume an efficiency in the 

sequential code implementation CPUη =0.5 – surely over 

extimated. As we are targeting the Xilinx XV1000-4 
FPGA, a reasonable value for the clock frequency of a 

complex design is DPS
ckf =25MHz. Substituting values in 

the right-hand side of expression (5) we obtain the 

condition ≈
××

×
>>

6

9

10252

103.1DPSNU 27 which states that, 

in order to obtain a performance improvement - with 
respect to an ALPHA EV6.7 processor - through the 
implementation of a DPS on an FPGA dedicated to solve 
the Protein Similarity Discovery problem, we must be 
able to design and implement a number of parallel basic 
functional units (FU) significantly larger than 27. As each 
FU performs the summation between two numbers 
(expressed respectively with 4 and 8 bits) and implements 
a LUT with 400 entries and with the output expressed by 
4 bits, it seems very reasonable to assume that a large 
number of FU's could be implemented on the same 
FPGA.  

Referring to the communications, the single processor 
system has theoretical peak bandwidth given by 

CPU
CPU
ck

CPU
ckCPU W

R

f
BW ×=        (6) 

Similarly, the Dedicated Parallel System has the 
theoretical peak bandwidth expressed by 

DPS
DPS
ck

DPS
ckDPS W

R

f
BW ×=           (7) 



Both the CPU and the DPS use their bandwidth with 

efficiency 
D

D
D
BW

W

L ><
=η , being D={CPU,DPS} and 

<LD> the mean value of the width of data (expressed in 
bits) transferred by D. It is worth to underline that usually 

1=ηDPS
BW , because WDPS is designed to match the data 

width, while it may result 1<ηCPU
BW  whenever <LCPU> is 

smaller than WCPU: this happens when data put in parallel 
on the bus cannot be processed in parallel by the CPU. 
For instance, on a 32 bit system, it is possible to check in 
parallel if 6 pairs of 5 bit strings are equal; it is sufficient 
to code the i-th string (i=0,…,5) on the data bits ranging 
from 5(i+1)-1 down to 5i and to perform the ex-or 
between the two words containing the 6 strings; on the 
contrary, if we want to add 6 pairs of 5 bit numbers 
represented in the 2-complement notation, we cannot 
simply add the two words containing the 6 pairs of 
numbers (there are problems with the negative numbers), 
so we have to read the data pairs sequentially. In the first 
case we have <LCPU>=30 bit while in the second case 
<LCPU>=5 bit. 

From previous reasoning, the ratio between the 

sustained CPU and DSP bandwidth (assuming DPS
ckR =1) 

is given by 
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In order to have communication performance 
improvements when implementing the algorithm on a 
dedicated parallel system, RBW>1 must result. This 
happens when 

( )
><×> CPU

DPS
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CPU
ck

CPU
ckDPS L

f

Rf
W .     (9) 

Also in this case the parallelism is the key issue to hide 
the effects due to the disadvantageous ratio between clock 
frequency of FPGA devices and commercial processors. 

Let us now evaluate expression (9). From the analysis 
of the algorithm in figure 2, we know that, for each 
operation, two 5 bit characters must be loaded and one 8 
bit number must be stored. In the case of a sequential 
implementation on a CPU such an I/O traffic results in 18 
bits transferred in 3 bus cycles, yielding <LCPU>=6 bit. 
We refer again to an ALPHA based system (namely the 
DS20) in which the memory is accessed at 133 MHz. 
Assuming for the DPS implemented on the FPGA the 
memory access rate at 25 MHz, relation (9) becomes 

32>DPSW  
which means that data I/O bus width in the FPGA must be 
larger than 32 bits. This condition can be fulfilled by 
exploiting data parallelism (that is parallelism on the outer 
loop, being completely independent all its instances). As 

each instance of the outer loop reads amino acid p(i+j) 
(i.e. 5 bits) and returns the matching score M(i) (8 bits), 
the internal pipelined structure has WP=13; it is sufficient 
to put three of such pipelined units in parallel to have 

3239 >=DPSW . 
As both the relations (5) and (9) are likely to be 

fulfilled in the case of the Protein Similarity Discovery 
problem, a Dedicated Parallel System implemented on 
FPGA technology is a good candidate to significantly 
improve sustained performances with respect to a system 
based on conventional processors. 

 
5. PROSIDIS Design 

 
Following the HADES design flow, computation of (1) 

is expressed in SARE form through the SIMPLE program 
shown in figure 3. The program starts with the definition 
of the algorithm indices and parameters, of the input 
variables and of the result variables. After the sections 
with definitions, the algorithm equations follow, each one 
being specified with its data dependencies (the indices of 
variables appearing as arguments of the function) and its 
validity domain (the inequalities between curl brackets). 
In particular, equation 1 initializes the M values to 0, 
equation 2 propagates the M values along the j direction 
and, finally, equation 3 performs the accumulation of the 
amino acid similarity. Last statement defines the output of 
the algorithm. A SIMPLE algorithm, representing a 
collection of SARE, has a computing domain which can 
be represented in the Cartesian space. For the SIMPLE 
algorithm represented in figure 3, the computing domains 
are shown in figure 4. 

Going on with the PHG design flow as reported in 
figure 1, the optimization process, used to determine 
allocation and scheduling, discovered the projection 
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peptide to a different functional unit; in fact, applying the 
projection matrix to the computing domain, we obtain 
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p=j (j=-1,…,m-1) (according to [5,6], t is the temporal 
coordinate and p the processor coordinate in the 
transformed (time-processor) space). The used projection 
matrix originates a linear pipeline structure because 
dependence relation from equation 3, namely from 
M[i,j-1] to M[i,j] and represented by the 

dependence vector 
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i.e. data produced at time t by processor p will be used at 
time (t+1) (dt=1) by processor (p+1) (dp=1). 

Finally, the VHDL source, which contains nearly 5000 
lines of code, was automatically produced. 

 
Ind [i,j];
Par[n,m] {m>=1,n>=1};

/*String sequence*/
Input p[1] {0<=i<=n-1};

/*Peptide sequence*/
Input s[1] {0<=i<=m-1};

/*Output sequence*/
Result M;

/*Equation 1*/
M[]=InitMatch();
{-m+1<=i<=n-1,j=-1};

/*Equation 2*/
M[] = PropagateMatch();
{i+j<=-1,j>=0,i>=-m+1};

/*Equation 3*/
M[]=AddMatch(p[i+j],s[j],M[i,j-1]);
{0<=i+j<=n-1,0<=j<=m-1};

/*Output*/
Write(M[]);
{-m+1<=i<=n-m,j=m-1};

 

Figure 3: SIMPLE program expressing the SARE to solve 
the Protein Similarity Discovery Problem 

 
6. PROSIDIS Architecture and Test Bed 

Configuration 
 

We designed the PROSIDIS architecture specialized 
for the case of a proteome with length n=2,096,000 and a 
peptide of length m = 24. The basic pipelined architecture, 
automatically produced by the PHG package according to 
the projection matrix described in previous paragraph, is 
shown in figure 5. It is composed by a data path (the 
pipelined structure) driven by the data path controller 
which enforces the algorithm scheduling. Small boxes 
represent delay elements (edge triggered registers) while 
the big boxes represent the computing units. The 
Blosum62 weighting matrix (appropriately scaled down) 
has been implemented through a Look Up Table (LUT). 
Each computing element performs the comparison of two 
amino acids by means of the LUT. The LUT output is 
then added to the output of the previous stage and the 
result is transmitted to the next stage unless it is a 
negative value; in such a case 0 is transmitted. We 
underline that the VHDL corresponding to the 

combinatorial circuit in the square box in figure 5, 
implementing the elementary function behavior, is the 
only code written directly by us.  
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Figure 4: computing domain for the SARE in figure 3 
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Figure 5: basic pipelined architecture to solve the Protein 
Similarity Discovery problem 

The test bed we used to implement the PROSIDIS 
architecture is a prototyping board equipped with a PCI 
interface (33 MHz), 8 MB of SRAM memory and one 
Xilinx Virtex XV1000 FPGA. The board is hosted by a 
standard PIII@550 MHz PC. 

Due to the large size of the FPGA device and in order 
to increase the computing power of the PROSIDIS 
architecture, we replicated 4 times in the same FPGA the 
pipelined architecture of figure 5. The resulting FPGA 
structure is depicted in figure 6 where it is shown the 
additional circuitry needed to interface the pipelined 
structures to the board devices. 

 
The PROSIDIS architecture is able to perform the 

contemporaneous comparison of 4 proteome sections of 
length n=524000 against a single peptide of length m=24. 
The clock cycles needed to carry out the whole 
computation are m+n=524024. Constrained at the speed 
grade of the FPGA we used (XV1000-4), the synthesized 



design is clocked at a frequency fclk = 30 MHz, 
corresponding at a sustained computing rate of 2.88×109 
operations per second and to a sustained bus I/O 
bandwidth of 1.56 Gb/s. 
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Figure 6: Block diagram of the PROSIDIS architecture 

Referring to the Protein Similarity Discovery problem, 
the core of the computation is demanded to the 
PROSIDIS processor while the global control flow 
(loading/reading data to/from board memory, starting the 
FPGA computation) is demanded to the PIII host 
computer. The pseudo code is sketched in figure 7 and is 
constituted by a sequence of calls to functions of the 
prototyping board: 
− DMA from the host memory to the board memory of 

the peptide sequence; 
− DMA from the host memory to the board memory of 

the 4 proteome sequences p. Notice that, being each 
proteome character represented with 5 bits, the 4 
proteomes can be transferred within a single DMA 
operation because they are byte-aligned in a 32 bit 
word; 

− Write the start value on the control port; this command 
triggers the start of FPGA computation; 

− Wait for FPGA completion through the reading of the 
End value from the FPGA status port; 

− DMA from the board memory to the host memory of 
the 4 similarity sequences. Notice that, being each 
similarity value represented with 8 bits, the 4 
sequences can be transferred within a single DMA 
operation because they are byte-aligned in a 32 bit 
word 

 
7. Results 

 
In order to test the advantages attainable by using the 

PROSIDIS dedicated processor as booster for a 
conventional sequential system, we implemented the 
algorithms to solve the Protein Similarity Discovery 
problem on different general-purpose platforms. 
Particular effort has been spent to optimize the SW 
implementation of the algorithm on the test systems. The 
test processors have been chosen among those available in 

our research center. 

input
4 Proteome p(i) i=0,1,...,523999
Peptide s(i) i=0,1,...,23

output
4 Similarity M(i) i=0,1,...,523975

begin
DMA(host2board,s)
DMA(host2board,p)
WRITE_CONTROL_PORT(Start)
READ_STATUS_PORT(End)
DMA(board2host,M)

end
 

Figure 7: Pseudo-code of the program to solve the 
Protein Similarity Discovery problem  

 Results have been compared with those obtained on 
the test bed architecture consisting of a 550 MHz Pentium 
III processor connected to the RC1000-PP prototyping 
board equipped with a Xilinx XV1000 FPGA. 

The architectures used in the tests are: 
− 1000 MHz Pentium III, 32 bit, 512K of L2 cache, 

Win2000, MS Visual Studio C++ V6.0; 
− 667 MHz Alpha EV6.7 (API UP2000 board), 64 bit, 

4M of L2 cache, Linux Kernel 2.3.14, Compaq C 
compiler (ccc) V6.2-506; 

− 450 MHz Sun UltraSparc II, 64 bit, 4M of L2 cache, 
Solaris 2.7, Sun WorkShop C compiler V5.0; 

− 200 MHz IBM Power3, 64 bit, 4M of L2 cache, AIX 4 
OS, C for AIX compiler V4.4. 

− 300 MHz R12000 SGI Onyx 2, 8M of L2 cache, MIPS 
C compiler. 
Table 2 summarizes the results reporting, for each 

algorithm and machine configuration, the time spent to 
execute the searching for a sequence with m=24 amino 
acids on a proteome with n=2,096,000 amino acids. 

We underline that the PIII+FPGA implementation 
takes into account both the overhead to manage the 
sequential parts of the applications and the times 
necessary to start the FPGA and to DMA data to and from 
host memory: 35 ms, out of 52 ms, are devoted to DMA 
operations. This fact implies that the simple technological 
upgrade from the 32 PCI clocked at 33 MHz to the 64 PCI 
clocked at 66 MHz would reduce the DMA overhead to 
~9 ms. The other technological improvement, passing 
from the XV1000 to the XV2000 FPGA, will allow the 
implementation of 8 parallel pipelines instead of 4 (the 
prototyping board has still two unused memory banks); 
this fact would reduce the PROSIDIS computing time to 
8.5 ms, giving an overall computing time of ~17.5 ms. So 
the implementation of PROSIDIS with a fastest PCI and 
the last generation XV2000 FPGA would triple the 
speedup figures reported in Table 2. It is worth to note 
that PROSIDIS shows speedup factors ranging from 5.6 



up to 55.6, thus supporting with experimental data the 
theoretical analysis about the advantages derivable from 
FPGA implementation of the Protein Similarity Discovery 
problem. 

 
 Computing time 

(msec) 
FPGA  

Speed up 
PIII@550+FPGA 52 1.00 
PIII@1000  290 5.6 
EV6.7@667 387 7.4 
SGI R12000@300 533 10.3 
Power3@200  1152 22.2 
UltraSparc@450  2892 55.6 

Table 2: Elapsed times (milliseconds) to solve the Protein 
Similarity Discovery problem on different platforms. The 
last column shows the speed-up values achieved by the 
FPGA-based implementation with respect to the specific 
platform. 

 
 

8. Conclusions 
 

The work presented the design and implementation of 
a special purpose processor, called PROSIDIS, devoted to 
solve the Protein Similarity Discovery problem arising in 
the field of protein analysis. The design has been carried 
out through the Parallel Hardware Generator (PHG) tool 
developed by two of the authors in the framework of the 
HADES project (HArdware DEsign for Scientific 
applications). After a brief review on PHG, the Protein 
Similarity Discovery problem has been introduced and a 
detailed analysis has been performed in order to explain 
why it is possible to obtain significant performance 
improvements with respect to commodity off the shelf 
processors (COTS). The design, based on the theory on 
recurrence equations and their projection, has been 
illustrated together with experimental results where the 
performances attained by COTS based systems were 
compared with the ones obtained by an FPGA 
implementation of the PROSIDIS processor on a 
prototyping board hosted by a Pentium III personal 
computer. Results evidence speedup figures ranging from 
5.6 up to 55.6, clearly demonstrating the validity of the 
proposed design. 
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