

PROSIDIS: a Special Purpose Processor for PROtein SImilarity DIScovery

A.Marongiu1, P.Palazzari2, V.Rosato2
1IPITEC, Rome

2ENEA, Computing and Modeling Unit, Rome

Abstract

This work presents the architecture of PROSIDIS, a
special purpose processor designed to search for the
occurrence of substrings similar to a given ‘template
string’ within a proteome.

The paper recalls the basis of the PHG tool, developed
in the framework of the HADES project, which
automatically designs a parallel hardware starting from
recurrence equations. In this work we present a special
purpose processor, designed by PHG, which faces the
protein similarity discovery problem.

Some results are given, reporting the time spent by
several microprocessors and by the PROSIDIS processor
to solve the same protein analysis problem.

Keywords biological sequence analysis, FPGA, systolic
architecture, System of Affine Recurrence Equations.

1. Introduction

According to the trends in electronic system design,

which foresee the use of high level synthesis
methodologies and of FPGA technology to have short
developing times, in the HADES project (HArdware
DEsign for Scientific applications) we developed a tool to
support the fast design and prototyping of dedicated co-
processors to be implemented on FPGA. The tool, called
PHG (Parallel Hardware Generator), is able to perform
the high level synthesis of iterative algorithms starting
from high level specifications and produces the VHDL
code which describes the implementation of the hardware
device. Such VHDL code is then processed by standard
CAD tools and implemented on the FPGA.

Because of their programmability, FPGA are clocked
at frequency significantly smaller than the clock
frequency of general purpose processors. For this reason
exploiting as much as possible the algorithm parallelism
is the only way to make a FPGA-based implementation
more effective than the processor based implementation
of the same algorithm. For this reason PHG has been
designed to produce architectures which are composed by

several cooperating computing units implementing the
starting iterative algorithm.

In this work we report the results achieved in the
implementation of a specialized hardware device for
“proteomic computation”: the PROSIDIS device
(PROtein SImilarity DIScovery), designed to compute the
best matching region between a short amino-acid
sequence and a whole proteome (section 3). Searching for
the best matching between two biological sequences is
one of the most used operations for protein analysis [4],
as usually biologists try to infer the shape (i.e. the folding)
and the function of a new protein by shape and
functionalities of similar proteins. Computations involved
in protein similarity analysis are based on the sum of the
‘similarity’ between each pair of amino-acids, thus
requiring the accumulation of similarity data represented
with very few bits. Furthermore, searching for the
similarity between two proteomes requires O(n2)
similarity comparisons, being n the length of both the
proteomes. PROSIDIS can be used as HW booster for
protein analysis algorithms as its operations are not
efficiently supported by conventional processors which
are deployed with very low efficiency in limited precision
arithmetic.

In order to give a short overview about similar projects
on configurable computing, we recall 1) the Cameron
Project (http://www.cs.colostate.edu/cameron) in which a
framework to automatically compile C programs onto
programmable devices was developed, 2) the NAPA
architecture [1] with the NAPA C compiler [2] which
allows the partitioning of applications between fixed
instruction processors and configurable coprocessors, 3)
the DEFACTO project (see www.isi.edu/asd/defacto/) in
which, starting from C or MATLAB specifications and
using the SUIF compiler (http://suif.stanford.edu/) to
extract the parallelism from the applications, the
application is mapped onto a target Hardware Description
Language which will be compiled onto a programmable
device. A detailed review on configurable computing can
be found in [3].

2. The PHG package

The Parallel Hardware Generator (PHG) package has

been developed in the framework of the HADES project
(HArdware DEsign for Scientific applications). The PHG
theoretical framework is described in [5,6] while the
detailed theory is reported in [7]. The PHG is based on the
design flow shown in figure 1.

SIMPLE
Compiler

Allocation
&

Scheduling

VHDL
Generator

SARE
Description

Circuit
Description

VHDL
Description

FPGA
Compiler

+
Xilinx Flow Engine

Figure 1. Layout of the design flow.

Starting from high level specifications of the problem,
PHG produces a synthesizable VHDL [8]. High level
specifications are given by means of a System of Affine
Recurrence Equations (SARE) [9,10]. The SARE is
specified through the SIMPLE (Sare IMPLEmentation)
language (details on the SIMPLE language can be found
in [7,11]).

In order to achieve the final circuit description, PHG
performs the following steps (figure 1):
− parsing of the SARE describing the algorithm through

the SIMPLE compiler and generation of the
intermediate format;

− automatic extraction of parallelism by allocating and
scheduling the computations through a processor-time
mapping [6,7]. The mapping is represented by an
integer unimodular matrix derived through an
optimization process [12]. This step produces the
architecture of the system expressed as a set of
interconnected functional units (data path) managed by
a control Finite State Machine (FSM) (data path
controller) which enforces the scheduling;

− generation of the synthesizable VHDL representing the
architecture determined in the previous step.

− The VHDL code is then synthesized through the
standard Electronic Design Automation (EDA) tools.
We used the Synopsys FPGA compiler II to produce
the optimized netlist and the Xilinx Foundation
Express 4 to place and route it into the target FPGA.

The theoretical foundations of the PHG derive from
the works on systolic arrays conducted by many
researcher in the last years [13-16]. Such works are
mainly based on the projection of a regular computation
domain onto a time-processor space in order to exploit the
algorithm parallelism. The resulting architecture, the so-
called systolic arrays, are synchronous circuits composed
by a set of locally interconnected functional units. In the
context of the HADES project, many efforts have been
done to improve such methodologies. First of all, we
considered the class of System of Affine Recurrence
Equations (SARE) algorithms in order to widen the
applicability domain of the synthesis methodology. In
fact, using SARE, we override the local interconnectivity
constraint allowing the generation of synchronous
architectures with local and not local interconnections
(e.g. data buses) [5,6].

An efficient optimization strategy to solve the problem
of finding nearly optimal allocation and scheduling has
been developed: the method is based on the simulated
annealing algorithm and on a mathematical framework
which allows to strongly reduce the number of candidate
scheduling/allocation solutions [17].

Finally, due to the elimination of the local
interconnection constraint, a new methodology has been
formulated [5] in order to minimize the resources needed
to implement not local communications.

The collection of the previous experiences and of the
new improvements developed in the HADES project
produced a visual CAD tool, the PHG, which enables the
development of dedicated parallel hardware devices
within a few days.

3. The PROSIDIS problem

The PROSIDIS (PROtein SImilarity DIScovery) faces

the problem of finding the “degree of similarity” between
a short sequence s of amino acids having length m, called
peptide, and a long sequence p of amino acids having
length n, representing a proteome. Each amino acid
constituting the sequences can be represented as a
character belonging to the alphabet

A = {I,F,V,L,W,M,A,G,C,Y,P,T,S,H,E,D,Q,N,K,R}
The typical length of p is n = 106 ÷ 107 characters.

Given a peptide of length m, s ∈ Am, the PROSIDIS
problem can be stated as the computation of the n-m
values

M(i) = ()∑
−

=
+

1

0

)(),(
m

j

jsjipDM i = 0,1,...,n-m-1 (1)

which measures the ‘similarity’ between the peptide s and
a segment of p. DM(a,b) is a weighting matrix which, for
any pair of amino acids a and b, returns an integer number
representing the degree of similarity between them; we
used the Blosum62 matrix [18]. During the sum

operation, whenever the partial value of M(i) becomes
smaller than 0, it is set to 0.

A pseudo code to solve the problem is given in fig. 2.
input

Proteome p(i) i=0,1,...,n-1
Peptide s(i) i=0,1,...,m-1
Weigthing matrix DM(i,j)

output
Similarity M(i) i=0,1,...,n-n-1

begin
for i = 0 to n-m-1

M(i) = 0
for j=0 to m-1

M(i) = M(i) + DM(p(i+j),s(j))
if M(i) < 0 then

M(i) = 0
endif

endfor
endfor

end
Figure 2: pseudo-code for the PROSIDIS Problem

Let us consider the data widths needed to correctly
implement the PROSIDIS problem. Peptide and proteome
sequence characters belong to the alphabet A which is
constituted by 20 characters; hence each amino acid in p
and s can be represented with a word length of log220 =
5 bits. We suppose the values of the weighting matrix DM
to be in the range [–8,7] and, hence, they can be
represented through 4 bits in the two complement notation
(weighting matrices having values outside the range [–
8,7] can be appropriately scaled down). Assuming the
maximum value of m = 32, the maximum allowed value
for similarity measure M is 224 which can be represented
with 8 bits (remember that no negative values are allowed
for M).

4. Rationale to develop the PROSIDIS

architecture

Let us introduce some notations in order to analyze if
and when it is possible to obtain performance
improvement adopting dedicated parallel devices instead
of conventional COTS processors.

A program P is constituted by a partially ordered set of
operations P={opi, i=1,2,...,N} and, due to data
dependencies among operations, requires a set of data
transfers T={IOi, i=1,2,...,M}; t(opi) is the reciprocal of
the number of operations opi executed per second by the
system at the maximal efficiency, ηi is the efficiency with
which opi is implemented in a certain section of P (it will
depend on pipeline status, data dependencies,...) and
DS(IOi) denotes the data size of the IOi data expressed in
bits.

A single-processor computing system is characterized
by the tuple (fck,Rck, Rck, Rck), where fck is the system main
clock frequency, Rck is the factor to obtain the main

memory clock (the system accesses main memory at the

frequency
ck

ck

R

f
), Rck is the data bus width (expressed in

bits) and Rck is the system Peak Speed (expressed in
operations per second). As we are interested in
investigating processor influence on performances, we do
not take into account caches and memory size. In this
paragraph we always refer to burst memory accesses, so
in the evaluations of communication times the startup
time for memory access is neglected; this assumption is
justified by the class of problems we are referring to
(iterative problems often originates sequential memory
accesses).

The actual execution time Texe of P on the system is
within the range

max(Tcomp,Tcomm)≤Texe≤Tcomp+Tcomm, (2)
being

()∑
∈

⋅η=
Pop

iicomp
i

optT ,
ck

ck
comm f

MR
T =

(we are assuming that DS(IOi)≤W i=1,2,...,M, so one
memory access is needed to perform one I/O operation).
The left term of (2) corresponds to perfect overlapping
between communication and computation phases, the
right side term corresponds to the complete serialization
of computing and communication phases. Both the terms
are minimized when the system resources are used at their
maximum efficiency, i.e. when PS operations per second

are executed and when W
R

f

ck

ck bits per seconds are

transferred. In such a case we have








 ⋅

ck

ck

f

RM

PS

N
,max ≤Texe≤

ck

ck

f

RM

PS

N ⋅
+ (3)

As we see from expression (3), data transfer time is
likely to become the actual bottleneck in system

utilization, resulting
ck

ck

R

f
PS >> for the current

microelectronic technology. We may refer to system
granularity GS, defined as the ratio between the processor
peak speed and the maximal memory bandwidth (i.e.

ck

ck
S f

PSR
G =), to have a measure of the relative

influence of the communication time on the computing
time: the largest is GS, the more the communications
could be the bottleneck. More precisely, starting from
expression (3) we derive that communications become a
bottleneck whenever GS is larger than the program
granularity GP, defined as the average number of words to

be transferred for each operation of P,

i.e.
∑

∈

×
=

TiIO
i

P IODS

MW
G

)(
.

In order to override inefficiency of commercial
processors, due both to the mismatch between program
and system granularity and/or to the mismatch between
the type of operations required by the program and the
ones implemented by the system, we may design
Dedicated Parallel Systems (DPS) to be implemented as
Systems on a Chip. Such systems will be characterized by
the right balance between computational power and
processor-to-memory bandwidth: according to the number
of gates available to implement the system and on the
number of I/O pins for the memory interface, the system
will be designed to have the largest computing power
compatible with the available I/O bandwidth.
Furthermore, such dedicated systems will implement in
HW the operations of the algorithm, avoiding any
mismatch between algorithm and system instructions.

In order to introduce a performance comparison
between DPS and a single-processor computing system,
let us model a DPS through the tuple (fck, Rck, W, NU),
where fck is the clock frequency controlling the system,
Rck is the factor to obtain the main memory clock (usually
Rck = 1), W is the global I/O width (expressed in bits) and
in general it encloses as many buses as they are necessary
to feed the internal circuits, NU is the number of the
computing units (potentially different) which form the
system data path. The system peak speed is given by
PS=NU×fck -in the case that each computing unit executes
one operation.

We start analyzing the computing behavior of the two
systems. Referring to the conventional single-processor
system, the sustained computational speed is given by
PSCPU×ηCPU, being ηCPU the efficiency with which the
processor is used. The computational speed sustained by
the dedicated parallel system is given by

NUDPS× DPS
ckf ×ηDPS. The ratio between the computational

speeds sustained by the dedicated parallel system and by
the single processor system is

R=
CPUCPU

DPSDPS
ck

DPS

PS

fNU

η

η

×

××
. (4)

In order to have a significant performance
improvement from the adoption of the dedicated parallel
system, R>>1 must result. ηDPS is typically larger or equal
to ηCPU because the dedicated system is designed to
efficiently implement only the needed operations (often
we have ηDPS≈1 while ηCPU is seldom greater than 0.5).
Being the clock frequency of FPGA significantly smaller
than the clock frequency of commercial processors, the
key issue to have performance improvements is to exploit

as much as possible the parallelism of the algorithm, i.e. it
must result

DPS
ck

CPUCPU
DPS

f

PS
NU

η×
>> (5)

Previous relation explains why the Protein Similarity
Discovery problem is very likely to obtain performance
improvements from FPGA implementation: in fact, being
the parallel implementation based on the repetition of the
simple (and small) building block executing the statement
M(i)8=M(i)8+DM(p(i+j),s(j))4, NUDPS can be
significantly large, thus satisfying relation (5) (the
subscript n in notation Xn indicates the number of bits
used to represent X).

In order to evaluate the right-hand term of expression
(5), we need to fix a reasonable value for both

the CPUCPUPS η× term and for the operative clock

frequency of the FPGA configured with the DPS we are
going to design. Taking as reference processor the
ALPHA EV6.7 clocked at 667 MHz, we have

CPUPS =1.3; furthermore we assume an efficiency in the

sequential code implementation CPUη =0.5 – surely over

extimated. As we are targeting the Xilinx XV1000-4
FPGA, a reasonable value for the clock frequency of a

complex design is DPS
ckf =25MHz. Substituting values in

the right-hand side of expression (5) we obtain the

condition ≈
××

×
>>

6

9

10252

103.1DPSNU 27 which states that,

in order to obtain a performance improvement - with
respect to an ALPHA EV6.7 processor - through the
implementation of a DPS on an FPGA dedicated to solve
the Protein Similarity Discovery problem, we must be
able to design and implement a number of parallel basic
functional units (FU) significantly larger than 27. As each
FU performs the summation between two numbers
(expressed respectively with 4 and 8 bits) and implements
a LUT with 400 entries and with the output expressed by
4 bits, it seems very reasonable to assume that a large
number of FU's could be implemented on the same
FPGA.

Referring to the communications, the single processor
system has theoretical peak bandwidth given by

CPU
CPU
ck

CPU
ckCPU W

R

f
BW ×= (6)

Similarly, the Dedicated Parallel System has the
theoretical peak bandwidth expressed by

DPS
DPS
ck

DPS
ckDPS W

R

f
BW ×= (7)

Both the CPU and the DPS use their bandwidth with

efficiency
D

D
D
BW

W

L ><
=η , being D={CPU,DPS} and

<LD> the mean value of the width of data (expressed in
bits) transferred by D. It is worth to underline that usually

1=ηDPS
BW , because WDPS is designed to match the data

width, while it may result 1<ηCPU
BW whenever <LCPU> is

smaller than WCPU: this happens when data put in parallel
on the bus cannot be processed in parallel by the CPU.
For instance, on a 32 bit system, it is possible to check in
parallel if 6 pairs of 5 bit strings are equal; it is sufficient
to code the i-th string (i=0,…,5) on the data bits ranging
from 5(i+1)-1 down to 5i and to perform the ex-or
between the two words containing the 6 strings; on the
contrary, if we want to add 6 pairs of 5 bit numbers
represented in the 2-complement notation, we cannot
simply add the two words containing the 6 pairs of
numbers (there are problems with the negative numbers),
so we have to read the data pairs sequentially. In the first
case we have <LCPU>=30 bit while in the second case
<LCPU>=5 bit.

From previous reasoning, the ratio between the

sustained CPU and DSP bandwidth (assuming DPS
ckR =1)

is given by

><×

××
=

CPUCPU
ck

DPSDPS
ck

CPU
ck

BW
Lf

WfR
R (8)

In order to have communication performance
improvements when implementing the algorithm on a
dedicated parallel system, RBW>1 must result. This
happens when

()
><×> CPU

DPS
ck

CPU
ck

CPU
ckDPS L

f

Rf
W . (9)

Also in this case the parallelism is the key issue to hide
the effects due to the disadvantageous ratio between clock
frequency of FPGA devices and commercial processors.

Let us now evaluate expression (9). From the analysis
of the algorithm in figure 2, we know that, for each
operation, two 5 bit characters must be loaded and one 8
bit number must be stored. In the case of a sequential
implementation on a CPU such an I/O traffic results in 18
bits transferred in 3 bus cycles, yielding <LCPU>=6 bit.
We refer again to an ALPHA based system (namely the
DS20) in which the memory is accessed at 133 MHz.
Assuming for the DPS implemented on the FPGA the
memory access rate at 25 MHz, relation (9) becomes

32>DPSW
which means that data I/O bus width in the FPGA must be
larger than 32 bits. This condition can be fulfilled by
exploiting data parallelism (that is parallelism on the outer
loop, being completely independent all its instances). As

each instance of the outer loop reads amino acid p(i+j)
(i.e. 5 bits) and returns the matching score M(i) (8 bits),
the internal pipelined structure has WP=13; it is sufficient
to put three of such pipelined units in parallel to have

3239 >=DPSW .
As both the relations (5) and (9) are likely to be

fulfilled in the case of the Protein Similarity Discovery
problem, a Dedicated Parallel System implemented on
FPGA technology is a good candidate to significantly
improve sustained performances with respect to a system
based on conventional processors.

5. PROSIDIS Design

Following the HADES design flow, computation of (1)

is expressed in SARE form through the SIMPLE program
shown in figure 3. The program starts with the definition
of the algorithm indices and parameters, of the input
variables and of the result variables. After the sections
with definitions, the algorithm equations follow, each one
being specified with its data dependencies (the indices of
variables appearing as arguments of the function) and its
validity domain (the inequalities between curl brackets).
In particular, equation 1 initializes the M values to 0,
equation 2 propagates the M values along the j direction
and, finally, equation 3 performs the accumulation of the
amino acid similarity. Last statement defines the output of
the algorithm. A SIMPLE algorithm, representing a
collection of SARE, has a computing domain which can
be represented in the Cartesian space. For the SIMPLE
algorithm represented in figure 3, the computing domains
are shown in figure 4.

Going on with the PHG design flow as reported in
figure 1, the optimization process, used to determine
allocation and scheduling, discovered the projection

matrix 




=







Σ
Λ

10
11 which allocates each element of the

peptide to a different functional unit; in fact, applying the
projection matrix to the computing domain, we obtain












=













Σ
Λ=







j
i

j
i

p
t

10
11 which originates the equality

p=j (j=-1,…,m-1) (according to [5,6], t is the temporal
coordinate and p the processor coordinate in the
transformed (time-processor) space). The used projection
matrix originates a linear pipeline structure because
dependence relation from equation 3, namely from
M[i,j-1] to M[i,j] and represented by the

dependence vector 




=








1
0

j

i
d
d

, is projected into the

transformed dependence vector 




=











=








1
1

1
0

10
11

p

t
d
d

,

i.e. data produced at time t by processor p will be used at
time (t+1) (dt=1) by processor (p+1) (dp=1).

Finally, the VHDL source, which contains nearly 5000
lines of code, was automatically produced.

Ind [i,j];
Par[n,m] {m>=1,n>=1};

/*String sequence*/
Input p[1] {0<=i<=n-1};

/*Peptide sequence*/
Input s[1] {0<=i<=m-1};

/*Output sequence*/
Result M;

/*Equation 1*/
M[]=InitMatch();
{-m+1<=i<=n-1,j=-1};

/*Equation 2*/
M[] = PropagateMatch();
{i+j<=-1,j>=0,i>=-m+1};

/*Equation 3*/
M[]=AddMatch(p[i+j],s[j],M[i,j-1]);
{0<=i+j<=n-1,0<=j<=m-1};

/*Output*/
Write(M[]);
{-m+1<=i<=n-m,j=m-1};

Figure 3: SIMPLE program expressing the SARE to solve
the Protein Similarity Discovery Problem

6. PROSIDIS Architecture and Test Bed

Configuration

We designed the PROSIDIS architecture specialized
for the case of a proteome with length n=2,096,000 and a
peptide of length m = 24. The basic pipelined architecture,
automatically produced by the PHG package according to
the projection matrix described in previous paragraph, is
shown in figure 5. It is composed by a data path (the
pipelined structure) driven by the data path controller
which enforces the algorithm scheduling. Small boxes
represent delay elements (edge triggered registers) while
the big boxes represent the computing units. The
Blosum62 weighting matrix (appropriately scaled down)
has been implemented through a Look Up Table (LUT).
Each computing element performs the comparison of two
amino acids by means of the LUT. The LUT output is
then added to the output of the previous stage and the
result is transmitted to the next stage unless it is a
negative value; in such a case 0 is transmitted. We
underline that the VHDL corresponding to the

combinatorial circuit in the square box in figure 5,
implementing the elementary function behavior, is the
only code written directly by us.

0

0

n-1n-m

m-1

-m+1
i

j

-1

1
2

3

output

Figure 4: computing domain for the SARE in figure 3

LUT
0

0

s(0) s(1) s(m-1)

p(i)

M(i)

Data path controller

s

p

in_M
out_M

8

5 5

8

4

write_M(i)

read_p(i)

read_s(0) read_s(1) read_s(m-1)

enable

end

8

8
•

••

Sign bit

LUT

0

0

s(0) s(1) s(m-1)

p(i)

M(i)

Data path controller

s

p

in_M
out_M

8

5 5

8

4

write_M(i)

read_p(i)

read_s(0) read_s(1) read_s(m-1)

enable

end

8

8
•

••

Sign bit

Figure 5: basic pipelined architecture to solve the Protein
Similarity Discovery problem

The test bed we used to implement the PROSIDIS
architecture is a prototyping board equipped with a PCI
interface (33 MHz), 8 MB of SRAM memory and one
Xilinx Virtex XV1000 FPGA. The board is hosted by a
standard PIII@550 MHz PC.

Due to the large size of the FPGA device and in order
to increase the computing power of the PROSIDIS
architecture, we replicated 4 times in the same FPGA the
pipelined architecture of figure 5. The resulting FPGA
structure is depicted in figure 6 where it is shown the
additional circuitry needed to interface the pipelined
structures to the board devices.

The PROSIDIS architecture is able to perform the

contemporaneous comparison of 4 proteome sections of
length n=524000 against a single peptide of length m=24.
The clock cycles needed to carry out the whole
computation are m+n=524024. Constrained at the speed
grade of the FPGA we used (XV1000-4), the synthesized

design is clocked at a frequency fclk = 30 MHz,
corresponding at a sustained computing rate of 2.88×109
operations per second and to a sustained bus I/O
bandwidth of 1.56 Gb/s.

4 × Pipelined circuit

Status
port manager

Control
port manager

Bus
requester

Memory
Interface
Bank 0

enable end

go stop

to/from
board memory controller

to/from

board memory bus 0

to/from
control port signals

to/from
status port signals

Memory
Interface
Bank 1

write

read

/
8

data
/

8

data

to/from

board memory bus 04 × Pipelined circuit

Status
port manager

Control
port manager

Bus
requester

Memory
Interface
Bank 0

enable end

go stop

to/from
board memory controller

to/from

board memory bus 0

to/from
control port signals

to/from
status port signals

Memory
Interface
Bank 1

write

read

/
8

data
/

8

data
/

8

data
/

8

data

to/from

board memory bus 0

Figure 6: Block diagram of the PROSIDIS architecture

Referring to the Protein Similarity Discovery problem,
the core of the computation is demanded to the
PROSIDIS processor while the global control flow
(loading/reading data to/from board memory, starting the
FPGA computation) is demanded to the PIII host
computer. The pseudo code is sketched in figure 7 and is
constituted by a sequence of calls to functions of the
prototyping board:
− DMA from the host memory to the board memory of

the peptide sequence;
− DMA from the host memory to the board memory of

the 4 proteome sequences p. Notice that, being each
proteome character represented with 5 bits, the 4
proteomes can be transferred within a single DMA
operation because they are byte-aligned in a 32 bit
word;

− Write the start value on the control port; this command
triggers the start of FPGA computation;

− Wait for FPGA completion through the reading of the
End value from the FPGA status port;

− DMA from the board memory to the host memory of
the 4 similarity sequences. Notice that, being each
similarity value represented with 8 bits, the 4
sequences can be transferred within a single DMA
operation because they are byte-aligned in a 32 bit
word

7. Results

In order to test the advantages attainable by using the

PROSIDIS dedicated processor as booster for a
conventional sequential system, we implemented the
algorithms to solve the Protein Similarity Discovery
problem on different general-purpose platforms.
Particular effort has been spent to optimize the SW
implementation of the algorithm on the test systems. The
test processors have been chosen among those available in

our research center.

input
4 Proteome p(i) i=0,1,...,523999
Peptide s(i) i=0,1,...,23

output
4 Similarity M(i) i=0,1,...,523975

begin
DMA(host2board,s)
DMA(host2board,p)
WRITE_CONTROL_PORT(Start)
READ_STATUS_PORT(End)
DMA(board2host,M)

end

Figure 7: Pseudo-code of the program to solve the
Protein Similarity Discovery problem

 Results have been compared with those obtained on
the test bed architecture consisting of a 550 MHz Pentium
III processor connected to the RC1000-PP prototyping
board equipped with a Xilinx XV1000 FPGA.

The architectures used in the tests are:
− 1000 MHz Pentium III, 32 bit, 512K of L2 cache,

Win2000, MS Visual Studio C++ V6.0;
− 667 MHz Alpha EV6.7 (API UP2000 board), 64 bit,

4M of L2 cache, Linux Kernel 2.3.14, Compaq C
compiler (ccc) V6.2-506;

− 450 MHz Sun UltraSparc II, 64 bit, 4M of L2 cache,
Solaris 2.7, Sun WorkShop C compiler V5.0;

− 200 MHz IBM Power3, 64 bit, 4M of L2 cache, AIX 4
OS, C for AIX compiler V4.4.

− 300 MHz R12000 SGI Onyx 2, 8M of L2 cache, MIPS
C compiler.
Table 2 summarizes the results reporting, for each

algorithm and machine configuration, the time spent to
execute the searching for a sequence with m=24 amino
acids on a proteome with n=2,096,000 amino acids.

We underline that the PIII+FPGA implementation
takes into account both the overhead to manage the
sequential parts of the applications and the times
necessary to start the FPGA and to DMA data to and from
host memory: 35 ms, out of 52 ms, are devoted to DMA
operations. This fact implies that the simple technological
upgrade from the 32 PCI clocked at 33 MHz to the 64 PCI
clocked at 66 MHz would reduce the DMA overhead to
~9 ms. The other technological improvement, passing
from the XV1000 to the XV2000 FPGA, will allow the
implementation of 8 parallel pipelines instead of 4 (the
prototyping board has still two unused memory banks);
this fact would reduce the PROSIDIS computing time to
8.5 ms, giving an overall computing time of ~17.5 ms. So
the implementation of PROSIDIS with a fastest PCI and
the last generation XV2000 FPGA would triple the
speedup figures reported in Table 2. It is worth to note
that PROSIDIS shows speedup factors ranging from 5.6

up to 55.6, thus supporting with experimental data the
theoretical analysis about the advantages derivable from
FPGA implementation of the Protein Similarity Discovery
problem.

 Computing time

(msec)
FPGA

Speed up
PIII@550+FPGA 52 1.00
PIII@1000 290 5.6
EV6.7@667 387 7.4
SGI R12000@300 533 10.3
Power3@200 1152 22.2
UltraSparc@450 2892 55.6

Table 2: Elapsed times (milliseconds) to solve the Protein
Similarity Discovery problem on different platforms. The
last column shows the speed-up values achieved by the
FPGA-based implementation with respect to the specific
platform.

8. Conclusions

The work presented the design and implementation of
a special purpose processor, called PROSIDIS, devoted to
solve the Protein Similarity Discovery problem arising in
the field of protein analysis. The design has been carried
out through the Parallel Hardware Generator (PHG) tool
developed by two of the authors in the framework of the
HADES project (HArdware DEsign for Scientific
applications). After a brief review on PHG, the Protein
Similarity Discovery problem has been introduced and a
detailed analysis has been performed in order to explain
why it is possible to obtain significant performance
improvements with respect to commodity off the shelf
processors (COTS). The design, based on the theory on
recurrence equations and their projection, has been
illustrated together with experimental results where the
performances attained by COTS based systems were
compared with the ones obtained by an FPGA
implementation of the PROSIDIS processor on a
prototyping board hosted by a Pentium III personal
computer. Results evidence speedup figures ranging from
5.6 up to 55.6, clearly demonstrating the validity of the
proposed design.

References
[1] C.R. Rupp, M. Landguth, T. Garverick, E. Gomersall, H.

Holt, J.M. Arnold, and M. Gokhale: 'The NAPA Adaptive
Processing Architecture', Proc. IEEE Symp. on FPGAs for
Custom Computing Machines, 1998

[2] M.B. Gokhale and J.M. Stone: 'NAPA C: Compiling for a
Hybrid RISC/FPGA Architecture', Proc. IEEE Symp. on
FPGAs for Custom Computing Machines, 1998

[3] Katherine Compton, Scott Hauck: 'Configurable Computing:
A Survey of Systems and Software'. Tech. Report from the
Northwestern University, Dept. of ECE, 1999

[4] S.F. Altschul, W. Gish, W. Miller, E. W. Myers, D. J.
Lipman, " Basic local alignment search tool", J. Mol. Biol.
215 (1990) 403.

[5] A.Marongiu, P.Palazzari: “Automatic Implementation of
Affine Iterative Algorithms: Design Flow and
Communication Synthesis”. Comp. Phys. Comm., vol.139
(2001).

[6] A.Marongiu, P.Palazzari, “Automatic Mapping of System of
Affine Recurrence Equations (SARE) onto Distributed
Memory Parallel Systems”, IEEE Trans on Soft. Eng., 26
(2000) 262.

[7] A.Marongiu, "Hardware and Software High Level Synthesis
of Affine Iterative Algorithms", Ph.D Thesis in Electronic
Engineering, University "La Sapienza"(Rome), 2000.

[8] IEEE standard VHDL language reference manual. IEEE std.
1076-1993

[9] C.Mongenet, P.Clauss, G.R.Perrin, “Geometrical Tools to
Map Systems of Affine Recurrence Equations on Regular
Arrays”, Acta Informatica, Vol. 31, No. 2, pp. 137-160,
1994.

[10] V.Loechner, C.Mongenet, “OPERA: A Toolbox for Loop
Parallelization”, International Workshop on Software
Engineering for Parallel and Distributed Systems, 1996.

[11] A.Marongiu, P.Palazzari, “High Level Software Synthesis
of Affine Iterative Algorithms onto Parallel Architectures”.
Proc of the 8th Int. Conf. HPCN Europe 2000, Amsterdam.

[12] A.Marongiu, P.Palazzari, “Optimization of Automatically
Generated Parallel Programs”, Proc. of the 3rd IMACS
International Multiconference CSCC'99, Athens.

[13] Y.K.Chen, S.Y.Kung, “A Systolic Design Methodology
with Application to Full-Search Block-Matching
Architectures”, J. of VLSI Signal Proc., Vol. 19, pp. 51-77,
1998.

[14] J.Bu, E.F.Deprettere, P.Dewilde, “A Design Methodology
for Fixed-Size Systolic Arrays”, Proc. of Int. Conf.
ASAP 90, pp. 591-602, September 1990.

[15] H.Lim, E.E.Swartzlander jr., “Efficient Systolic Arrays for
FFT Algorithms”, The 29th Asilomar Conference on
Signals, Systems and Computers, pp. 141-145, 1995.

[16] N.L.Passos, E.H-M.Sha, “Scheduling of Uniform Multi-
Dimensional Systems under Resource Constraints”, IEEE
Trans. on VLSI Systems, Vol. 6, n.4, pp. 719-730,
Dec1998.

[17] G. Deodati “Optimisation for the automatic synthesis of
digital circuits” (in italian). Master thesis in electronic
Engineering. University “La Sapienza” - 2001.

[18] S. Henikoff, J.G. Henikoff, “Amino acid substitution
matrices from protein blocks”. Proc. Natl. Acad. Sci. USA
89:10915-10519, 1992.

