
 

Abstract 
 
 We present a parallel algorithm for performing 
multipoint linkage analysis of genetic marker data on 
large family pedigrees.  The algorithm effectively 
distributes both the computation and memory 
requirements of the analysis.  We discuss an 
implementation of the algorithm in the Genehunter 
linkage analysis package (version 2.1), enabling 
Genehunter to be run on distributed memory platforms 
for the first time.  Our preliminary benchmarks indicate 
reasonable scalability of the algorithm for even small 
fixed-size problems, with parallel efficiencies of 75% or 
more on up to a few dozen processors. 

 
 

1. Introduction 
 
 Linkage analysis uses the positions of known genetic 
loci to locate unknown genes on a chromosome.  One of 
the primary applications of the technique is the 
identification of loci associated with diseases.  The 
technique works by using the number of recombination 
events between two loci on the same chromosome as a 
distance measure (1, 2).  Linkage analysis in humans is 
complicated by high degrees of homozygosity.  Fisher, 
Haldane and Smith, and Morton proposed using 
maximum likelihood to infer genetic maps from 
imperfect data (3-5).   

The data studied in linkage analysis are generally 
pedigrees of families affected by some disease.  Two 
algorithms are commonly used for this problem.  The 
algorithm described by Elston and Stewart scales 
linearly with the number of individuals in the pedigrees, 
but exponentially with the number of genetic loci, or 
markers (6).   In 1987, Lander and Green proposed a 
complementary algorithm with linear scaling in the 
number of markers but exponential scaling in both time 
and memory in the number of individuals in the pedigree 
(7).   Lander and Green’s algorithm is widely used for 
multipoint linkage analysis: i.e. problems where many 

markers (6).   In 1987, Lander and Green proposed 
a complementary algorithm with linear scaling in 
the number of markers but exponential scaling in 
both time and memory in the number of individuals 
in the pedigree (7).   Lander and Green’s algorithm 
is widely used for multipoint linkage analysis: i.e. 
problems where many markers are considered 
simultaneously.  Unfortunately, many researchers are 
interested in analyzing datasets which are too large for 
current implementations of the algorithm. Dwarkadas et. 
al. have previously presented a shared memory 
parallelization of a linkage analysis code; however, it 
was not designed to scale to more than a few processors 
(8).  We present here a parallel Lander and Green 
algorithm that has been implemented in the Genehunter 
program (9); to our knowledge it is the first distributed-
memory implementation of the Lander and Green 
algorithm.    

The Lander and Green algorithm is based on a novel 
representation of inheritance data.  These authors point 
out that the inheritance of a genetic locus in a pedigree 
can be completely described by identifying from which 
parental chromosome each child derives its alleles at that 
locus.  Figure 1 presents a simple example of this 
principle.  Two parents (who are termed founders 
because their parents are not present in the pedigree) 
have a single offspring.  Each parent has two copies of 
the locus in question.  The father (top square) has 
different alleles at this locus—an A from his father and 
an a from his mother.  The mother (circle) is 
homozygous: she received an A’ from both parents.  
When considering the offspring (bottom square), we can 
describe the offspring’s two alleles at this locus simply 
by indicating in binary coding whether he received the 
allele from his grandfather or his grandmother.  In this 
case, we can unambiguously state that he received an A 
from his paternal grandfather and designate his parental 
chromosome with a 0.  On the maternal chromosome we 
cannot unambiguously determine whether the offspring 
received his allele from his maternal grandmother or 
grandfather.  We therefore must consider both 
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possibilities throughout the analysis, leaving this 
chromosome coded as 0/1.   

This example is artificial because we assume that 
the phase of the two parents is known: i.e. that we can 
distinguish paternal from maternal chromosomes.  In 
fact, this is generally not the case; instead, common 
algorithms assign definitions of maternal and paternal to 
founders.  Since this assignment is arbitrary, it is often 
referred to as founder-phase symmetry. 

Lander and Green’s algorithm works by 
representing each possible inheritance pattern for the 
pedigree as a string of 2n bits, where n is the number of 
non-founding individuals in the pedigree (a single 
offspring in the example above).  In fact, we can make 
use of the founder symmetry described above, so that 
instead of considering all 2n bits, by picking a definition 
of maternal and paternal for each founder, we can reduce 
the size of the representation to 2n-f, where f is the 
number of founders in the pedigree.  For details of this 
modification, see (9). 

Although any given inheritance pattern can be 
represented in 2n-f bits, uncertainties about the actual 
pattern of inheritance at each locus (as in the maternal 
chromosome above) means that no single pattern will 
represent the data exactly.  Instead, a (possibly zero) 
probability is assigned to each of the 22n-f possible 
inheritance patterns (an inheritance vector of 
probabilities) at each marker in the map.  In multipoint 
linkage analysis, it is assumed that one has a genetic 
map containing the recombination distance between 
each pair of markers.   Using this map information, it is 
conceptually straight-forward to use a Markov-chain 
approach to calculate the probability of each marker, 
conditional on all of the markers before or after it on the 

map.  Consider two markers m1 and m2 separated by a 
UHFRPELQDWLRQ GLVWDQFH � �LQ RWKHU ZRUGV� WZR PDUNHUV

which undergo recombination between each other with 
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patterns  i in m2, define a distance d(i,j) between pattern 
i and each possible pattern  j in m1.   Any bit position 
where i and j differ implies a cross-over event.   Thus we 
compute d(i,j) as the Hamming distance between i and j.  
The probability of the transition between pattern j at m1 
and pattern  i at m2 is given by  

),(2),( )1( jidfnjid −−−⋅ θθ    (1) 

Using this formula, one can create a transition 
probability matrix M(i,j) where the i,jth entry gives the 
probability of the transition from inheritance pattern i to 
j, as calculated by (1).  Given inheritance probability 
vectors P1 and P2 (containing the probability of every 
inheritance pattern at marker 1 and 2, respectively), we 
can calculate P2|1 (vector of inheritance pattern 
probabilities at marker 2 conditional on the probabilities 
at marker 1) by: 

 ( )121|2 PMPP ⋅= �       (2) 

where o  represents a component-wise vector product.  
(2) can be then applied recursively to calculate any 
required conditional probability vector.  This Markov-

chain approach is an ( )( )222 fnO −  time algorithm, but the 

structure of matrix M allows the matrix-vector 
multiplication to be performed as an FFT, reducing the 
complexity of the Genehunter algorithm to 

( )( )fnfnO −− ⋅ 222 2log2  (10).  It is important to note that 

although M is a convenient mathematical description of 
the transition probabilities, its structure is such that there 
are only 2n-f+1 distinct entries; no object of size 22n-

fx22n-f need ever be stored in the linkage analysis 
computation. 
 
2. Genehunter Computation: 
 

The Genehunter 2.1  software (11) uses the above 
algorithm to compute likelihood and non-parametric 
scores for the occurrence of a disease gene at a number 
of user-requested locations in a genetic map.  
Genehunter’s computation proceeds in three distinct 
stages: 
1. Calculation of the probability of each possible 2n-f -

bit inheritance pattern for each marker and for the 
disease gene.  Calculation of a nonparametric 
statistic for each inheritance pattern. 

2. Calculation of the conditional inheritance  
probabilities for each marker, conditioned on all 
markers to the right of it in the map and on all 
markers to the left.  We refer to this operation as 

A a A’ A’

A A’  
Figure 1:  A example pedigree illustrating 
Lander and Green’s approach to representing 
inheritance patterns as binary strings.  Alleles 
at this locus are represented by the letters A, 
a, and A’. 



 

“walking” up or down the map, using at each 
marker the results of the last marker to calculate 
conditional probabilities using equation 2.  

3. Calculation of likelihood and non-parametric scores 
for the requested disease location(s).  In 
Genehunter, scores are calculated for placing the 
disease gene at each marker, and at a default of five 
evenly-spaced points between every pair of 
markers. 
In addition to the FFT mentioned above, 

Genehunter 2.1 introduced an important improvement, 
based on the insight that some of the 22n-f possible 
inheritance patterns will be precluded by the data and 
can be ignored.  Recall in the example above that the 
offspring’s allele on the paternal chromosome could not 
have been inherited from the paternal grandmother.  
Therefore inheritance patterns of the form 1* can be 
ignored.  Clearly, each restriction of this kind reduces 
the number of possible inheritance patterns by half, 
since each restriction excludes one of the two settings at 
a bit position.  Thus, for many pedigrees, these 
restrictions substantially reduce the problem size.  (For 
the full details of this improvement, see (11)).   This 
improvement reduces the size of the vectors used to 
store inheritance probabilities from )2( 2 fnO −  to 

)2( 2 kfnO −− , where k is the number of inheritance bits 

that can be unambiguously determined, or fixed.  There 
is also a similar effect on running time. 

 
3. Memory requirements in Genehunter: 
 
 On many computers, linkage analysis problems are 
limited by the amount of available physical memory, 
rather than running time (unpublished data).  The 
memory requirements for Genehunter consist of two 
distinct parts: the memory needed to store the 
inheritance probability vectors for the markers and the 
memory required to store the inheritance probability 
vectors for the disease phenotypes.  This second vector 
stores the probability of seeing the observed disease 
phenotypes in the pedigree for each inheritance pattern.  
Because of the non-deterministic mapping of genotype 
to disease phenotype, it is impossible to definitively 
exclude any inheritance patterns.  As a result, the vector 
of inheritance probabilities for the disease always 
requires O(22n-f) memory.  (It is possible to perform 
non-parametric linkage analysis which does not always 
require storing a vector of this size; but the computation 
has an identical form and we will not discuss this here).  
In the worst case, the amount of memory required for 
all the marker probability vectors  could be as high as 
O(m22n-f), where m is the number of markers.  However, 
the presence of fixed bits in the dataset will almost 

always mean that the actual memory requirements for a 
given dataset are significantly lower. 
 
4. Parallelization Approach: 
 
 In order to allow larger problems to be solved, a 
scalable parallelization scheme for Genehunter must 
partition both the computations and memory.  We 
discuss the parallelization of each of the 3 steps of the 
previous section separately.  The input and output files 
for Genehunter are typically quite small (no more than a 
few hundred lines of text and postscript), meaning that 
parallel I/O is not a significant bottleneck.  
 
4.1: Step 1: 
 
 Step 1 is the most straight-forwardly parallelizable 
part of Genehunter.  The purpose of step 1 is to 
calculate, for each inheritance pattern, the probability of 
that pattern at each marker, the probability of that 
pattern given the disease phenotype data, and the non-
parametric score for that pattern.   The non-parametric 
scores and disease probabilities are independent; thus 
they can simply be divided evenly across processors, so 
that each processor owns and operates on inheritance 
probability sub-vectors of length  Pfn−22  , where P is 

the number of processors.    
The distribution of the marker vectors is slightly 

more tricky: each marker has a vector of size 22n-f-k, 
where k is the number of fixed bits for that particular 
marker.  One possible approach would be to store entire 
inheritance probability vectors on each processor, i.e. 
each processor would be assigned a fraction m/P of the 
m marker vectors.  However, the size of each vector 
varies considerably from marker to marker depending on 
k (the number of fixed bits), making load-balancing with 
this approach  problematic.  Our strategy of having each 
processor store a fraction P2 k-f-2n  of every marker 

vector is better balanced.   
 
4.2: Step 2: 
 
 Step 2 consists of calculating, for each marker i, the 
vector of inheritance probabilities Pi|i-1..0 (probability of 
each inheritance pattern at marker i conditioned on 
markers 1 through i-1) and the vector Pi|i+1..m (inheritance 
pattern probabilities conditioned on markers i+1 through 
m).  This calculation is performed using FFTs in the 
conceptual manner of equation 2.   

For the moment, assume that each processor has all 
the elements of the conditional probability vector at 
marker i-1 needed to compute the conditional 
probabilities at i.  (Since the vectors at markers i-1 and i 



 

are not typically the same length this is not a valid 
assumption; we deal with this additional data movement 
complexity below.)  The calculation itself consists of 
first using an FFT to compute a matrix-vector product 
similar to that seen in (2).  The presence of k fixed bits at 
a marker means that the size of the probability vector is 
22n-f-k and the matrix has effective dimension 22n-f-kx22n-f-k 

In Genehunter, the matrix-vector multiply is 
replaced by an FFT-based convolution, with 2 forward 
1d FFTs on vectors of length (N=)22n-f-k, followed by an 
element by element multiplication and an inverse FFT.  
Note that for large n, these 1d FFTs are still quite 
computationally intensive.  Note also that the elements 
of each N-length vector are distributed across the P 
processors in contiguous chunks.  Conceptually this data 
layout can be viewed as a 2d matrix of values with P 
rows and N/P elements in each row, and each processor 
owning a row of the matrix.  The FFT operation can then 
be parallelized the same way that a 2d FFT is performed 
on a distributed memory parallel machine.  N/P-length 
1d FFTs are first performed within each row (an on-
processor computation), then a matrix transpose is 
performed which requires all-to-all communication 
between the processors, followed by a series of P-length 
1d FFTs on data that is now local to each processor.  The 
inverse FFT simply reverses this process.   

The result of the FFT calculation is a new 
conditional probability vector of the same size as the 
original, still distributed evenly among the processors.  
The remaining calculation is a component-wise vector 
product between every element of the probability vector 
at marker i and the corresponding element in this new 
conditional probability vector, yielding a vector of the 

size of the original vector at marker i.  This calculation 
can be done very efficiently in parallel with each 
processor calculating a component-wise product with its 
particular portion of the probability vector.  
 
4.3: Step 3: 
 
 Conceptually, step 3 is very similar to step 2.  The 
major difference is that in step 2, we calculated the 
conditional probability of all of the inheritance patterns 
at a marker given the markers to the left or right, while 
in step 3 we are calculating the probability of the 
disease gene being at position x in the map, given the 
markers to the left and right of x.   This probability can 
be written as  

mixixD PPPp ..1|..1| +⋅⋅=       (3) 

where PD is the disease vector and Px|1..i and Px|i+1..m are 
calculated in the manner of equation 2.   Non-
parametric scores are calculated in a similar manner 
using the non-parametric scores rather than PD.  An FFT 
is used with the conditional probabilities calculated in 
step 2 to calculate the conditional probability of each 
inheritance pattern at the point x from the marker at left 
and at right.  In this case� � LV JLYHQ E\ WKH GLVWDQFH

between the marker and x.  Once again, the calculation 
of this dot-product can be done efficiently in parallel 
once each processor has the data needed for its part of 
the calculation. 
 
4.4: Redistribution of marker vectors for 
computations of vector products: 
 
 In the above discussion we ignored one very 
important complication. If all marker vectors were of 
size 22n-f, the computation of dot and component-wise 
vector products between markers could be trivially 
distributed among processors, because element i in one 
marker could be mapped directly to the same element i 
in any other marker.  However, the introduction of k 
fixed bits at a particular marker location means that a 
particular marker vector is actually of length 22n-f-k.  
Since the values of k for adjacent markers are often 
different, the data layout of the 2 marker vectors is also 
different and that redefines the mapping between 
inheritance probability vectors.  Fixed bits are generally 
represented as bit masks of length 2n-f with 1s at 
positions where fixed bits occur.   Figure 2 gives a 
possible configuration of the fixed bit masks for two 
adjacent markers m1 and m2.  It is important to note that 
each fixed bit has an associated value (also shown in 
figure 2). 

Only non-fixed bits are stored in inheritance 
probability vectors.   Thus, in figure 2, marker m1 
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Mapping i2 to i1: i2=010110 011001110 011001110

Remove 2 fixed bits

1100110=i1

Insert 3 fixed bits

 
Figure 2:  Examples of fixed bits for two 
markers, m1 and m2.  Masks for the fixed bits 
are shown, with the corresponding fixed bit 
values shown underneath.  The lower half of 
the figure shows the mapping of an index in m2 
representation to m1 representation. 



 

would have a size of 27 and marker m2, 2
6.  Suppose we 

are mapping inheritance pattern i (represented as a 
binary sequence of 2n-f digits) from m2 to m1.  We first 
remove any fixed bits k1 that are common to both 
markers (such as the last bit in figure 2).  We now have 
two indexes i1 and i2 each of length 2n-f-k1.  We now 
define two new operations for the mapping of indices 
between markers: (1) If m2 has k2 fixed bits not present 
in m1, (shown as bold in figure 2) we look up the value 
of those fixed bits and insert them in the appropriate 
locations of i1.  Thus index i1 now has length 2n-f-
k1+k2.  (2) If m1 (the target) has fixed bits not present in 
m2 (shown as italics in figure 2), we drop those k3 bits.  
The final size of i1 is therefore 2n-f-k1+k2-k3. 

Consider the example index i2=010110.  We can use 
the masks in figure 2 to create the corresponding 
element i1 in m1.  The fixed bit in the ones position has 
already been removed from m2, and can be ignored.  
First, we insert three fixed bits into i1 at the locations 
specified in the mask.  This gives us 011001110 (figure 
2 shows the inserted bits in bold).   We now drop the 
two fixed bits present at m1 but not m2 (shown in italics 
in figure 2).   The result is i1=1100110. 

Unfortunately, the above process of adding and 
removing bits may result in the need to access indices 
(and the associated data) that are owned by other 
processors.  We can visualize the processor distribution 
of each marker by writing a bit-string of the length of 
each marker and drawing a line through it after log2(P) 
bits (assuming we have 2P processors for some integer 
P).  This operation is shown in figure 2 for an eight-
processor (3-bit) distribution.  For our example index 
above, we see that i2=010|110, meaning that i2 is located 
on processor 010 (4).  However, we find that 
i1=110|0110, meaning i1 is located on processor 110 (7).  
Clearly, we may need to redistribute probability vectors 
when we compute the dot or component-wise products 
between markers. 

This redistribution may at first appear to be costly, 
but the bit patterns in the data allow the construction of 
reasonably efficient communication routines.   It is first 
convenient to represent the source and target masks in 
their partner’s variable bit space.  Thus, the target mask 
in the source representation shows all the locations in 
the target (m2) where there are fixed bits not present in 
the source (m1).  The symmetric situation applies for the 
target mask represented in the source configuration.  
Figure 3 gives examples for the masks in figure 2. 

We can now use these two new masks and apply the 
same procedure of considering only the highest 
log2(2

p)-order (processor-order) bits in each mask.  For 
eight processors, m1 in m2’s representation is 100|100 
and m2 in m1’s representation is 011|0100.  The first 
thing to note is that cases where the processor-order bits 
are all zeros require no communication.  This case is 
actually fairly common when the number of processors 
is small relative to 2n-f.  There are, however, two other 
cases to consider. 

First, there may be fixed processor-order bits in the 
target not in the source.  As described in operation (1) 
above, these cases require looking up indices in the 
source that match the values of the fixed bits in the 
target.  In processor-order bits, this implies that 
processors whose value at that position do not match 
the fixed bits will be idled.  For instance, in figure 3, 
only processors with ranks of the form *10 will 
contribute to the computations in the source.  The 
communication algorithm based on this observation is 
straight-forward: the subset of vectors contained on 
non-idled processors are evenly redistributed on all 
processors using a logarithmic time scatter-type 
operation.   For the example in figure 3, processors 010 
and 110 would each split their data with their three 
neighbors: 010 with 000-010 and 110 with 011-111.  In 
doing this communication, we can use any non-
processor-order fixed bits to realize a time-savings.  
Note that each non-processor-order fixed bit reduces the 
size of the vector that must eventually be split among 
processors by ½, so instead of distributing the complete 
source vector on a processor, we need only distribute a 
compacted version where the elements that match the 
fixed values are included. 

The second case is when there are processor-order 
fixed bits in the source not in the target.  As noted in 
operation 2 above, this situation results in reuse of 
elements in the source vector.  In this case the 
processor-order fixed bits create equivalence classes of 
processors which all need identical data.  Every such 
fixed bit doubles the size of the resulting data vectors 
and halves the number of equivalence classes.  For 
instance, in figure 3, each processor is paired with the 
processor that differs from it only at the highest order 

Marker m1:

Mask in target representation

100100

1**0**Fixed bit values:

Marker m2:

Mask in source representation

0110100

*10*1**Fixed bit values:  
 
Figure 3: Example showing the representation 
of the masks in figure 2 in each other’s 
representation. 



 

bit position.  Thus, 000 and 100 will have identical data, 
as will 001 and 101 and so forth.  We refer to these 
equivalence classes as “blocks”.  We can also calculate 
the “original” block for each processor (which is just its 
rank divided by the number of blocks) and its “original 
block rank” (which is the modulus of its rank with the 
number of blocks).  When we have this information, we 
can create block ranks for each processor.  This is done 
in the following way: 

• If the processor’s original block and correct block 
are the same (as for processor 0 in figure 4), then 
that processor’s block rank is set to its original 
block rank 

• The remaining block ranks are assigned sequentially 
in rank order. 

Once block ranks are assigned,  we use a unit time 
exchange operation to put the block pieces on the 
processor with the corresponding block rank.  The above 
assignment of block ranks avoids unnecessary 
communication when processors already have a piece of 
the block they will eventually need.  Once this exchange 
has taken place, the communication is simply a 
logarithmic time all-gather operation for that block using 
block ranks. 
 In step 3, the target is the disease probability vector, 
which has no fixed bits, meaning that we only need to 
consider fixed bits in the source (the second case above).  
In step 2, there can be arbitrary combinations of target 
and source fixed bits.  Thus, the two communication 
schemes described above must be slightly modified.   
Instead of the blocks being originally distributed on all 
processors, they are only distributed on the non-idled 
ones (where the processor ranks match the fixed bit 

values).  This means that one processor may hold more 
than one block piece (or indeed more than one block).   
Thus, in the first algorithm above, instead of every 
processor sending its block piece to another processor, 
only the live (non-idled) processors send data.  If more 
than one block is present on each live processor, the 
communication loops over the number of blocks per 
processor, at each step sending a block to a processor 
that will need it.  Otherwise, the communication takes 
place in a single step, with each live processor that has a 
block piece it will not need sending it to a processor that 
will.  One of several situations may result from this first 
communication step: 
• If only the target processor-order bits were non-

zero, communication is complete. 
• If there were more target processor-order bits than 

in the source, then each block is currently 
completely stored on a single processor with block 
rank 0. 

• If there were more source processor-order fixed bits 
than in the target, then each block is either partially 
or completely distributed on the processors that will 
need it. 
The second case above (target processor-order bits 

> source processor-order bits) can be simply handled 
with a logarithmic broadcast operation.  The last case is 
more complicated.  First, all processors that have some 
piece of the block perform a logarithmic all-gather to 
obtain the complete block.  However, there may be some 
processors with no part of the block.  The full block is 
then broadcast to these processors, using all available 
processors that have the block.  

 
4.5: Founder symmetry lookups:  
 
 There is one final wrinkle to the communication 
routines above involving the founder-phase symmetry 
state space reduction.  Founder symmetry occurs in 
sibships, or groups of siblings.  Essentially, in a sibship 
of s siblings where one parent is a founder, one of the s 
bits in that sibship for the founder’s chromosome can be 
eliminated.  However, if some of the other s-1 bits for 
the sibship are fixed, we must also consider the 
complementary assignment of the founder-phase.  Thus, 
if there is one sibship with a fixed bit, for each 
inheritance pattern calculation, we will need to look up 
two indices: one with the original founder-phase 
assignment and one with the complementary assignment.  
This operation corresponds to “flipping” all of the 
variable bits in that sibship.   When we distribute this 
calculation, we must check to see if any of these founder 
sibling “flips” intrude into the processor-order bits.  
When this occurs, it means that each processor will 
require another block in addition to the one it already 

000

Source Mask: 100|0000

001 010 011 100 101 110 111

Block: 00 01 10 11 00 01 10 11

0 0 0 0 1 1 1 1Block Rank:

00 00 01 01 10 10 11 11Original Block:

0 1 0 1 0 1 0 1Original Block 
Rank:

Processors:

 
 
Figure 4: Example showing the distribution of 
a marker with mask 1000000 onto a target 
with mask 0000000.  Processor ranks are 
shown in standard binary representation.  The 
following two lines indicate the block which 
that processor will need and the its rank in 
that block.  The remaining lines show how the 
blocks are initially distributed on processors. 
  



 

has.  We handle this by looping over the above 
communication routines for each founder-symmetry case 
required.  It is important to note that these flips may 
change the values of the fixed bits, but this is handled 
transparently by the above algorithm. 
 
5. Performance: 
 
 We have analyzed the performance of our algorithm 
on Sandia National Laboratories’ Cplant cluster.  Cplant 
consists of several hundred DEC Alpha EV6 processors 
connected via Myrinet. We ran three problem sizes, (2n-
f =)19 and 21 bits of one dataset  and a 24 bit problem 
from second dataset. A 24-bit problem means that the 
largest vectors Genehunter operates on are of length 224. 
The 19 and 21 bit datasets are from a 10cM chromosome 
1 genotype screen of a 51 member family with a genetic 
skin disease, vitiligo. Family members were genotyped 
using the Prism Linkage Mapping Set Version 2 
(LMSv2-MD10) panel of microsatellite markers from 
Applied Biosystems. The 24 bit dataset is a 5cM 
chromosome 1 genotype screen from the same family, 
with genotype data from one additional family member.  
Figure 5 shows the overall runtime performance of these 
problems on different number of processors and the 
efficiency of each problem size on different numbers of 
processors. We note that the 24-bit problem, which runs 
in 11 minutes on 32 processors, would require roughly 
five hours to run on an equivalent single processor 
system.  A line of perfect scaling for each problem size 

is included for reference in figure 5a, which would 
correspond to 100% efficiency in figure 5b.  Although 
scaling eventually drops off in each case, there are 
ranges of processor counts which scale well for each 
problem size.  This observation is of importance when 
we consider the possibility of scaling to larger problems 
and processor counts, since it implies that for most 
problems we can hope to find a range of processor 
numbers where efficient use of computational resources 
is made.   
 There are several factors limiting  scalability.  One 
is the disparate sizes of the different marker vectors.  For 
our datasets, markers sizes may range from less than 210 
up to full size (22n-f).  To avoid dividing a marker onto 
more processors than it has bits, we have set a limit 
L(=29 for figure 5), such that any markers with fewer 
than L bits are analyzed in serial.  At some point, these 
serial markers make begin to have an impact on running 
time. Of course, although the communication routines 
described above are fairly efficient, they also impose an 
overhead cost that may limit scalability. 
 
6. Future Directions: 
 
 Genehunter 2.1 as implemented has a built-in limit 
of 2n≤32 bits, because it uses 32-bit integers as masks.  
We currently in the process of increasing this limit to 
2n≤64 by replacing the integer masks with the c datatype 
long long int.  This modification is required because the 
current limit may impede on problems as small as 2n-f 
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Figure 5: Example algorithm scaling for 19, 21 and 24 problems.  A: Running times for different 
problem sizes by processor counts. (Linear scaling curves are shown for reference.)  B: Efficiency 
for different problem sizes. 



 

=26 bits, if f>6, not an unreasonable value.  By 
increasing the limit, we will allow the analysis of larger 
problems on clusters and will be able to test the 
scalability of our algorithmic approach on larger 
numbers of processors. 
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