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Abstract—Motivated by load balance issues in parallel cal-
culations of the phylogenetic likelihood function, we recently
introduced an approximation algorithm for efficiently distribut-
ing partitioned alignment data to a given number of CPUs. The
goal is to balance the accumulated number of sites per CPU,
and, at the same time, to minimize the maximum number
of unique partitions per CPU. The approximation algorithm
assumes that likelihood calculations on individual alignment
sites have identical runtimes and that likelihood calculation
times on distinct sites are entirely independent from each other.
However, a recently introduced optimization of the phylogenetic
likelihood function, the so-called site repeats technique, violates
both aforementioned assumptions. To this end, we modify our
data distribution algorithm and explore 72 distinct heuristic
strategies that take into account the additional restrictions
induced by site repeats, to yield a ’good’ parallel load balance.

Our best heuristic strategy yields a reduction in required
arithmetic operations that ranges between 2% and 92% with
an average of 62% for all test datasets using 2, 4, 8, 16, 32, and
64 CPUs compared to the original site-repeat-agnostic data
distribution algorithm.

Keywords-bin packing; site repeats; load balancing; data
distribution; phylogenetic likelihood; phylogenomic analysis

I. INTRODUCTION

Maximizing the efficiency of parallel codes, by distribut-

ing the data in such a way as to optimize load balance,

represents one of the major challenges in high performance

computing.

Here, we address a specific data distribution challenge,

which, to the best of our knowledge, has not been addressed

before. Our work is motivated by parallel phylogenetic like-

lihood computations, that is, reconstruction of evolutionary

histories based on molecular sequence data (see [1] for

an overview). In phylogenetics, we are given a multiple
sequence alignment (MSA) whose columns are nowadays

typically subdivided into distinct partitions (e.g., genes or

other disjoint subsets of the data). The columns of a MSA

represent the sites and the rows represent the taxa (species)

of the MSA for which we intend to infer evolutionary

histories. All characters in a given column of the MSA are

assumed to share a common evolutionary history. Given the

MSA and a partitioning scheme, we can calculate the likeli-

hood on a given candidate tree. In partitioned analyses, indi-

vidual partitions of a MSA, have a separate set of likelihood

model parameters, for instance, they are assumed to evolve

at different rates. Partitioned analyses are the standard use-

case for current likelihood-based analyses of empirical data

with tools such as RAxML [2] or MrBayes [3]. In standard

tools for likelihood-based phylogenetic inference, likelihood

calculations on candidate trees typically account for over

85% of total runtime. Thus, the phylogenetic likelihood
function (PLF) is the target function for parallelization. The

reasons for load-imbalance in partitioned parallel likelihood

calculations are explained in detail in [4].

Initially, we formally state the original data distribution

problem. Then, we explain why so-called site repeats (SR),

that is, sub-columns of the MSA that are identical within a

given subtree, complicate the matter.

In the standard case (i.e., without site repeats), we are

given a list of k partitions and c CPUs. Each partition

has a computation cost that is linear to the number of

sites/columns it comprises. Analogously to the classic bin

packing problem, we try to optimally assign the partitions

(items) to the CPUs (bins). The first key difference is that the

number of CPUs c is given, and that we intend to balance the

data among all CPUs. In other words, we want to minimize

the maximal per-CPU load. The second key difference

is that partitions are divisible, since a partition consists

of (originally independent) sites (subelements). Thus, for

improving load balance, we can split partitions into disjoint

sets of sites that are allocated to distinct CPUs.

The computational cost per partition has two compo-

nents: All partitions have an identical constant base cost

α. If we split a partition among two or more CPUs, each

subset of that partition incurs this base cost α for the

CPU it is assigned to. In phylogenomics, α is the cost

for calculating the transition probability matrix P (t) for a

given time t. This probability matrix is an integral part of

the statistical model of evolution. Since partitions evolve

under distinct models, we need to compute P (t) for each

partition separately. However, all MSA sites that belong to
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the same partition have identical model parameters. Thus, α
incurs only once per partition and per CPU. Alternatively,

we could also parallelize the P (t) calculations and then

broadcast the P (t) values to all CPUs. However, based on

previous computational experiments, the P (t) calculations

are excessively fine-grained and frequent, to allow for ef-

ficient parallelization. Therefore, we compute P (t) (or α
in general) redundantly at several CPUs if the sites of a

partition have been split up and allocated to more than one

CPU.

The second component of the per-partition PLF calcula-

tion is the variable cost φ. For standard likelihood imple-

mentations φ is linear in the number of sites per partition.

This is because the same amount of arithmetic operations

is required to compute individual per-site likelihoods. Since

alignment sites are assumed to evolve independently in the

likelihood model, calculations on a single site of a partition

can be performed independently of, and concurrently to, all

other sites. Therefore, we can easily distribute the sites of a

single partition to several CPUs.

Thus, based on the prolegomena, to maximize parallel

efficiency, we need to minimize redundant calculations of

P (t) by only splitting partitions when necessary, while

distributing sites evenly among CPUs.

Our initial work [5] focused on addressing this data

distribution problem for representative PLF implementations

in tools such as RAxML [2]. As mentioned before, the

original data distribution algorithm (ODDA [5]) assumes

that (i) all sites have the same per-site computation cost and

(ii) these per-site computation costs do not depend on how
sites of a single partition are split up among CPUs. For

example, if a partition with 100 sites is split up among two

CPUs and each CPU shall be allocated 50 sites, any split of

those 100 sites into 50 sites per CPU will exhibit the same

computational cost.

Techniques for accelerating PLF calculations such as

Subtree Equality Vectors (SEV) [6] or Site Repeats (SR) [7]

complicate this matter. If we use these techniques in the

PLF, the data distribution problem becomes more complex,

since both previous assumptions (same cost per site and

site independence) regarding per-site computation costs are

violated. These techniques take repeating MSA site pat-

terns in subtrees of the phylogeny into account to reduce

the amount of per-site PLF computations. A comparison

between the PLF functions in the Phylogenetic Likelihood
Library [8] (derived from RAxML [2]) and a rudimentary

implementation that uses SRs shows speedups that range

between a factor of 2 up to a factor of 10 [9]. Note

that, SR-based techniques can also yield memory savings

by more than 50% depending on the input MSA [9]. We

describe the SR technique more thoroughly in Section III.

Essentially, SR-based optimizations reduce the computation

cost φ by detecting and re-using identical intermediate PLF

results among sites. Thus, distinct sites now have varying

computation costs. Furthermore, if we assign two sites

that can share a large fraction of intermediate results to

different CPUs, the accumulated computation cost φ will

increase. Note that, communicating intermediate shared site

computation results between CPUs is not a viable solution,

since the computation to communication ratio is unfavorable.

Analogously to the argument for recomputing P (t) we can

not communicate such intermediate results because of the

extremely fine-grained nature of the PLF operations.

This has implications for distributing data of SR-based

PLF implementations. While we can still split partitions

arbitrarily among CPUs, we will have to sacrifice some

savings that stem from the shared computations. Thus, as for

P (t), we will need to conduct some redundant computations

for sites that belong to the same partition and that share

some results if these sites are allocated to distinct CPUs.

To leverage the substantial computational savings of SR-

based PLF implementations, we present an appropriately

adapted data distribution heuristic here. Our goal is to split

as few partitions among as few CPUs as possible. At the

same time we intend to maximize the amount of shared

computations between sites for each partition that had to

be split. This minimizes the variable per-partition cost φ
and the accumulated number of base costs α for calculating

P (t).
Given that the problem ODDA aims to solve was shown

to be NP-hard, we suspect that the current problem, that

has one additional optimality condition, is NP-hard as well.

However, a more thorough study of the theoretical properties

of our problem is outside the scope of this paper. For this

reason, we first assess whether taking into account among-

site dependencies for the data distribution algorithm affects

parallel efficiency, or not. As we show in Section VI-E,

disregarding among-site dependencies can decrease parallel

efficiency by up to one order of magnitude. In Section V

we therefore present and assess several ad hoc heuristics for

improving load balance in parallel SR-based PLF computa-

tions.

Note that, parallel PLF implementations now form part of

several widely-used tools (e.g., ExaML, RAxML, MrBayes,

ExaBayes, PhyML) and the results presented here are gener-

ally applicable to all of these tools. At present, only ExaML

and RAxML offer basic SR-based PLF implementations

that merely exploit a fraction of the SRs that are present

for accelerating calculations. However, we expect that most

PLF-based tools will adopt the SR technique [9], because

of the substantial runtime and memory savings that can be

achieved.

The remainder of this paper is organized as follows. In

Section II, we survey related work on similar scheduling

problems from the area of bin packing with items that can

share space. In the subsequent Section III we describe the

aspects of the SR technique that are relevant for the work we

present here at an abstract level. In Section IV we discuss
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the properties of the cost factors α and φ. We also define

a theoretical lower bound that we use as baseline to design

and assess our heuristics. Our main contribution is presented

in Sections V and VI. Section V introduces polynomial-

time heuristics which yield data distributions that are only

5.75% worse than the lower bound. Finally, in Section VI,

we present our experimental setup and the performance

gains achieved by our heuristics compared to the original

data distribution algorithm (ODDA) on both, simulated, and

empirical MSAs.

Note that, this paper only contains the pseudocode and

detailed runtime description for phases I and II of the

heuristics (see Section V). Further pseudocodes, runtime

descriptions, and supporting graphs can be found in the

extended version of this paper on bioRxiv [10].

II. RELATED WORK

Since we are not aware of any related work in phyloge-

nomics, we briefly review related work on similar scheduling

problems.

The so-called many-constrained bi-objective bin packing
task is one such related problem [11]. Here, items need

to be distributed into bins and the items are subject to

various constraints. The constraints reduce to a cost function

between items: The cost of an item can depend on another

in a positive, neutral, or negative way if they are in the same

bin. In the beginning all items are considered to be located in

separate bins. The objective is to minimize the accumulated

cost and number of bins, by grouping items together into

bins.

The Virtual machine (VM) packing problem is also re-

lated [12], [13]. The goal is to pack a given amount of VMs

(items) into a minimal amount of servers (bins). Each VM

has a certain set of memory pages. These memory pages can

overlap with those of other VMs, therefore, increasing the

number of VMs that fit onto a server.

In contrast to our problem, the items in both scheduling

problems are not divisible and the number of bins is not

given as input. In fact, the objective function for these related

problems is to minimize the number of bins.

III. SITE REPEATS

Repeated PLF evaluations can account for over 85%

of total runtime in maximum likelihood (ML) based tree

searches and Bayesian phylogenetic inferences (BI). One

simple observation is that two identical sites that evolve

under the same evolutionary model (forming part of the

same MSA partition) always yield the same likelihood

score. Thus, a common method to avoid these globally

redundant calculations is to compress identical MSA sites in

a pre-processing step. However, such identical calculations

also appear locally at the subtree level. That is, MSA

columns might be partially identical for a subset of taxa

(species/rows) defined by a subtree (see Figure 1 for an

G G C C G

A A G G A
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G C A G C

1 2 3 4 5site:
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w
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t1

t2
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t4

Figure 1. Sites 1, 2, and 5 form a SR at node v as they share the same
subtree site pattern GA. Another repeating pattern is present at sites 3 and
4 (CG) for the same node. Note that, node w also induces a subtree with
pattern CG at the tips at site 1. However, since branch lengths can be and
typically are different from those of the subtree induced by node v, the
conditional likelihoods may differ as well. But, there is another SR at sites
2 and 5 for node w (TC), and hence the conditional likelihood is the same
for those two sites. Finally, sites 2 and 5 are a SR for node u (GATC).

example). While there have been previous attempts to exploit

this property [6], Kobert et al. recently introduced an effi-

cient algorithm [9] for detecting site repeats (SR). The PLF

optimization relies on recognizing repeating DNA patterns at

different column indices, i and j, of the MSA (on the same

partition), defined by a subtree of the phylogeny whose PLF

is being computed. As a consequence, the amount of SR-

based savings depends on the actual tree topology.

At an abstract level, PLF calculations conduct post-order

tree traversals to update the so-called conditional likelihood
vectors (CLVs) that have as many entries as the input MSA

has columns. Given a fast method to identify repeating

subtree site patterns, we can omit all PLF calculations of

column indices p > q for identical subtree site patterns, if q
is the first occurrence of the specific pattern.

In Figure 1 we only calculate the CLVs at node v for

column index p = 1 and omit the PLF calculations for

column indices q = 2 and q = 5. We can thus omit a

total of 5 out of 15 CLV calculations in this example. An

important metric for distributing the data is the number of

SRs a specific column contributes to. Henceforth, we will

call this metric the site repeat count (SRC). In our example

site 1 has a SRC of 1, while site 2 has a SRC of 3.

Kobert et al. show that a —at a technical level— not

fully optimized SR-based PLF implementation consistently

outperforms one of the most efficient available PLF im-

plementations (including AVX intrinsics) for distinct real-

world application scenarios and tree topologies. Respective

speedups range between a factor of 2 up to 10 [9]. Because

the work on SRs is very recent, we are not aware of any

phylogenomic data distribution algorithm that takes into

account the additional constraints induced by SR-based PLF

implementations.

410



IV. PRELIMINARIES

Assume a MSA of m sequences (taxa) and n sites

S = {s1, s2, . . . , sn}, and a partition scheme of k disjoint

partitions p1, p2, . . . , pk such that pi ∈ 2S . Our task is

to distribute these partitions among c CPUs, such that

the maximum computational cost (load) among CPUs is

minimized. Note that, we are allowed to assign distinct sites

of a partition to different CPUs. Let λ : {1, 2, . . . , c} ×
{1, 2, . . . , k} �→ 2S be the mapping of sites to CPUs and

partitions. Further, let

Pj = {λ(j, i) | λ(j, i) �= ∅, 1 ≤ i ≤ k}
be the set of partitions assigned to CPU j. The total

computational cost at a CPU j is then

|Pj |α+
∑

p∈Pj

φ(p),

where the mapping φ : 2S �→ N is the SR-based compu-

tational cost for a specific subset of sites from a partition.

Note that, for simplicity, in the rest of the text we will treat

(site) partitions as lists instead of sets. Hence, we introduce

two operations \ and ∪, for adding and removing sites

from partition lists. Operation p \ {i1, i2, . . . , im} removes

sites with indices i1, i2, . . . , im from a partition list p, and

p ∪ {s1, s2, . . . sm} appends sites s1, s2, . . . , sm at the end

of list p. A site can be removed in O(1) time, and adding

m sites requires O(m) time.

The mapping λ can be implemented as a lookup table of c
CPUs. Each element of this lookup table is a again a lookup

table for each of the k partitions. Note that, all algorithms

we present assume that the number of sites n is larger than

the number of CPUs c.

A. Computational costs α and φ

The first simple observation is, that the computational cost

for each CPU depends on the cost components α and φ.

However, both quantities can only be measured in abstract

terms. The exact runtimes depend on the hardware architec-

ture, data type, and tree topology. Therefore, the objective

is to minimize both factors, without being able to directly

compare them. We will show that the count of additional α
values, which we call extraα, created by splitting partitions,

does not vary substantially for the heuristics we tested in

Section VI-E. Thus, we focus on minimizing the cost φ,

which corresponds to the number of arithmetic operations

required to evaluate the PLF on a given set of sites for

a given tree topology. We call this cost the PLF count of
operations (PLF-C).

B. Lower bound L
The second observation is, that we can calculate a simple

theoretical lower bound for the optimal accumulated per-

CPU PLF-C. We use this bound, to steer our heuristics and
to assess their performance.

Assume that all partitions are assigned to a single CPU.

We can then calculate the PLF-C for this CPU. Simply

dividing this single CPU PLF-C by the number of CPUs

c yields a natural lower bound L. Since no partitions have

been split up for the single CPU assignment, the respective

SR-induced savings are maximal. Thus, for any assignment

of the partitions to two or more CPUs, which may not be

able to retain all site repeats, the per-CPU PLF-C will be

≥ L. Consider the example MSA in Figure 1 with only two

sites and assume that we want to assign the data to two

CPUs. The lower bound is 5
2 = 2.5 PLF-C. However, the

optimum data distribution will assign one site to each CPU.

Thus, the optimized PLF can not skip the SR GA anymore,

resulting in a per-CPU PLF-C of 3 > 2.5 for both CPUs.

V. DESCRIPTION OF HEURISTIC COMPONENTS

The heuristics we present here consist of three phases:

Data pre-processing (phase I), initial distribution of sites

to CPUs (phase II), and site reshuffling strategies (phase

III). The data pre-processing phase prepares the MSA data

for the subsequent initial distribution phase. We present two

algorithms for computing such an initial partition data to

CPU distribution. Finally, we employ three different site

reshuffling strategies to further decrease the PLF-C.

The individual components designed for these three

phases can be flexibly combined in a plethora of ways and

orders to rapidly assemble and test heuristic data distribution

algorithms. We assessed a total of 72 heuristic strategies

using the 7 core components (2 for pre-processing, 2 for

the initial assignment, and 3 for the reshuffling phase) For a

complete list of all 72 strategies, see the on-line supplement1

on github. Here, we only present a performance assess-

ment of 32 —including the two best-performing ones—

Presenting all 72 heuristics would merely require describing

additional variants of our components.

A. Phase I heuristics: Data pre-processing

A commonly used method to avoid redundant calculations

in the PLF is to remove all duplicate sites from the MSA

and only keep the unique sites. Since identical sites yield

the same per-site likelihood if they evolve under the same

model, the overall likelihood can be computed by assigning

respective weights to unique sites.

As a second pre-processing step we sort the remaining,

unique sites lexicographically. Through an empirical analysis

we have observed that lexicographic sorting has the effect

that sites sharing repeats are more likely to reside next to

each other than for a random site order. We evaluated this

by comparing the sorted versus unsorted PLF-C between

all pairs of consecutive sites, accumulated over all sites,

all 1200 inferred trees, and all 8 MSAs we used (see

Section VI-B). The sorted MSAs resulted in 14.03% less

1https://github.com/conscho/phylo scheduling
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accumulated PLF-C [10]. Sorting yields better results for

the overall data distribution algorithm (see Section VI-E).

The lexicographic sort requires O(nm) time and O(n+m)
space.

B. Phase II heuristics: Initial distribution

The initial distribution of partitions to CPUs is a two-step

process. First, we pre-fill the CPUs with entire partitions,

that is, without splitting any partition until a filling limit

is reached for at least one CPU. Then, we distribute and

potentially split up the remaining partitions via the greedy or

the cut approach (see below). Both approaches try to balance

the PLF-C among CPUs.

In the pre-filling step, we intend to assign as many entire

(without splitting them up) partitions as possible to the

CPUs, for minimizing the per-CPU α cost. Initially, the

lower bound L (see Section IV-B) is used as a computing

capacity limit for each CPU. The reshuffling strategies

(phase III, see Section V-C) might adjust this limit later-

on. The procedure for assigning entire partitions to CPUs is

analogous to phases 1 and 2 of the ODDA [5]: We first

sort partitions by increasing order of computational cost

(PLF-C). Starting with the partition that has the smallest

PLF-C, we assign partitions to CPUs in a cyclic manner until

adding a partition exceeds the capacity limit L of a CPU.

When the procedure stops, the still unassigned (remaining)

partitions have indices r, r+1, . . . , k. In a final step we sort

the CPUs by their accumulated PLF-C in ascending order.

Figures 7a and 7b illustrate the pre-filling process; Figure 2

contains the PREFILL algorithm. The asymptotic runtime

complexity for pre-filling is O(k log k + nm + c log c),
as sorting the k partitions requires time O(k log k), and

calculating the PLF-C for all partitions requires O(nm)
time.

1) Greedy approach: The greedy approach is one of two

alternatives for distributing the remaining partitions among

the pre-filled CPUs. It tries to find the best fit CPU for each

individual site. The site fit to a CPU is defined as the PLF-C

increase that is induced by assigning the site to the CPU.

The lower this PLF-C increase is for a specific CPU, the

better the site fits. The underlying idea is, that by increasing

the fit of sites from remaining partitions that need to be split

up we can reduce the overall PLF-C for the data distribution.

However, we need to first assign at least some sites of

the remaining partitions to CPUs to be able to compute a

meaningful site fit. We achieve this via a virtual assignment

of remaining partitions to CPUs (please see Figures 7c-7f

before reading on, since the subsequent description will be

easier to follow). Initially, we calculate the average per-site

PLF-C cost μ for each remaining partition. Then, we use μ
as a proxy for the PLF-C to generate a virtual assignment of

the remaining partitions to the CPUs. This virtual assignment

ignores SR effects and simply distributes all sites from

all remaining partitions to the CPUs based on μ. Thereby,

PREFILL(P, k, c,L)
� Initialization

1. P = (p1, p2, . . . , pk) sorted ascending by φ(pi)
2. for j ← 1 to c do
3. cost[j]← 0
4. for i← 1 to k do λ(j, i)← ∅
5. j ← 1
� Distribution of partitions to CPUs

6. for i← 1 to k do
7. if φ(pi) + cost[j] ≤ L then
8. cost[j]← cost[j] + φ(pi)
9. λ(j, i)← λ(j, i) ∪ pi

10. else
11. break
12. j ← (j mod c) + 1
13. sort cost in ascending order and remap λ
14. return r ← i

Figure 2. The PREFILL function requires the following input parameters: a
list P of k partitions sorted in ascending order by their PLF-C, the number
of CPUs c, and the lower bound L.

we can approximately balance the per-CPU PLF-C. Then,

for each CPU that has at least one site from one of the

remaining partitions, we select the site in the middle of

the subset of sites of the remaining partition (the median

site) that has been assigned to this CPU as representative

site. This representative site from the virtual assignment is

then assigned to the respective CPU and becomes a real site

assignment. As a result, at most two sites from at most two

of the remaining partitions are assigned to each CPU. Sites

of at most two distinct remaining partitions are assigned to

each CPU, since we virtually assign the remaining partitions

one-by-one in as large as possible monolithic blocks to

CPUs. Keep in mind that each of the remaining partitions

exceeds the capacity limit of every CPU because of the way

we designed the prefilling component.

Figures 7c-7e illustrate and Figure 3 presents the pseu-

docode for the virtual assignment step of GREEDY. In the

pseudocode z denotes the site index pointing to the first

site of the current partition, while z′ is the length of the

current partition. The variable s in line 9 is the median site.

Since we remove the median site s from pi we also need to

decrement z for the next partition (line 13). If the algorithm

virtually assigns two partitions to a CPU, vcost represents the

computational cost that is required for the first partition that

was assigned to this CPU and defines how much computing

capacity is left for the second partition on this CPU.

Once we have computed this initial assignment of median

sites from the remaining partitions to CPUs, the second step

of GREEDY is straight-forward. We simply iterate over the

yet unassigned sites from the remaining partitions and assign

each site to the CPU with the best PLF-C fit. If adding a

remaining site to this CPU leads to exceeding the capacity
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GREEDY(P, r, k, λ, cost, c,L)
1. P = (p1, p2, . . . , pr, . . . , pk)
� Initialization

2. j ← 1
3. vcost← 0
� Step 1

4. for i← r to k do
5. μ← �φ(pi)/|pi|�
6. z ← 1
7. while z ≤ |pi| and j ≤ c
8. z′ ← min

((L − cost[j]− vcost)/μ�,
|pi| − z + 1

)

9. s← pi[z + �z′/2�]
10. λ(j, i)← λ(j, i) ∪ {s}
11. cost[j]← cost[j] + φ({s})
12. pi ← pi \ z + �z′/2�
13. z ← z + z′ − 1
14. if z > |pi|
15. vcost← z′μ− φ({s})
16. else
17. vcost← 0
18. j ← j + 1

Figure 3. The GREEDY function requires the following input parameters:
The list P of remaining partitions sorted in ascending order by their PLF-C,
where index r denotes the first and index k the last unassigned partition;
the distribution function λ and the cost for the c CPUs; the lower bound
L. Here we show the virtual assignment step (step 1) of the algorithm.

limit L, we assign the site to the CPU with the second-

best PLF-C fit etc., provided that adding the site will not

violate its capacity limit. As a consequence we generally

assign the site to a CPU that already has some sites of the

same partition in order to minimize the α cost. Only, if no

CPU below the capacity limit has sites of the same partition,

but there are other CPUs below the capacity limit, we will

assign the site arbitrarily to one of the latter. Finally, if all
CPUs exceed L, we assign the site to the CPU with the best

fit. Figure 4 presents the pseudocode for the second step

of GREEDY. Note that, the second step of Greedy will only

terminate once all sites of all remaining partitions have been

assigned to a CPU.

The total asymptotic runtime of step 1 is O(nm). The

runtime is dominated by calculating μ in line 5. For all sites

in the r − k remaining partitions we have to compute φ,

which requires O(m) time per site.

The runtime of step 2 is O(ncm). For each site of the

k−r remaining partitions we need to calculate the scost for

each CPU. The scost in line 25 can be computed in O(m)
by keeping the site repeats data structure in memory and

using the algorithms from [7], [14]. We use this observation

in all subsequent runtime analyses.

2) Cut approach: As an alternative to GREEDY, we

implemented the CUT approach for distributing the remain-

� Step 2: Assign remaining sites

19. for i← r to k do
20. for each site s in pi do
21. B ← ∅
22. C ← ∅
23. for j ← 1 to c do
24. if λ(j, i) �= ∅
25. scost← φ(λ(j, i) ∪ {s})− φ(λ(j, i))
26. else
27. scost← φ({s}) + 1
28. if cost[j] + scost ≤ L
29. B ← B ∪ {(j, scost)}
30. else
31. C ← C ∪ {(j, scost)}
32. if B = ∅ then B ← C

33. (ĵ, ˆscost)← argmin(j,scost)∈B(scost)

34. λ(ĵ, i)← λ(ĵ, i) ∪ {s}
35. cost[ĵ]← cost[ĵ] + ˆscost

Figure 4. Step 2 of the GREEDY function.

ing partitions to pre-filled CPUs. Here, we cut contiguous

regions from the remaining partitions and assign them to

CPUs. This has the benefit of incurring exactly the same

accumulated α cost as the ODDA, which has been proven

to exceed the optimal solution by at most one α per CPU [5].

We illustrate the cut approach in Figures 7g and 7h.

After the pre-filling phase, the remaining partitions and

CPUs are still sorted by increasing PLF-C. Starting with

these sorted lists, we iterate over the CPUs from the least

filled to the most filled one (i.e., from largest to smallest

available capacity). For each CPU we select a region from at

most two of the remaining partitions. The size of the region

is computed as follows for every CPU to be filled: we divide

the free capacity of the particular CPU by the accumulated

free capacity of all CPUs that have not reached their

capacity limit yet and multiply this by the total PLF-C of

all remaining and yet unassigned partitions. The underlying

idea is to distribute the additional arithmetic operations we

will need to conduct due to partitions that have already been

split up as evenly as possible over all CPUs. To then actually

assign such a cut region to the CPU, the region must exhaust

or exceed the capacity limit of the current CPU. If this is not

the case, we increase the size of the region until it exhausts

the capacity limit of the current CPU. This restriction that

CPU capacity limits must at least be exhausted is required

for the reshuffling strategies (phase III, see V-C).

The pseudocode for CUT is provided in Figure 5. While

δ returns the free capacity for a given CPU j, the array Δ
contains the accumulated free capacity of all CPUs with an

index ≥ j for a given j. We use z as site index again and

rcost is the total PLF-C of all remaining partitions. The value

� denotes the target PLF-C capacity of the current CPU j
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CUT(P, r, k, λ, cost, c,L)
1. P = (p1, p2, . . . , pr, . . . , pk)
� Initialization

2. Δ[c+ 1]← 0
3. for j ← c downto 1
4. Δ[j]← Δ[j + 1] + (L − cost[j])
5. i← r
6. z ← 1
� Filling

7. for j ← 1 to c do
8. δ ← L− cost[j]

9. rcost← φ(pi[z . . . |pi|]) +
∑k

i′←i+1 φ(pi′)
10. �← cost[j] + max

(δ/Δ[j] · rcost�, δ)
11. while �− cost[j] ≥ 0
12. cost[j]← cost[j]+

φ(λ(j, i) ∪ {pi[z]})− φ(λ(j, i))
13. λ(j, i)← λ(j, i) ∪ {pi[z]}
14. if z < |pi|
15. z ← z + 1
16. else
17. z ← 1
18. i← i+ 1
19. if i > k then end

Figure 5. The CUT function requires the following input parameters: The
list P of remaining partitions sorted in ascending order by their PLF-C,
where index r denotes the first and index k the last unassigned partition;
the distribution function λ and the cost for the c number of CPUs; the
lower bound L.

which defines the size of the region that shall be assigned

to CPU j. Note that, CUT terminates when all sites from all

remaining partitions have been assigned to CPUs.

The total asymptotic runtime of CUT is O(nm + c). For

line 9 we can initialize two arrays: One, computing φ in

the order of sites for the remaining partitions and the other

computing φ in the reverse order of sites. Thus, line 9
requires constant time and the initialization can be computed

in O(nm). By definition we will split up at most 2(k − r)
partitions. These partitions are disjoint. Therefore, line 12
will be executed once for each site of the partitions that will

be split and thus requires O(nm) time.

C. Phase III heuristics: Reshuffling strategies

After the initial distribution (e.g., computed with GREEDY

or CUT), we can employ up to three site reshuffling strategies

to further improve the PLF-C: Adjust limit, reduce max, and

low SRC.

1) Adjust limit: The initial distribution provides a good

estimate of how many partitions need to be split up and how

the overall PLF-C for the distribution increases due to these

splits. We use this knowledge to adjust the capacity limit of

the CPUs: Instead of the lower bound L we now use the

average CPU load from the initial distribution as capacity

limit. We then simply re-run the pre-filling and the GREEDY

or CUT approach with this updated capacity limit.

2) Reduce max: The bottleneck in parallel PLF compu-

tations is always the CPU with the highest PLF-C since

it determines the overall runtime. Therefore, we attempt to

reduce the load of the CPU with the highest PLF-C. This

reshuffling strategy uses the worst-case PLF-C for one site.

This is a MSA-specific value that depends on the number

of taxa m. The worst-case site PLF-C has a SRC of zero.

First, we select all partitions that have been split up and

have been assigned to the most loaded CPU. Then, we

determine all candidate CPUs that also have a part of those

partitions. Out of those candidate CPUs we then select only

those with a PLF-C that is smaller than the mean per-CPU

PLF-C. Using the worst-case site PLF-C, we estimate how

many sites can be moved from the most loaded CPU to

the least loaded CPUs, such that they do not exceed the

current capacity limit. We then move the sites with the

lowest SRC away from the most loaded CPU. Thereby, we

only lose a small number of SRs for the sites that will remain

on the most loaded CPU. This reduce max operation can

be repeated for an arbitrary number of times. We choose

to repeat this process as many times as there are CPUs

to achieve an acceptable trade-off between overall PLF-C

improvement and the run-time for this heuristic component.

Evidently, one could also design an explicit convergence

criterion to determine when additional applications of reduce

max are not worthwhile any more. The asymptotic runtime

for reduce max is O(c2k + cnm). For the pseudocode and

a detailed runtime explanation see [10].

3) Low SRC: One goal of our distribution strategies is

to maximize the site repeats in order to decrease the overall

PLF-C. The low SRC strategy intends to reshuffle sites that

exhibit a low SRC on their current CPU. For reshuffling,

we select 20% (see below for a rationale for this setting) of

the sites from each split up partition that have the lowest

SRC under the current data distribution. We then provide

this selection of sites as input to step 2 of GREEDY (see

Section V-B1) to reassign them to the CPUs.

The actual percentage of sites selected for reshuffling is a

tuning parameter. It should not be too high, since we want to

determine how well the sites fit into a comparatively large,

fixed site distribution. It should not be too low either, since

this will decrease the overall PLF-C improvement of the

reshuffling. We empirically determined that a threshold set-

ting of 20% yields good performance. The total asymptotic

runtime of low SRC is O(cnm). For the pseudocode and a

detailed runtime explanation see [10].

VI. EXPERIMENTAL SETUP AND RESULTS

A. Software

Given a MSA and a partition scheme, we em-

ployed RAxML [2] to infer and sample phylogenetic

trees (for details see Section VI-C). Using Ruby and
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ID Type Taxa Unique Sites Partitions
1 Empirical 59 3238 8
2 Empirical 128 19, 866 34
3 Empirical 404 7444 11
4 Simulated 10 76, 754 100
5 Simulated 10 169, 939 200
6 Simulated 10 199, 974 232
7 Simulated 10 246, 897 310
8 Simulated 10 269, 697 332

Table I
MSA PROPERTIES.

the Ruby Gem Newick-Ruby (https://github.com/jhbadger/

Newick-ruby) for parsing trees, we initially characterized the

problem and then implemented the heuristics. To visualize

and post-process the results we used appropriate R packages.

B. Test datasets

We used five simulated and three empirical nucleotide

MSAs for benchmarking the heuristics. To simplify the

experiments we removed all identical sites from the MSAs

prior to running the heuristics such that all MSAs only con-

tained unique sites. The MSAs are available for download

at https://github.com/conscho/phylo scheduling/tree/master/

data/. Their properties are summarized in Table I.

C. Characterizing the problem

Initially, we assessed to which degree the actual tree shape

influences the PLF-C differences between SR-based and SR-

agnostic PLF implementations. We started 100 maximum

likelihood (ML) tree searches from randomized stepwise

addition order parsimony starting trees and another 100 ML

searches on random starting trees for every test MSA using

RAxML. We then calculated the PLF-C ratios between SR-

based and SR-agnostic PLF implementations for each tree

and MSA. The average SR-induced PLF-C savings for ML

trees inferred on random and parsimony starting trees are

almost identical. However, ML trees inferred from random

starting trees show a slightly higher variance in savings than

ML trees inferred on parsimony starting trees. This variance

is more pronounced for our empirical MSAs. As shown in

[9], the savings are substantial. The average PLF-C saving

over all MSAs and all trees we generated is 61.68%, with

a minimum of 48.92% and a maximum of 91.14%.

Next, we evaluated possible factors influencing the SR-

induced savings based on several MSA characteristics. We

did not find a correlation of savings with the likelihood of an

MSA given a tree. That is, a tree with a better likelihood does

not necessarily yield a lower PLF-C. Also, the PLF-C does

not appear to correlate with the number of taxa. However,

the number of sites per partition is positively correlated with

PLF-C savings. Also, the placement of the virtual root, that

is used to conduct the post-order tree traversal for calculating

the CLVs (see Section III), has an impact on the PLF-C. Our

initial experiments revealed that using the so-called midpoint

rooting technique, which reduces the height of the thereby

rooted binary tree, increases PLF-C savings. Because of

this observation, heuristics use a midpoint rooting on the

given input tree for calculating the PLF-C of respective data

distributions.

D. Ground-truth comparison

To analyze the performance of our heuristics we also

compared them with the exact, optimal solution. We there-

fore generated and evaluated all possible data distributions

exhaustively. Since there are
{
n
c

}
combinations for assigning

n sites to c CPUs, this was only feasible for small problem

instances. The optimal solution is the data distribution that

minimizes the PLF-C of the most loaded CPU. From each

of the 8 MSAs in Table I we assembled 4 small MSAs by

sampling MSA sites from the beginning of each partition.

These groundtruth MSAs contained 4 partitions with 3− 5
sites that were assigned to 2 CPUs and 2 partitions with 4−6
sites that were assigned to 3 CPUs. As one may expect, the

exact solution is generally better than our heuristic solution.

However, for 11 out of the 32 MSAs one of the heuristics

was on par with the exact solution. In the worst case, the

PLF-C difference between the best heuristic and the optimal

solution for the most loaded CPU was 9.34%.

The optimal solution was also the perfect solution in 1
out of 32 experiments. We have a perfect solution when

the PLF-C of each CPU equals the lower bound L (see

Section IV-B). For instance, this is the case if the data

distribution does not need to split up any partition such

that sites which share SRs are not distributed over different

CPUs (see Section III). Keep in mind that, due to the small

input sizes, the above results are mainly useful for verifying

that our heuristics are not ’far off’. Also note that, the

groundtruth calculates the optimal solution with respect to φ
(i.e., the PLF-C) but does not strive to minimize the α cost.

E. Performance of heuristics

To assess the performance of our heuristics, we calculated

data distributions for all MSAs. For each MSA we arbitrarily

selected one of the ML trees inferred on a parsimony starting

tree with RAxML and computed data distributions for 2, 4,

8, 16, 32, and 64 CPUs. We then averaged the results for

each heuristic over all MSAs and CPU counts. We assess

the resulting heuristic data distributions by comparing the

respective PLF-C of the most loaded CPU with the lower

bound PLF-C L (see Section IV-B) and by comparing the

resulting number extraα of additional P (t) calculations due

to splitting up partitions (where extraα :=
∑c

j=1 |Pj | − k,

see Section IV for notation c, Pj , and k) with the lowest

extraα among all heuristic distributions. The heuristic that

yielded the lowest PLF-C over all MSAs comprises the

following components: a lexicographic MSA sort, then CUT,

followed by the ADJUSTLIMIT, LOWSRC, and REDMAX
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Figure 6. Comparison of the 2 best performing heuristic component
combinations and the ODDA for dataset 2 for 2, 4, . . . , 64 CPUs. The
y-axis shows the percentage by which the PLF-C of the most loaded
CPU exceeds the lower bound L. The red dot is the average over all
CPU numbers. For dataset 2 the heuristic using CUT requires on average
1− (106.5/276.93) = 61.54% less PLF-C than the ODDA.

reshuffling strategies. On average, the PLF-C of this heuristic

is only 5.75% higher than the rather conservative theoretical

lower bound L. Out of the 32 combinations of our heuristic

components that we list in this paper (see Section V) it ranks

5th with respect to extraα. The extraα is only 4.69% higher

than that of the best result which we deem acceptable based

on our experience with developing ExaML and ExaBayes.

The best combination using the GREEDY component,

also uses lexicographically sorted MSAs and all available

reshuffling strategies in the same order as above. Its PLF-C

is on average 6.27% worse than L but the extraα is 42.83%
higher than that of the best result which might be rather

prohibitive for real-world parallel PLF implementations.

We also need to answer the question if a dedicated data

distribution strategy for SR-based parallel PLF implemen-

tations is indeed necessary. To this end, we repeated the

above experiments with the original SR-agnostic data dis-

tribution algorithm (ODDA). The data distribution proposed

by ODDA requires on average 176.21% more PLF-C than

L. In comparison to ODDA, the best performing heuristic

requires on average 61.71% less PLF-C with a minimum of

1.99% and a maximum of 92.31%. The extraα of the best

heuristic is surprisingly 0.81% lower than that of the ODDA.

It might appear counter-intuitive, that some heuristics yield

a lower extraα than the ODDA. However, our reshuffling

strategies can strive to reduce extraα by placing entire

small partitions with a large SRC onto the same CPU. Also,

running ODDA on lexicographically sorted MSAs does not

significantly change the results. It merely improves the

PLF-C to 175.9% with respect to the lower bound L. Thus,

a dedicated SR-aware data distribution heuristic is required

since it can reduce PLF-C values and hence parallel runtimes

by 60% on average. Figure 6 provides a representative

example of heuristic performance for dataset 2. A graph

showing the results of our performance analyses for all 32
heuristic component combinations is available in [10]. It also

demonstrates that extraα is generally low and does not vary

substantially among heuristics.

PL
F−

C
 o

f 
pa

rt
iti

on
 y

el
lo

w

Limit =

lower bound

CPUs

2 31

Partitions by size of PLF−C

(a) Initial: Partitions sorted by their
PLF-C and empty CPUs.

Limit =

lower bound

CPUs

1 2 3

PL
F−

C
 o

f 
pa

rt
iti

on
 y

el
lo

w

Remaining Partitions

(b) Pre-Filling: Fill partitions
sorted by their PLF-C into the
CPUs without splitting as far as
possible.

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��

��
��
��

2 3

CPUs

1

Limit =

lower bound

PL
F−

C
 o

f 
pa

rt
iti

on
 y

el
lo

w

Remaining Partitions

(c) Greedy step 1a: Virtual as-
signment of remaining parti-
tions neglecting SR effects.

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���

���
���
���

2 3

CPUs

1

Limit =

lower bound

Remaining Partitions

(d) Greedy step 1b: Assign the
sites in the middle of each
virtual partition to the CPUs.

Remaining Partitions

2 3

CPUs

1

Limit =

lower bound

(e) Greedy after step 1.

����

Remaining Partitions

2 3

CPUs

1

Limit =

lower bound

(f) Greedy step 2: Test each
site from the remaining parti-
tions in each bin to find the
CPU where the site fits best.

Limit =

lower bound

CPUs

1 2 3

Remaining Partitions

rc
os
t 2

=
P

L
F

-C
o

f
p

ar
ti

ti
o

n
y

el
lo

w

rc
os
t 1

=
P

L
F

-C
o

f
p

ar
ti

ti
o

n
p

u
rp

le

rcost = rcost1 + rcost2

�1 = cost[CPU1] + δ1/Δ · rcost
Δ = δ1 + δ2 + δ3

δ 2 δ 3

δ 1

(g) Cut 1: Calculate the target
capacity � for CPU j.

Limit =

lower bound

CPUs

1 2 3

(h) Cut 2: Typi-
cal distribution af-
ter applying the
cut approach.

Figure 7. Illustrations.
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VII. CONCLUSION AND FUTURE WORK

In this paper we present the, to our knowledge, first data

distribution problem for parallel PLF implementations that

rely on the site repeats technique for reducing the number

of PLF calculations on partitioned phylogenomic MSAs.

Whether this problem is NP-hard remains an open question.

Here, we assume no polynomial algorithm exists, and we

provide a lower bound L for the optimal data distribution

scheme and explore a large number of heuristic data distri-

bution strategies using a component-based framework.

We initially characterize and quantify some aspects of SR-

based calculations. Then, we present the two best performing

heuristics that generate data distribution schemes with a

PLF-C that is on average only 6% worse than the PLF-C

of our conservative lower bound L. More importantly, we

show that designing SR-aware data distribution algorithms

does matter, since the standard SR-agnostic ODDA approach

yields an average PLF-C for the most loaded CPU that

is more than twice as high as the PLF-C attained by our

heuristics. Thus, SR-aware data distribution heuristics can

reduce runtimes for parallel phylogenetic analyses by 60%.

We plan on integrating the heuristics into real-world

phylogenetic inference tools. We are developing a revised

version of our phylogenetic likelihood library (PLL) that

will include a full SR implementation and a Message Passing

Interface (MPI) parallelization. Hence, we will also integrate

a variant of the heuristics presented here. Note that, these

heuristics were assessed on fixed trees with fixed rootings.

While they cover application scenarios where trees remain

fixed and only statistical model parameters on the tree are

optimized (e.g., divergence time estimates [15] or positive

selection tests), they are not practical for tree searches where

topology and virtual root position constantly change. To this

end, we need to test appropriate heuristics that yield “good”

data distributions for a larger set of trees and virtual rootings.

Evidently, there is a trade-off between slightly increased

PLF-C costs and frequent data re-distributions. While the

asymptotic complexities of our heuristics might appear to be

large, they are amortized by the substantially higher runtimes

of likelihood-based tree evaluations.
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