
Removing Sequential Bottlenecks in Analysis of Next-Generation Sequencing Data

Yi Wang
Computer Science and Engineering

The Ohio State University
Columbus, U.S.A

wayi@cse.ohio-state.edu

Gagan Agrawal
Computer Science and Engineering

The Ohio State University
Columbus, U.S.A

agrawal@cse.ohio-state.edu

Gulcin Ozer
Biomedical Informatics
The Ohio State University

Columbus, U.S.A
gulcin.ozer@osumc.edu

Kun Huang
Biomedical Informatics
The Ohio State University

Columbus, U.S.A
kun.huang@osumc.edu

Abstract—Throughput from sequencing instruments has
been increasing in an unprecedented speed, leading to an
explosion of the next-generation sequencing (NGS) data, and
challenges in storing, managing, and analyzing these datasets.
Parallelism is the key in handling large-scale data, and some
progress has been made in parallelizing important steps, like
sequence alignment. However, other major steps continue to
be sequential, limiting the ability to handle massive datasets.
In this paper, we focus on parallelizing algorithms from two
areas. The first is efficient data format conversion among a
wide variety of sequence data formats, which is important for
cross-utilization of different analysis modules. The second is
statistical analysis. Our parallelization sequence data format
converter allows sequence datasets in BAM/SAM format to
be converted into multiple formats, including SAM/BAM,
BED, FASTA, FASTQ, BEDGRAPH, JSON, and YAML, using
both shared memory and distributed memory parallelism. The
converter currently comprises three instances: SAM format
converter, BAM format converter and preprocessing-optimized
SAM format converter. Additionally, our converter can also
support partial format conversion, to perform format conver-
sion only on a specified chromosome region. The statistical
analysis module includes parallelized non-local means (NL-
means) algorithm and false discovery rate (FDR) computation.
Through extensive evaluation, we demonstrate high scalability
of our framework.

Keywords-Next-Generation Sequencing, Data Format Con-
version, Statistical Analysis, Parallelization

I. INTRODUCTION

Throughput from sequencing instruments has been in-
creasing at an unprecedented speed, leading to an explo-
sion of the next-generation sequencing (NGS) data, with
associated challenges in storing, managing, and analyzing
these datasets. Parallelism is the key in achieving acceptable
turnaround times in analysis of such data. Moreover, we
cannot reduce the overall latency unless all (sequential)
bottlenecks in the analysis pipeline are removed. While there
has been considerable work on parallelizing the sequence
analysis step [24], [35], [21], [11], [26], [7], [18], other
steps in the analysis pipeline stay sequential, creating either
a bottleneck, or reducing flexibility in cross operation of
tools.

We consider the following example. Currently, there are
many sequence aligners1 available to the genomics com-

1http://en.wikipedia.org/wiki/List of sequence alignment software

munity, but most aligners output the alignments in their
own specific data formats. Unless format conversion can
be performed efficiently, downstream tools may not be ex-
changed between different aligners. Among these sequence
data formats, SAM/BAM is the most popular format, which
is generated by many alignment programs2. To the best
of our knowledge, there is no existing work that supports
parallel sequence data format conversion for these complex
tools. Instead, sequence data format converters commonly
used today can only make use of a single core, making it
extremely time-consuming to process large datasets, and be-
coming a bottleneck when other analysis steps are performed
in parallel. Similarly, there are other statistical analysis steps,
such as analysis of a massive histogram, and it is becoming
increasingly important to apply parallelism to this step. Both
parallel algorithms and parallel computation platforms are
now quite favored in many histogram analysis scenarios,
such as SNP discovery [20], BLAST [11] and GSEA [11].

We have developed a scalable sequence data analysis
framework, which consists of two components, a sequence
data format converter and a statistical analysis module.
On one hand, the sequence data format converter allows
sequence datasets in BAM/SAM format to be converted
into multiple formats including SAM/BAM, BED, FASTA,
FASTQ, BEDGRAPH, JSON, and YAML, using both shared
memory and distributed parallelism. This converter com-
prises three converter instances: SAM format converter, BAM
format converter and preprocessing-optimized SAM format
converter. One of the advantages of our framework is to
utilize indexing, and thus, our framework can also support
partial format conversion, to perform format conversion
only on a specified chromosome region. For many analysis
phases, we avoid unnecessary computation and I/O over-
heads caused by blindly converting the entire datasets. On
the other hand, the statistical analysis module parallelizes
both the non-local means (NL-means) algorithm and the
false discovery rate (FDR) computation [14].

Through extensive evaluation, we demonstrated high scal-
ability of our framework. The system is capable of efficiently
converting sequence datasets in BAM/SAM format into
varieties of other sequence formats in parallel. Additionally,
we also compared the sequential performance of our system
against Picard [4], a widely used toolkit for manipulating

2http://samtools.sourceforge.net/swlist.shtml

2014 IEEE 28th International Parallel & Distributed Processing Symposium Workshops

978-1-4799-4116-2/14 $31.00 © 2014 IEEE

DOI 10.1109/IPDPSW.2014.64

508

SAM/BAM data. Finally, the statistical analysis steps have
also been parallelized effectively.

II. BACKGROUND

This section provides background information on next-
generation sequencing technologies, and various data for-
mats popularly used in their context.

A. Next-Generation Sequencing Technologies

���������������������

� ��� ���

�����������
������� ��

����

�	�
���������	��

��������������	���������������

��������

����������

������

���������

��
��
���
��
�	 ����������	���������������

������

�������

���

�����

����������	��
��
��
�
�

����
��

	����	������
��
��
�	
��
�

��

���

�

��������	���	
�

��
��

���
���� ���� ���� 	��	 	��
 	���

Figure 1. Historical Trends in Storage Prices versus DNA Sequencing
Costs [34]

For much of the past two decades, the genome analysis
industry had been dominated by automated Sanger sequenc-
ing [27], [16], which is also referred to as the first-generation
technology. Despite many technical improvements during
this era, the limitations of automated Sanger sequencing
were quite evident. Addressing these challenges lead to
the advent of next-generation sequencing (NGS) technolo-
gies. These technologies, which comprise template prepa-
ration, sequencing and visualization, and genome align-
ment/assembly methods, aim to present a comprehensive
image of normal human genome variation.

The major advantage of NGS is the cheap and fast
generation of massive amounts of sequence data, (e.g., even
over one billion short reads per instrument run in some
cases). Thus, one of the major challenges posed by NGS
technologies is of large-scale data analysis, data integration,
data storage and data movement for the massive amounts of
sequence data produced by NGS instruments. As reported by
others [34], [6], NGS has radically changed the cost curve,
as shown in Figure 1 (which is reprinted from [34]). The
cost of sequencing a base has fallen much faster than the
cost of storing a byte, making management and analysis of
sequencing data a ‘big data’ challenge.

B. Next-Generation Sequencing Data Formats

For efficient storage, alignment, visualization and analysis
on large-scale next-generation sequencing data, a number of
sequence data formats have been proposed, including SAM
(Sequence Alignment/Map), BAM (Binary Alignment/Map),
BED (Browser Extensible Data), FASTA, FASTQ, WIG
(wiggle) and GFF (Gene Finding Feature). The following

documentation 3 lists most of the major sequence data
formats. Many sequencing applications can only accept
certain formats, leading to the need for very efficient data
format conversion. We review these formats, focusing on the
most popularly used ones, which are SAM and BAM.

1) SAM: SAM (Sequence Alignment/Map) [23], [5] for-
mat is currently the de-facto standard for storing large
nucleotide sequence alignments. Nowadays, most SAM
datasets are produced from sequence aligners, which read
sequences stored in a format called FASTQ and assign the
sequences to a position compared with a known reference
genome. It is also expected that SAM will be used for
archiving unaligned sequence data, which is output directly
from sequencers, in the near future.

SAM is a text format, which is comprised of two sections,
comment lines and alignment lines. Comment lines, where
each starts with an ‘@’, may be contained in the optional
SAM header. Alignment lines, which are delimited by line
breaker, store sequence data in a series of tab-delimited
ASCII columns. Each alignment line corresponds to an
alignment record, and it consists of 11 mandatory fields as
well as a variable number of optional fields.

2) BAM: BAM [5] is the compressed, indexable, binary
form of the SAM format, which contains the same but
more compact nucleotide sequence alignment information.
There are two major advantages of BAM over other text
alignment formats. The first advantage is its compact nature.
BAM is compressed in the BGZF format, which is a block
compression technique implemented on top of the standard
gzip file format. All integers in BAM are little-endian,
regardless of the machine endianness. Therefore, the usage
of BAM can substantially reduce I/O throughput and data
transfer cost during processing. The second advantage is its
indexability, which leads to a fast retrieval of alignments
within a particular region, by scanning only a portion of
the entire alignments. The indexing is implemented by the
UCSC binning scheme [17], which is a representation of the
R-tree. The corresponding indexing file is in the BAI (BAM
Index) format.

3) Other Sequence Formats: There are also a number of
other popular sequence data formats, such as BED, FASTA,
FASTQ, BEDGRAPH. The BED (Browser Extensible Data)
format, which was developed by UCSC, is a tab-delimited
text format for displaying transcript structures in the genome
browser. FASTA format is a text-based format for repre-
senting either nucleotide sequences or peptide sequences,
in which nucleotides or amino acids are represented using
single-letter codes. FASTQ is another text-based format for
storing both a biological sequence and its corresponding
Phred quality. Its purpose is to bundle a FASTA sequence
and its quality data. BEDGRAPH format is typically used to
visualize the genome-wide ‘scores’, and it allows display of
the same data value within a continuous region in a concise
track format.

3http://www.broadinstitute.org/igv/FileFormats

509

III. SEQUENCE DATA FORMAT CONVERTER DESIGN

In this section, we discuss the design and implementation
of the parallel and scalable sequence data format converter,
which includes three different converter instances for con-
verting SAM/BAM format into other formats.

A. SAM Format Converter

���
����	
�

��������� ���������
������

�����
�����

���
�������

�������
��
���

����������� ��
��� ��!��
��� ��"���������"�������

#
��
������

$����
�������

�����
������

�������
��
���

���%������

��������& ���������
������

�����
����&

���
������&

$����
������&

�����
������

��������' ���������
������

�����
����'

���
������'

$����
������'

�����
������

Figure 2. SAM Format Converter Execution Overview

Our SAM format converter consists of two components: a
runtime system and a user program. The runtime system is
responsible for partitioning the input SAM dataset, loading
partitioned data into read buffers, parsing SAM records into
alignment objects, and writing alignment objects to the disk.
The user program is designed for converting every alignment
object into a target object, such as a BED text line or a
FASTQ text line.

Figure 2 gives an overview of the execution flow of
the SAM format converter. First, the input SAM dataset
is evenly partitioned to each processor in the distributed
environment. As a result, the sizes of all the partitions are
exactly equal, although the number of alignments within
each partition is unknown. After partitioning, the system
schedules repeated loading of partitioned data into memory
via the read buffer. Afterwards, a textual parsing is per-
formed to convert each SAM text line into an alignment
object, which later will be converted into a user-specified
target object within the user program. Finally, each processor
sends converted target objects to the write buffer and then
writes to a separate target file.

Because the format conversion is entirely independent
of each SAM record, there is no communication among
processors after partitioning. Therefore, the most important
phase for parallelization is partitioning. As we introduced
earlier in Section II-B1, a key feature of SAM format is
that, each record is delimited by a line breaker. Based on
this feature, we propose the following partitioning strategy
for the SAM format. The system first evenly distributes the
dataset to each processor. In this process, it is highly likely
that the initial partition boundaries are located within SAM
records, rather than being located exactly at the line breaker
positions. As a result, each initial partition is very likely to
begin and end with an incomplete SAM record. Therefore,
it is necessary to further adjust both the starting point and
the ending point of each partition.

Algorithm 1: partition(start, end, length, rank, N)
1: initialize start, end, and length by evenly distributing the

datasets to N processors
2: {adjust starting points forward, for the last N - 1 processors}
3: if rank �= 0 then
4: allocate a temporary buffer buf to read beginning data

from the partition starting point
5: index← 0 {detect the first line breaker}
6: while bufindex �= line breaker do
7: index← index + 1
8: end while
9: start← start + index + 1 {update start values}
10: end if
11: {assign the start value of processori+1 to the end value of

processori}
12: if rank �= N − 1 then
13: endrank ← startrank+1

14: end← end− 1 {update end values}
15: end if
16: set a global barrier to wait until all the processors have

finished the above steps
17: length← end− start + 1 {update length values}

There are two different but equivalent implementations
to perform such an adjustment of partition starting/ending
point positions. The first implementation is illustrated by
Algorithm 1. Here, all the processors except the first one,
detect the first line breaker from the partition starting point.
Once the first line breaker is found, the initial starting
point is replaced by a SAM record beginning character
which appears right after that line breaker. Afterwards,
each processor sends its new partition starting point to
its preceding processor for updating ending point. Finally,
the partition size can be retrieved by computing the offset
between updated ending point and starting point. In com-
parison, in the second implementation, all the processors
except the last one, compute the partition ending point first,
by detecting the last line breaker backwards. Afterwards,
each processor sends its new ending point to its succeeding
processor for updating starting point, and the partition size
will be recomputed in the same way. Our system chooses
the first implementation.

Another benefit of this converter design is its high ex-
tendibility and programmability. If the user needs to convert
SAM into another format, which hasn’t been supported by
our system, all the user has to do is to implement a format
conversion function in the user program, which converts
each alignment object into the corresponding target object.
All the low-level details such as parallelization, concurrency
control, resource management and many other issues are
abstracted within the runtime and transparent to the user.

B. BAM Format Converter

Unlike SAM format, there is no explicit delimiter between
two neighboring BAM records. Therefore, the parallelization
strategy used in the SAM format converter cannot be applied
for the BAM format conversion process. If the input BAM
datasets are initially evenly distributed, then each partition

510

will still be wrapped with incomplete BAM records, but
of unknown length, which makes the partitioned data un-
parsable. Thus, we realize that it is impossible to parallelize
the BAM format conversion without any preprocessing.

���
����	
�

���(����

��)������
���%����

���

������
 ��!��
���

��*(����

�����
����	
�

Figure 3. BAM Format Converter Execution Overview

Based on this observation, the execution flow of BAM
format converter, mainly consists of two phases: sequential
preprocessing and parallel conversion, as also shown in
Figure 3. Our BAM format parser is implemented by using
the C++ API provided by BamTools [7]. Note that since
this third-party library can only support reading BAM data
sequentially, the preprocessing step cannot be parallelized.

During the sequential preprocessing phase, input BAM
datasets are preprocessed to generate a BAMX (BAM eX-
tended) file as well as a corresponding BAIX (BAI eXtended)
file. Note that both BAMX and BAIX formats are uniquely
designed in our work. As the BAI file is the index file of
the BAM file, the BAIX file is the index file of the BAMX
file. Figure 4 shows the structure of an example BAIX
file. Specifically, starting position is one of the mandatory
fields of an alignment record, indicating where the alignment
begins, and alignment index points to the alignment physical
position in the associated BAMX file. The BAIX file stores
all the alignment starting positions combined with their
corresponding alignment indices within the BAMX file, in
increasing order of starting position value.

The partitioning strategy used in the BAM format con-
verter is mainly based on supporting the random access of
alignment, which benefits from the sequential preprocessing
phase. Because once the random access of alignment is
allowed, the partitioning is essentially a fast retrieval of
an equal number of alignments by each processor. After
partitioning, all the remaining execution flow is as same
as the SAM format converter execution flow. Furthermore,
because of the generation of BAIX file, the system can
support partial conversion, which allows format conversion
on only a subset of the input BAM datasets, and thereby
unnecessary computation overhead and I/O cost can be
avoided.

The main purpose of sequential preprocessing is to fa-
cilitate the subsequent parallelization, by converting each
varying-length BAM record into a regular-layout BAMX
record and keeping all the records aligned. In each original
BAM record, the lengths of many fields such as CIGAR data,
query bases, FASTQ qualities and tag data, can significantly

vary, resulting in large variance of BAM record lengths.
Our preprocessing appends additional padding to all these
varying-length fields so that the length of each field in the
generated BAMX record is fixed. Therefore, the length of all
the BAMX records is a constant value, and thus the random
access of alignment can be easily supported.

With all the records aligned in a BAMX file, the system
divides a BAMX dataset into multiple partitions, where
almost every partition contains an equal number of BAMX
records. During the parallel conversion phase, each BAMX
record can be retrieved via random access, parsed as an
alignment object, and eventually converted into a target
object, in parallel.

��������	

�������	

��������	

�������	�

��������	

�������	�
���������	

�	�����

��������	

�������	�

��������

�������	�

���������	
�	�����

���������	
�	�����

���������	
�	�����

���������	
	�����

Figure 4. Structure of an Example BAIX File

In practice, sometimes the user may be only interested
in a data subset over a certain chromosome region, so it
is unnecessary to convert the entire datasets in this case.
Instead, it is more efficient to perform the format conversion
over only a user-specified region. For simplicity, we call
the first case as full conversion, and we refer to the the
second case as partial conversion. As we stated earlier, one
of the benefits of sequential preprocessing is that, it can
support partial conversion based on a BAIX file. If the
user specifies a sequence region with both starting position
and ending position, both of these two positions can be
located in the BAIX file, by using a binary search over
the sorted alignment starting positions. Therefore, a user-
specified region can be mapped to a region on the BAIX file,
which we refer to as BAIX region for simplicity. Afterwards,
the BAIX region can be easily divided into multiple equal-
length subregions for each processor. Finally, each processor
can retrieve all the alignments within its corresponding BAIX
subregion via random access for parallel conversion.

The main drawback of this design is the sequential prepro-
cessing cost, due to the intense I/O requirements. However,
the sequential preprocessing only needs to be executed once,
and this cost can be later amortized by performing parallel
conversion multiple times (i.e., into different formats).

C. Preprocessing-Optimized SAM Format Converter

Our third converter instance, preprocessing-optimized
SAM format converter, is developed based on another paral-
lelization strategy. This parallelization strategy is a combina-
tion of the two strategies proposed earlier in Section III-A
and Section III-B. We believe that a preprocessing phase,
similar to the one in the BAM format converter execution
flow, can also be used to optimize the SAM format conver-
sion. Therefore, as Figure 5 shows, we designed a prepro-
cessing phase besides a parallel conversion phase. However,
since we can use Algorithm 1 to partition SAM datasets, this
preprocessing phase can be a parallel preprocessing instead

511

���
����	
�

������
���%����

���

������
 ��!��
���

���(�����
��*(�����

���(����&
��*(����&

���(�����
��*(�����

�����
�����+,

�����
����	�-��+,.�

�����
����	�-��+,.&

�����
����&+,

�����
����,.�

�����
����,.&

�����
����,

�����
�����

�����
����&

Figure 5. Preprocessing-Optimized SAM Format Converter Execution
Overview

of a sequential one. After the system partitions the input
SAM datasets in the preprocessing phase, each processor is
responsible for converting one SAM partition into a separate
BAMX file, by inserting padding and keeping all the records
aligned. Additionally, the corresponding BAIX files will
also be generated to support partial conversion. Note that
although input SAM files are text files, the preprocessing
results are compact binary files in the BAMX format, so
that certain textual parsing overhead can be avoided, and
the I/O cost can be reduced.

The subsequent parallel conversion phase is almost as
same as the one in the BAM format converter execution flow,
but the parallel conversion is only performed on a single
BAMX file (and its BAIX file if needed) at a time. Therefore,
if there are M processors involved in the preprocessing
phase, and N processors involved in the conversion phase,
there will be M BAMX files generated, and N target files
generated for processing each BAMX file. In total, there will
be M ×N target files generated in this case.

There are three main benefits of the preprocessing-
optimized SAM format converter: 1) the preprocessing cost
can be reduced by parallelization; 2) the format conversion
can be accelerated by the use of preprocessed BAMX files;
and 3) the scalability of format conversion can be improved
by the layout regularity of preprocessed BAMX files.

IV. PARALLELIZATION OF STATISTICAL ANALYSIS

STEPS

By using the sequence data format converter, the user
is able to convert aligned sequence data in SAM/BAM
format into histogram data in BED/BEDGRAPH format in
parallel. The histogram is calculated by aligning multiple
sequence reads to a reference genome and accumulating
the frequencies overlapped along the genome segments into
binned peaks for further analysis. A quantitive field (‘score’)
in a BED/BEDGRAPH record can be taken as such a peak
value.

The computed histogram can be massive in size, and there
is often a need for analysis of such histogram to make im-
portant inferences. In this section, we discuss the design of
the histogram analysis module, which can perform parallel
statistical analysis over the histogram data. Specifically, we
parallelized both the non-local means (NL-means) algorithm

and the false discovery rate (FDR) computation, proposed
by Han et al. [14] as statistical analysis steps on histogram
data.

A. NL-means Parallelization

Non-local means (NL-means) [8] algorithm was initially
proposed for image denoising [38]. Recently, Zhi et al.
have shown that NL-means algorithm is also highly ef-
fective in denoising NGS histogram data [14]. Here we
briefly describe the essential formulation and the primary
parameters. Formally, given a histogram with data points
V = {vi, i = 1, . . . , N}, the value of each point vi in
the histogram is updated by a weighted average of its
neighborhoods in the search range R, specifically, with new
value for vi defined as

NL[vi] =
∑

j∈R

w(i, j)vj (1)

Here, w(i, j) is the weight between vi and vj , and its value
reflects the similarity between the two points:

w(i, j) =
exp(−‖N(vi)−N(vj)‖/(2σ2))

Z(i)
(2)

where the normalizing factor

Z(i) =
∑

j∈R

exp(−
‖N(vi)−N(vj)‖

2σ2
) (3)

and N(vi) denotes a fixed-sized patch L centered at the
point i. In practice, the NL-means algorithm requires three
parameters, the search range radius r, the half patch size l,
and the filtering parameter σ. The computation complexity
is Θ(N(2r + 1)(2l + 1)).
During NL-means processing, there is no communication

when each point is updated, and each update operation is
performed over a region of 2(r+l)+1 length. Therefore, our
parallelization strategy, which consists of three steps, has to
involve replicating necessary boundary data. First, we evenly
divide the 1-dimensional histogram datasets into multiple
partitions P = {Pi, i = 1, . . . , N}, where N is the number
of cores. Second, for each partition Pi, we replicate both a
fix-sized ending region from Pi−1 and a fixed-sized starting
region from Pi+1, to expand the partition to P ′i . The size of
each appended region is (r+l), so both the starting point and
ending point in the original partition Pi are able to perform
NL-means processing over the enlarged partition P ′i . Finally,
we perform NL-means processing over the original partition
Pi, so the computation over the replicated data can be
avoided.

B. FDR Computation Parallelization

The purpose of False Discovery Rate (FDR) computation
is to select a threshold for region selection, based on
multiple simulation datasets that are generated from random
simulations, and a histogram dataset [14]. Formally, given a
histogram datasets and B simulation datasets, where each
dataset has M bins, the read over the i-th bin of the
histogram dataset is denoted as ri, and the read over the

512

i-th bin of the b-th simulation dataset is denoted as r∗ib.
Moreover, for the i-th bin in the histogram, the ratio that
the observed data is less than simulated data is denoted as

pi =

B∑

b=1

I(ri ≤ r∗ib) (4)

and the number of false peaks in the b-th round of simulation
is recorded as

db =

M∑

i=1

I(

B∑

b′=1

I(r∗ib ≤ r∗ib′) ≤ pt) (5)

The false discovery rate for the threshold pt is

FDR(pt) =
B−1

∑B

b=1
db∑M

i=1
I(pi ≤ pt)

(6)

The computation complexity is Θ(MB2).
The parallelization is based on the observation that this

FDR computation mainly involves two summation opera-
tions, i.e., calculating FDR numerator and FDR denomi-
nator. We can partition the datasets either in the (M -)bin
direction or in the (B-)simulation direction. We choose to
partition in the bin direction out of two reasons. First, in
practice, the number of simulation datasets may be even less
than the number of computation cores. Second, the FDR
computation involves many of bin-direction comparisons,
which compare the read values from the same bin location
among different simulation/histogram datasets. Therefore,
collecting all the read values along the same bin direction
within the same partition can reduce the communication
cost.

One important optimization in the parallelization is that,
rather than first calculate the FDR numerator in parallel
and then calculate the FDR denominator in parallel, in two
separate steps, we can calculate both concurrently. In this
way, we can avoid one additional global synchronization
and hence improve the parallel performance. To facilitate
such a parallelization, we need to take a summation per-
mutation, which moves the bin-direction summation in the
FDR numerator to the outermost, by transforming the FDR
formulation as follows. We define a component of the FDR
numerator in Equation 6 as

sum�

i =

B∑

b=1

I(

B∑

b′=1

I(r∗ib ≤ r∗ib′) ≤ pt) (7)

and a component of the corresponding FDR denominator as

sum∗

i = I(pi ≤ pt) (8)

By combining Equation 7 and 8, we can reformulate

FDR(pt) =

∑M

i=1
sum�

i

B
∑M

i=1
sum∗

i

(9)

The parallel FDR computation is illustrated in Algo-
rithm 2, After bin-direction partitioning and local summa-
tions, a master processor will collect all the local sums (i.e.,

sum�

i and sum∗

i), perform a global summation to calculate
both FDR numerator and FDR denominator, and finally
compute the FDR value.

Algorithm 2: parallelFDR(pcut, N)
1: evenly divide the datasets into N partitions Pi(i = 1, ..., N)

in the bin direction
2: compute the local sum sum�

i for partition Pi

3: compute the local sum sum∗

i for partition Pi

4: set a global barrier to wait until all the processors have
finished the above steps

5: {compute the global sums}
6: sum� ←

P
N

i=1
sum�

i

7: sum∗ ←
P

N

i=1
sum∗

i

8: FDR(pt)←
P

M

i=1
sum

�

i

B
P

M

i=1
sum∗

i

V. EXPERIMENTAL RESULTS

In this section, we evaluate the functionality and scala-
bility of our system on a cluster of multi-core machines.
We evaluate the parallel scalability of the various imple-
mentations we have described in the previous two sections.
In addition, we also compare our sequential implementa-
tion system against Picard [4] which comprises Java-based
command-line utilities for processing SAM/BAM files.

Our experimental dataset consists of whole genome DNA-
sequencing of three mouse samples. For each sample, paired-
end 90bp sequence reads were generated by Illumina HiSeq
2000 sequencing platform. Sequence reads were aligned to
the mouse reference genome (mm9, July 2007, NCBI Build
37) with BWA [22]. This algorithm outputs alignment results
in SAM/BAM format. Each alignment file was consisting of
approximately 125 million sequences providing about 40-
fold coverage of the genome.

Our experiments were conducted on a cluster of multicore
machines. The system uses AMD Opteron(TM) Processor
8218 with 4 dual-core CPUs (8 cores in all). The clock
frequency of each core is 2.6 GHz, and the system has an 8
GB main memory. We have used up to 256 cores (32 nodes)
for our study. Our system is implemented in C++ with MPI
library.

A. Sequential Comparison against Picard

Picard is a set of Java-based command-line utilities that
manipulate SAM/BAM files, as well as a Java API (SAM-
JDK) to help developers read and write SAM/BAM files.
Picard supports format conversions between SAM/BAM and
FASTQ. Therefore, in our sequential comparison experi-
ments, we evaluated the performance of our system by
converting SAM/BAM into FASTQ. The version 1.74 of
Picard was used in our experiments.

We evaluated the sequential performance of our three
format converter instances against Picard. Specifically, for
the BAM format converter, we used both the conversion
without preprocessing and the conversion with preprocess-
ing. The experimental datasets were two datasets within a
single chromosome region ‘chr1’, in the SAM and the BAM

513

Table I
SEQUENTIAL COMPARISON RESULTS AGAINST PICARD

Avg. Conversion Our System Our System Picard
Times (sec) Without Preprocessing With Preprocessing

SAM → FASTQ 3214 2804 3121
BAM → SAM 2043 1548 1425

format, respectively. The size of the SAM dataset was 37.54
GB, and the size of the corresponding BAM dataset was 7.72
GB. Specifically, we compared our implementation against
Picard by converting the SAM dataset into the FASTQ
format, and then we made another comparison for converting
the BAM dataset into the SAM format.

Table I shows the comparison results. For conversion
from SAM into FASTQ, the sequential performance of our
original SAM format converter without preprocessing is
slightly slower than, but quite close to, the performance of
Picard. Moreover, our preprocessing-optimized SAM format
converter can even outperform Picard by around 10%. This
is mainly because that, the input of the preprocessing-
optimized SAM format converter are binary, perfectly-
aligned BAMX files instead of text files. Reading from
BAMX files can save certain textual parsing overhead, and
the layout regularity of BAMX files can lead to more regular
data accesses and hence improve the I/O performance.

On the other hand, as for the sequential performance of
converting BAM into SAM, Picard can outperform our BAM
format converter without preprocessing by 30%. Picard also
marginally outperforms our BAM format converter with pre-
processing, although the preprocessing can also accelerate
the format conversion. We believe this is because that, we
used a third-party utility, BamTools, in our system to read
BAM alignments. BamTools utility generates a memory
object for each alignment record. To generate alignment
object as the input of conversion phase in our system, an
adaption from the memory object generated by BamTools to
the alignment object used by our system has to be completed,
leading to certain performance loss.

Recall that it was not our goal to generate fastest se-
quential converters. Instead, our goal was to be competitive
with respect to sequential performance, which we have
demonstrated.

B. Performance of SAM Format Converter

This experiment evaluates the performance of the par-
allelization of converting a SAM dataset into different
sequence data formats, including BED, BEDGRAPH and
FASTA. The experimental dataset is a subset of the entire
SAM dataset, where the size is 100 GB, while the number
of cores used for parallel conversion varies from 1 to 128.
Figure 6 shows the results. We can see that our system is
capable of scaling the performance of such a conversion
over a SAM dataset. This demonstrates the effectiveness of
our partitioning algorithm described in Algorithm 1, which
can help achieve a good load balance. Moreover, the results
also show that the conversion from SAM into BEDGRAPH

��

��

�

��

��

��
��

�
�

�!�

�!��"���

#��$�

�

��

	�

�

� �
 	
� �	�

�

%��&������

Figure 6. Conversion Speedup of SAM Format Converter

scales slightly better than the other two conversions. This is
because that, as more cores are involved in the conversion,
the scalability is mainly curbed by the I/O bottleneck. Since
a BEDGRAPH record contains less text information than a
BED or FASTA record, the conversion into BEDGRAPH is
the least I/O intensive, leading to the best scalability.

C. Performance of BAM Format Converter

�

��

���

�	�

���

��
�

��

�!�

�!��"���

#��$�

�

	�

��

� �
 	
� �	�

��

%��&������

Figure 7. Full Conversion Speedup of BAM Format Converter

We next evaluate the conversion performance of our BAM
format converter, by converting a BAM dataset into three
different formats: BED, BEDGRAPH and FASTA. We first
report the results from conversion of a full or entire given
dataset, i.e, not any subset of the given datasets. We used
a 117 GB sorted BAM dataset, and number of cores we
used varies from 1 to 128. The results in Figure 7 show
that the performance of the full conversion scales well as
the number of cores increases. There are two reasons for
such a good scalability. First, after the preprocessing phase,
all the BAMX records are perfectly aligned by padding,
so that the data layout has a very regular pattern. Such a
regularity in layout helps improve the MPI-IO performance.
Second, the conversion tasks assigned to all the processors
are independent of each other.

514

D. Partial Conversion Performance of BAM Format Con-
verter

���

����

����

���

'�
��
��
��
$�
(
��
���
��
�

)������

*+������

,-������

+.������

*-)������

�

����

	���

	�� ���
�� ��� ����

�'
�/
��
��

"��������'��	��

Figure 8. Partial Conversion Speedup of BAM Format Converter

We next evaluate the performance of our BAM format
converter, by converting different subsets of the 117 GB
BAM dataset into the SAM format. In this experiment, the
subsets correspond to different chromosome regions, and are
20%, 40%, 60%, 80% and 100% of the original 117 GB
BAM dataset. We scaled the number of cores from 8 to 128.
The results in Figure 8 show that the conversion times for
different subsets are approximately proportional to the sizes
of specified regions. It demonstrates that our system can
support parallel partial conversion very efficiently, because
the overhead of identifying specified chromosome regions by
using binary search over the BAIX file is trivial, compared
with the format conversion cost.

E. Comparing Preprocessing-Optimized SAM Format Con-
verter against Original SAM Format Converter

��

��

�

��

��

��

���

��
�

��

�!�0�

�!�

�!��"���0�

�!��"���

#��$�0�

#��$�

�

��

	�

�

��

� �
 	
� �	�

��

%��&������

Figure 9. Conversion Speedup of Preprocessing-Optimized SAM Format
Converter and Original SAM Format Converter

In this experiment, we compare the parallel performance
of preprocessing-optimized SAM format converter against
the original one (which does not require any preprocessing).
We converted SAM format into three different sequence
formats, including BED, BEDGRAPH and FASTA, by using
both the preprocessing-optimized SAM format converter and
the original SAM format converter, respectively. The size of
the experimental SAM dataset is 15.7 GB. Figure 9 shows

our experimental results. The bars end with “ P” indicate the
conversion speedups of the preprocessing-optimized SAM
format converter, where the preprocessing cost is excluded.
In contrast, the other bars represent the conversion speedups
of the original SAM format converter.

First, we can see that the scalability of the preprocessing-
optimized SAM format converter is better than the original
SAM format converter. This is because that each align-
ment within the preprocessed BAMX file(s) is perfectly
aligned after preprocessing, leading to a more regular data
layout. This layout regularity can help improve the MPI-
IO performance. Second, we can conclude that the SAM
preprocessing can accelerate the conversion. For instance,
we observed that the times of converting into BED, BED-
GRAPH and FASTA with the original SAM format converter
on 128 cores were 16.64s, 15.10s, and 18.54s, respectively,
while the corresponding times with the SAM preprocessing
were 11.51s, 11.48s, and 12.80s, respectively. As a result,
the performance of conversion into BED, BEDGRAPH
and FASTA was improved by the SAM preprocessing by
a factor of 30.8%, 24.0%, and 31.0%, respectively. This
is because that the preprocessing can save certain textual
parsing overhead, by storing alignments in a binary format.
However, it is necessary to point out that there is a tradeoff
between the conversion performance and the preprocessing
cost. The more textual parsing overhead is saved during
the conversion phase, the more textual parsing needs to be
completed during the preprocessing phase.

F. Preprocessing Performance of Processing-Optimized
SAM Format Converter

��

	�

	�

�

��
�

��

�� ��������������

�

�

��

� �
 	
� �	�

��

%��&������

Figure 10. Preprocessing Speedup of Preprocessing-Optimized SAM
Format Converter

This experiment is designed to evaluate the scalability of
the SAM preprocessing step, with the same 15.7 GB SAM
dataset used in Section V-E. The sequential preprocessing
time was 2187s. The results in Figure 10 show that, although
the scalability within a single node is mainly bridled by the
I/O bottleneck, the performance scales well as the number of
cores increases. It demonstrates that the SAM preprocessing
can also be well parallelized in distributed environments by
using the partitioning Algorithm 1.

515

���

	��

	��

��
��
��
��
�

"1-2

"1)2

"1,-2

�

��

���

� �
 	
� �	� 	�

��	
���	��

Figure 11. Speedup of NL-means Processing

G. Parallel NL-means Performance

In this experiment, we evaluate the scalability of parallel
NL-means processing. We used up to 128 cores to denoise
16M bp histogram data. Recall that NL-means requires 3
salient parameters, i.e., search range radius r, half patch size
l, and filtering parameter σ. Because adjusting the value of σ
only affects the denoising quality rather than the processing
overhead, we set a fixed value for σ. Moreover, because the
value of r is usually much greater and adjusted more often
than the value of l, among the 3 NL-means parameters we
only varied r, from 20 to 320 bins, where the bin size was
25 bp. Particularly, for the other two fixed parameters, we
set σ = 10, and l = 15.

NL-means processing over sequence data is quite compu-
tationally intensive, and the average sequential processing
times for r = 20, r = 80 and r = 320 are 10213s, 41010s
and 163231s, respectively. As Figure 11 illustrates, NL-
means performance scales well as the number of cores grows
or the search range radius increases. This is because that
NL-means processing is independent of each partition, and
the extra parallelization overhead, which is mainly caused
by replicating a small redundant boundary data, is relatively
trivial.

H. Parallel FDR Computation Performance

���

	��

	��

��

��
��

�
�

#�"���(���	����

�

��

���

� �
 	
� �	� 	�

%��&�������

Figure 12. Speedup of FDR Computation

Our last experiment evaluates the parallel performance of
FDR computation. We used up to 256 cores to process 1
histogram dataset and 80 simulation datasets, where each
dataset contains 16M bins. The results in Figure 12 show that
FDR computation can gain a good speedup by paralleliza-
tion. The speedups compared with the sequential version
that averagely consumes 1164s, are demonstrated up to 8.30,
16.60, 33.15, 66.16, 132.14, and 263.94, for 8, 16, 32, 64,
128, and 256 cores, respectively. Additionally, we can also
conclude that there is certain extra speedup gained by the
summation permutation in Algorithm 2.

VI. RELATED WORK

The topic of processing next-generation sequencing data
has attracted a lot of attention in the past few years.

The Genome Analysis Toolkit (GATK) [26] is designed
to ease the development of efficient and robust analysis
tools for next-generation DNA sequencers. GATK provides a
small but rich set of data access patterns that encompass the
majority of analysis tool needs. However, there is no specific
utility for sequence data format conversion or the statistical
analysis steps we have parallelized. Besides, currently dis-
tributed memory parallelization is not stably supported by
GATK yet. Furthermore, MapReduce already has a substan-
tial base in NGS analysis as well as other bioinformatics
domains [35], [10], [29], [11], [25], [39]. Apart from GATK,
a series of MapReduce-based efforts have been carried-out.
This includes Cloudburst [33], Crossbow [20], Contrail [3],
Jnomics [1], Myrna [19], and Bioconductor [12], which
were all developed for analysis tasks such as whole genome
resequencing analysis, SNP genotyping from short reads,
assembly from short sequencing reads, short read alignment,
and calculating differential gene expression from large RNA-
seq data sets. Moreover, Biodoop [21] demonstrates that
several bioinformatics applications are compatible with the
MapReduce paradigm. Hadoop-BAM [28] is a novel library
for the scalable manipulation of BAM datasets in Hadoop.
SciMATE [36] is a novel MapReduce framework which sup-
ports various data analysis over bioinformatics data stored
in HDF5 [37]. Additionally, parallel NL-means has been
developed for image processing on both multicore CPUs and
GPUs [32], [15], [13]. In comparison, our parallelization
is applied to denoising 1-dimensional sequence data in
distributed environments.

There are many software libraries for manipulating and
exploring genomic datasets. SAMtools [23] is a software
package that comprises various utilities for parsing and
manipulating alignments in the SAM/BAM format. Bam-
Tools [7] is a fast and flexible C++ API and toolkit for
manipulating and querying BAM files, including merging,
filtering, and sorting them. Picard [4] supports analyzing
and managing sequence data in SAM/BAM format. We
have conducted extensive comparisons between our system
and Picard. BEDTools [30] is another popular software
suite for the comparison, manipulation, and annotation of
genomic features in multiple sequence formats, including
BED, SAM/BAM, GFF/GTF, and VCF. Moreover, there
is a Python extension of BEDTools pybedtools [9], which

516

provides an intuitive Python interface that extends upon
much of the functionality in BEDTools. The European
Molecular Biology Open Software Suite (EMBOSS) [31]
is a free open source software analysis package, which
aims to meet the needs of the molecular biology (e.g.,
EMBnet) user community. Galaxy [2] is an open, web-based
platform for data intensive biomedical research. Particularly,
it provides several light-weight data format converters on the
web interface. However, none of these tools has provided any
parallel implementation of the tasks we have focused on.

VII. CONCLUSIONS AND FUTURE WORK

This paper describes implementation of a scalable se-
quence data analysis framework, which can help remove
certain sequential bottlenecks in analysis of next-generation
sequence data. To the best of our knowledge, our system
is the first framework that can easily support parallel se-
quence format conversion in distributed environments, with
three converter instances including SAM format converter,
BAM format converter and preprocessing-optimized SAM
format converter. Additionally, we parallelize two statistical
analysis instances, which are NL-means algorithm and FDR
computation.

We have extensively evaluated our implementation and
compared its sequential performance against Picard. We
demonstrate that our sequential performance is close to
or even better than Picard. Furthermore, our system is
capable of supporting a larger variety of sequence format
conversions with three converter instances, scaling perfor-
mance by parallelizing the conversions, and parallelizing
NL-means algorithm and FDR computation. In future work,
we plan to utilize certain compression techniques during the
BAMX/BAIX file generation, and we also intend to apply
more sophisticated indexing techniques to the BAIX struc-
ture design for supporting more partial conversion types.

Acknowledgements

We wish to thank Derek Barnett and its research group at
Boston College for making BamTools open source.

REFERENCES
[1] Contrail: Assembly of Large Genomes using Cloud Computing. http://contrail-

bio.sourceforge.net.
[2] Galaxy. http://galaxy.psu.edu/.
[3] Jnomics. http://sourceforge.net/apps/mediawiki/jnomics/index.php.
[4] Picard. http://picard.sourceforge.net.
[5] BAM/SAM Specification, Sep 2011. v1.4-r985.
[6] M. Baker. Next-generation sequencing: adjusting to data overload. Nature

Methods, 7(7):495–499, Jul 2010.
[7] D. W. Barnett, E. K. Garrison, A. R. Quinlan, M. Stromberg, and G. T. Marth.

BamTools: a C++ API and toolkit for analyzing and managing BAM files.
Bioinformatics, 27(12):1691–1692, 2011.

[8] A. Buades, B. Coll, and J. M. Morel. A Non-Local Algorithm for Image
Denoising. In 2005 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’05), volume 2 of CVPR ’05, pages 60–65,
Washington, DC, USA, June 2005. IEEE.

[9] R. K. Dale, B. S. Pedersen, and A. R. Quinlan. Pybedtools: a flexible Python
library for manipulating genomic datasets and annotations. Bioinformatics,
27(24):3423–3424, Dec. 2011.

[10] J. Ekanayake, T. Gunarathne, and J. Qiu. Cloud Technologies for Bioinformatics
Applications. IEEE Transactions on Parallel and Distributed Systems, 2011.

[11] M. Gaggero and et al. Parallelizing bioinformatics applications with MapReduce.
Cloud Computing and Its Applications, 2008.

[12] R. C. Gentleman and et al. Bioconductor: open software development for
computational biology and bioinformatics. Genome biology, 5(10):R80+, 2004.

[13] B. Goossens, Q. Luong, J. Aelterman, A. Pizurica, and W. Philips. A GPU-
Accelerated Real-Time NLMeans Algorithm for Denoising Color Video Se-
quences. In J. Blanc-Talon, D. Bone, W. Philips, D. Popescu, and P. Scheunders,
editors, Advanced Concepts for Intelligent Vision Systems, volume 6475 of
Lecture Notes in Computer Science, pages 46–57. Springer Berlin / Heidelberg,
2010.

[14] Z. Han, L. Tian, T. Pecot, T. Huang, R. Machiraju, and K. Huang. A signal
processing approach for enriched region detection in RNA polymerase II ChIP-
seq data. BMC Bioinformatics, 13(Suppl 2):S2, 2012.

[15] K. Huang, D. Zhang, and K. Wang. Non-local means denoising algorithm
accelerated by GPU. In Society of Photo-Optical Instrumentation Engineers
(SPIE) Conference Series, volume 7497, Oct. 2009.

[16] C. A. Hutchison. DNA sequencing: bench to bedside and beyond. Nucleic Acids
Research, 35(18):6227–6237, Sep 2007.

[17] W. J. Kent, C. W. Sugnet, T. S. Furey, K. M. Roskin, T. H. Pringle, A. M.
Zahler, and D. Haussler. The Human Genome Browser at UCSC. Genome Res,
12(6):996–1006, June 2002.

[18] M. Kutlu and G. Agrawal. PAGE: A Framework for Easy PArallelization of
GEnomic Applications. In Proceedings of IPDPS, 2014.

[19] B. Langmead, K. D. Hansen, and J. T. Leek. Cloud-scale RNA-sequencing
differential expression analysis with Myrna. Genome biology, 11(8):R83+, Aug.
2010.

[20] B. Langmead, M. C. Schatz, J. Lin, M. Pop, and S. L. Salzberg. Searching for
SNPs with cloud computing. Genome biology, 10(11):R134+, Nov. 2009.

[21] S. Leo, F. Santoni, and G. Zanetti. Biodoop: Bioinformatics on Hadoop. Parallel
Processing Workshops, International Conference on, 0:415–422, 2009.

[22] H. Li and R. Durbin. Fast and accurate short read alignment with burrows-
wheeler transform. Bioinformatics, 25(14):1754–1760, July 2009.

[23] H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth,
G. Abecasis, R. Durbin, and 1000 Genome Project Data Processing Subgroup.
The Sequence Alignment/Map format and SAMtools. Bioinformatics (Oxford,
England), 25(16):2078–2079, Aug. 2009.

[24] E. Mardis. Next-Generation DNA Sequencing Methods. Annual Review of
Genomics and Human Genetics, 9(1):387–402, June 2008.

[25] A. Matsunaga, M. Tsugawa, and J. Fortes. CloudBLAST: Combining MapRe-
duce and Virtualization on Distributed Resources for Bioinformatics Applica-
tions. eScience, IEEE International Conference on, 0:222–229, Dec. 2008.

[26] A. McKenna and et al. The Genome Analysis Toolkit: A MapReduce frame-
work for analyzing next-generation DNA sequencing data. Genome Research,
20(9):1297–1303, Sept. 2010.

[27] M. Metzker. Emerging technologies in DNA sequencing. Genome Res,
15(12):1767–76, dec 2005.

[28] M. Niemenmaa, A. Kallio, A. Schumacher, P. Klemelä, E. Korpelainen, and
K. Heljanko. Hadoop-BAM: Directly manipulating next generation sequencing
data in the cloud. Bioinformatics, 28(6):876–877, Feb. 2012.

[29] L. Pireddu, S. Leo, and G. Zanetti. Mapreducing a genomic sequencing
workflow. In Proceedings of the second international workshop on MapReduce
and its applications, MapReduce ’11, pages 67–74, New York, NY, USA, 2011.
ACM.

[30] A. R. Quinlan and I. M. Hall. BEDTools: a flexible suite of utilities for
comparing genomic features. Bioinformatics, 26(6):841–842, 2010.

[31] P. Rice, I. Longden, and A. Bleasby. EMBOSS: the European Molecular Biology
Open Software Suite. Trends Genet, 16(6):276–7, 2000.

[32] T. Schairer, B. Huhle, P. Jenke, and W. Straber. Parallel Non-Local Denoising of
Depth Maps. In International Workshop on Local and Non-Local Approximation
in Image Processing (EUSIPCO Satellite Event), 2008.

[33] M. C. Schatz. CloudBurst: highly sensitive read mapping with MapReduce.
Bioinformatics (Oxford, England), 25(11):1363–1369, 2009.

[34] L. Stein. The case for cloud computing in genome informatics. Genome Biology,
11(5):207, 2010.

[35] R. Taylor. An overview of the Hadoop/MapReduce/HBase framework and its
current applications in bioinformatics. BMC Bioinformatics, 11(Suppl 12):S1+,
2010.

[36] Y. Wang, W. Jiang, and G. Agrawal. SciMATE: A Novel MapReduce-Like
Framework for Multiple Scientific Data Formats. In Cluster, Cloud and Grid
Computing (CCGrid), 2012 12th IEEE/ACM International Symposium on, pages
443–450. IEEE, 2012.

[37] Y. Wang, Y. Su, and G. Agrawal. Supporting a light-weight data management
layer over hdf5. In Cluster, Cloud and Grid Computing (CCGrid), 2013 13th
IEEE/ACM International Symposium on, pages 335–342. IEEE, 2013.

[38] J. Yang and Z. Fei. Broadcasting with prediction and selective forwarding in
vehicular networks. International Journal of Distributed Sensor Networks, 2013,
2013.

[39] B. Zhang, D. T. Yehdego, K. L. Johnson, M.-Y. Leung, and M. Taufer.
Enhancement of accuracy and efficiency for rna secondary structure prediction
by sequence segmentation and mapreduce. BMC Structural Biology, 13(Suppl
1):S3, 2013.

517

