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Abstract—The increasing availability of multi-core and multi-
processor architectures provides new opportunities for improving
the performance of many computer simulations. Markov Chain
Monte Carlo (MCMC) simulations are widely used for approx-
imate counting problems, Bayesian inference and as a means
for estimating very high-dimensional integrals. As such MCMC
has found a wide variety of applications in fields including com-
putational biology and physics, financial econometrics, machine
learning and image processing.

Whilst divide and conquer is an obvious means to simplify
image processing tasks, “naively” dividing an image into smaller
images to be processed separately results in anomalies and breaks
the statistical validity of the MCMC algorithm. We present a
method of grouping the spatially local moves and temporarily
partitioning the image to allow those moves to be processed in
parallel, reducing the runtime whilst conserving the properties
of the MCMC method. We calculate the theoretical reduction in
runtime achievable by this method, and test its effectiveness on
a number of different architectures. Experiments are presented
that show reductions in runtime of 38% using a dual-core dual-
processor machine.

In circumstances where absolute statistical validity are not
required, an algorithm based upon, but not strictly adhering to,
MCMC may suffice. For such situation two additional algorithms
are presented for partitioning of images to which MCMC will
be applied. Assuming preconditions are met, these methods may
be applied with minimal risk of anomalous results. Although
the extent of the runtime reduction will be data dependent, the
experiments performed showed the runtime reduced to 27% of
its original value.

I. INTRODUCTION

Markov Chain Monte Carlo (MCMC) is a computationally
intensive iterative technique that may be used to conduct
Bayesian inference, allowing prior knowledge to guide the
analysis of input data. As such it has been successfully applied
to many areas of computational biology [1], notably in the
field of phylogenetic analysis where several well established
implementations exist (MrBayes [2] and others). Although
the technique has yet to be applied to biomedical imaging
applications to the same extent, there are several examples
of its use. In addition to the cell nuclei identification method
presented as the case study in this paper, MCMC has been used
to map muscle cells using Voronoi polygons [3] and tracing
retinal vascular trees [4], [5]. The work in [6] demonstrates the
use of MCMC in solving segmentation problems for prostate
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and thalamus magnetic resonance images.

MCMC using Bayesian inference is particularly suited to
problems where there is prior knowledge of certain aspects
of the solution. For instance when analysing a tissue sample,
knowing the expected size, distribution, density and organisa-
tion of cells in an image not only allows a MCMC algorithm to
map the cells to be created with surprising ease, but improves
the stability of the simulation and reduces the chances of
consistent false-positives compared to algorithms that do not
utilise such information. MCMC is also good at identifying
similar but distinct solutions (i.e. is an artifact in a blood
sample one blood cell or two overlapping cells) and giving
the relative probabilities of these different interpretations of
the original data.

The main limitation of the MCMC method is its runtime,
particularly when processing large images. The time per
iteration can increase exponentially with the number artifacts
to be found in the image, and the total number of iterations
required increases with both the number of artifacts and the
size of the image. As an example, the mapping of vascular
trees in retinal images as detailed in [4], [5] took upwards of
4 hours to converge when run on a 2.8GHz Pentium 4, and
takes much longer to explore alternative modes (additional
potential interpretations for the input data). The practicality of
such solutions (in real-time clinical diagnostics for example)
is therefore limited. High throughput microscopy applications
face a similar problem, although individual images may be
processed quickly, the large number of images to analyse make
reductions in runtime desirable

The obvious means of reducing this runtime via parallel
processing is to split the image data into partitions then analyse
each partition independently (and, if possible, in parallel).
Unfortunately the inherently linear nature of the MCMC algo-
rithm does not (in general) allow such parallel processing to
be “naively” applied. The purpose of this paper is to consider
the methods and circumstances in which parallel processing by
partitioning may be performed without impairing the quality
of the end results, allowing faster responses and greater
throughput of MCMC-based biological image analysis.

The contributions of this paper are fourfold:

o We propose a new method (termed ‘periodic partition-

ing’) of implementing Markov Chain Monte Carlo algo-



rithms that takes advantage of localised spatial properties
of images to permit limited parallel processing within the
bounds of the MCMC method. We fully implement and
test this method on three different machine architectures
(a Intel Q6600, a Intel Pentium-D and a AMD Xeon) and
demonstrate the suitability of these architectures for this
new approach.

o We provide a method for predicting the fastest possible
runtime of MCMC programs using our periodic paral-
lelisation approach, either on its own or in conjunction
with a complimentary parallelisation method (speculative
moves).

o We present two alternative partitioning-based paralleli-
sation methods (‘intelligent partitioning’ and ‘blind par-
titioning’) for use when the statistical backing of the
MCMC does not need to be preserved. Although the
results are application specific there is the potential for
much greater reductions in runtime than periodic paral-
lelisation, with the cost of a possible (but for aminiable
applications, minimal) loss of accuracy.

« The previous three contributions are demonstrated using
an MCMC medical imaging application - the identifica-
tion of stained cell nuclei in an image.

The remainder of this paper is organised as follows. In
section II we explain the MCMC method and the difficulties
in parallelising it. To clarify and provide context we introduce
the case study which we later use for testing in section III.
Section IV reviews the current forms of parallel MCMC. Our
method of periodic parallelisation is outlined in section V, the
theoretical improvements possible calculated in section VI and
the results of applying it to the case study in section VII. The
aggressive parallelisation methods that do not strictly preserve
the MCMC algorithm are then detailed in section VIII and
tested in section IX. Section X concludes the paper.

II. MARKOV CHAIN MONTE CARLO

Markov Chain Monte Carlo is a computationally expensive
nondeterministic iterative technique for sampling from a prob-
ability distribution that cannot easily be sampled from directly.
Instead, a Markov Chain is constructed that has a stationary
distribution equal to the desired distribution. We then sample
from the Markov Chain, and treat the results as samples from
our desired distribution. For a detailed examination of the
MCMC method the reader is referred to [7]. Here we provide
a summary of what the algorithm does in practise, excluding
much of the theoretical detail.

At each iterations a transition is proposed to move the
Markov Chain from state ¢ to some state j, normally by
making small alterations to ¢. The probability of applying this
proposed move is calculated by a transition kernel constructed
in such a way that the stationary distribution of the Markov
Chain is the desired distribution. Such kernels produce the
probability for advancing the chain to state j from ¢ based on
how well j fits with the prior knowledge (what properties the
target configuration is expected to have) and the likelihood of

7 (considering the actual data available). The basic Metropolis-
Hastings transition kernel can be expressed as
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where p(j,) is the probability of proposing the move from
state j to ¢. Transitions that appear to be favourable compared
to the current state of the chain have o > 1 and are accepted
unconditionally, whilst moves to apparently worse states will
be accepted with probability a.. Once the move/transition has
been either accepted (causing a state change) or rejected
the next iteration begins. MCMC can be run for as many
iterations as are required. The conventional use is to allow
the chain to reach equilibrium then to take samples of the
chains state at regular intervals, analysis of these samples
will reveal the stationary distribution. In some applications
(typically those dealing with high-dimensional states, such as
for image processing problems) a single sample of a chain that
has reached equilibrium may be enough. Determining when a
chain has converged (and therefore may be sampled) is an
unsolved problem beyond the scope of this paper.

For the non-trivial MCMC applications found in compu-
tational biology, the initial burn-in time is the most time-
consuming period. Unfortunately the nature of the MCMC
algorithm prohibits simple image partitioning (divide and
conquer) in the general case. As each iteration depends on
its predecessor, simple parallel execution of iterations is not
possible. Working on different areas of the image at the
same time causes competing changes in the prior term of
the transition kernel, as the prior contain properties that are
global to the entire image. “Naively” bisecting an image and
considering the two equal halves separately will therefore
not yield the same results as processing the entire image at
once. Even in the absence of global properties, artifacts that
intersect with a partition boundary may be found twice (once
in each half of the image), be poorly identified (incorrectly
positioned or sized due to lack of interaction with the other
half of the image), or not be found at all. This paper aims to
reduce the burn-in time by finding ways in which the image
may be (temporarily) partitioned into smaller sub-images that
may then be considered in parallel, without causing significant
causing anomalies that would undermine the usefulness of the
results.

(1)

III. CASE STUDY: FINDING WHITE BLOOD CELL NUCLEI

We demonstrate the use of MCMC to a medical imaging
problem - the identification of artifacts in an image, in this
case the finding of stained cell nuclei. For simplicity we
abstract this into the finding of circles of high colour intensity.
First the input image is filtered to emphasise the colour of
interest. This filtered image can then be used to produce a
model for the original image - a list of the circular nuclei
defined by their coordinates and radii. A random configuration
is generated and used as the initial state of the Markov Chain.
At each iteration a type of alteration is chosen at random.
The possible alterations are the addition of an artifact, the



deletion of an artifact, merging two artifacts together, splitting
an artifact into two, and altering the position or properties (i.e.
radius) of an existing artifact. A move proposal (possible state
transition) is then generated that implements an alteration of
that type, randomly choosing the artifact(s) to alter and the
magnitude of that alteration. The probability of accepting this
move is generated by a Metropolis-Hastings transition kernel
constructed using Bayesian inference.

Two terms, the prior and likelihood, are calculated to
evaluate the configuration that would be created by this move
proposal. The prior term evaluates how well the proposed
configuration matches the expected artifact properties, in this
case the distribution and size of the nuclei and the degree
to which overlap is tolerated. The likelihood of the proposed
configuration is obtained by comparing the proposed artifacts
against the filtered image. Together the prior and likelihood
terms make up the posterior probability of the proposed
configuration, which is compared with the posterior proba-
bility of the existing state using a reversible-jump Metropolis-
Hastings transition kernel [8]. Put simply, whilst the prior and
likelihood probabilities cannot be expressed exactly, the ratio
between the posterior probabilities of the current and proposed
configurations can be calculated and used to give a probability
for accepting the state change.

IV. RELATED WORK

The conventional approach to reducing the runtime of
MCMC applications is to improve the rate of convergence so
that fewer iterations are required. The main parallel technique
is called Metropolis-Coupled MCMC (termed (MC)?) [9],
[10], where multiple MCMC chains are performed simultane-
ously. All but one of these chains are ‘heated’ so they are more
likely to accept proposed moves and explore the statespace.
Only the ‘cold’ chain is sampled, but periodically two chains
are selected at random and their states swapped, subject to a
modified Metropolis-Hastings test. This allows the cold chain
to make the occasional large jump across the state-space to
avoid or escape local optima, saving the time the chain would
have been ‘stuck’ there. The intent of (MC)? is to improve
the rate of convergence, the aim of the other methods in this
paper is to distribute the original workload across multiple
processors.

Another general purpose and complimentary parallelisation
method is termed ‘speculative moves’, and detailed in [11].
Its aim is to reduce the realtime lost to considering moves
that are not accepted by the transition kernel by speculatively
considering multiple independent iterations simultaneously. To
preserve the rules of the Markov Chain, at most one of these
simultaneously considered iterations may cause a state change,
but with the rejection rate of individual iterations/moves typi-
cally being around 75% this can result in significant reductions
in program runtime. This is a fine-grain task parallelism,
the purpose of this paper is to explore options for data-
parallelisation.

V. A NEW PARALLELISING APPROACH BASED ON PERIODIC
PARTITIONING

Since runtime increases significantly with the complexity
and size of the image, the obvious parallelisation method is
to break a large image up into partitions and consider each
separately. Unfortunately this will cause anomalous results
along the partition boundaries as image artifacts are not
detected, imperfectly detected, or duplicated (detected in both
partitions). Furthermore, it is not always the case that the prior
assumptions concerning the full image hold when applied
to subset of that image. For example, taken across a set of
tissue samples, cells may be distributed at random; yet if
we examine only a subset of one particular image it may
well be the case that not only does the distribution no longer
seem random, but the density of cells (the number per unit
area) may be substantially different to that of the entire image
(either by chance, or by the presence of some unexpected or
unpredictable entity dislodging the cells).

Despite these problems, in many cases it is possible to make
use of parallelisation-by-partitioning without impairing the sta-
tistical properties of MCMC. First we separate the moves that
may be applied to the MCMC chain into two groups, global
(Mg) and local (M), with the probability of an arbitrary
move being in Mg as g;. Mg contains all moves that alter
the configuration in a manner that impacts prior/likelihood
calculations across the entire image/configuration. As such,
a Mg move cannot be performed in parallel with any other
move. M; moves make limited changes (akin to fine-tuning)
whose impact is restricted to a small area and makes no
changes to ‘global’ properties (such as the number of features
in the configuration). Since the decision to accept or reject
such a move is based solely on the image data in close
proximity to the changed feature, multiple M; moves may
be performed simultaneously without violating the MCMC
criteria so long as the features modified by these moves are
sufficiently distant.

We then modify the MCMC implementation to clump
groups of Mg and M together. Instead of selecting a new
proposed move at random from Mg U M; we alternate be-
tween performing 2z consecutive moves from Mg then zlz—‘;g
consecutive moves from M. This leaves the long-term move
proposal probabilities unaffected. Provided the number of
moves performed in each Mg and M, phase is small compared
to the total number of moves performed (and the interval
between post-convergence sampling) the alternating phases
will not substantially alter the long-term deveoplment of the
Markov Chain’s state.

By definition, consecutive M; moves may be performed in
parallel provided that artifacts altered are sufficiently distant
such that they do not affect the moves’ prior and likelhood
terms. To ensure this is the case, we partition the image with
a uniform grid of spacing z,,, along the x-axis and y,, along
the y-axis. A M; move may now be performed in each area
partitioned by the grid simultaneously. To avoid any potential
conflicts between partitions, features whose prior/likelihood



calculations would draw on data from another partition may
not be selected for modification. Additionally, no feature
may be created or moved such that any part of it (or its
prior/likelihood considered area) intersects with its partition’s
boundary. To avoid the partition grid imposing a long-term
bias on the results, for each phase of M; moves performed,
a new z and y offset for the grid is chosen at random
from the ranges 0..z,, and 0..y,, respectively. Assuming that
the switch between phases of Mg and M; moves occurs
sufficiently frequently there will be no persistent partition
boundary anomalies.

The number of iterations performed in the global and
local phases must be set such that the overall move proposal
probabilities are unaffected. If ¢ MCMC iterations are to
be performed in total in each local move phase, and Mg
moves are ‘supposed’ to be occurring with probability g,
then ilfgg iterations must be performed in the global move
phase. Additionally we need to split the number of iterations to
perform during the M phase between each of the partitions.
If all dimensionality-modifying moves are in the set Mg,
each partition can be allocated the number of local iterations
to perform in the same proportion as the number of model
features contained within the partition’s boundaries and that
may be legitimately modified (not too close or intersecting
with the partition boundary) compared to the number of
such (modifiable) features taken across all partitions. If any
dimensionality changing moves are in M, it may be worth
moving them to Mg anyway. Otherwise we find that certain
partitions may perform more than their ‘fair share’ of iterations
if features are not added/removed from all partitions at an
equal rate.

To summarise, a number of the MCMC moves that cannot
be run in parallel are performed. The image is then randomly
partitioned and a number of MCMC moves than can be run in
parallel are executed in each of these partitions simultaneously,
with safeguards preventing changes that could potentially
impact the consideration of moves in another partition. The
changes to each partition are then combined back into a single
model and the cycle repeats, with a number of the non-
parallelisable moves being performed on the whole image.
This cycle is repeated with sufficient frequency that the group-
ing of Mg and M, moves and the partitioning in the M phase
is not significant long-term. Whilst the stationary distribution
of a specific M; or M phase will be different from the target
distribution, by frequent cycling it will average out such that
long-term the stationary distribution will be the same as that
of conventional MCMC. Depending on the application, this
periodic parallelisation may have a positive or negative effect
on the number of iterations until the chain converges on its
stationary distribution but again, frequent cycling reduces this.

VI. THEORETICAL GAINS

Let the mean time to perform Mg and M, moves be 7, and
7; respectively. Assuming that the parallelisation overhead is
negligible, the time to perform N iterations with s partitions
in the M phase (each partition running on a separate thread)
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as plotted in fig. 1. The Mg moves, not being partition
parallelisable, are the limiting factor. We can obtain fur-
ther performance improvements by implementing speculative
moves during the Mg phases. As explained in [11], if each
MCMC iteration has the probability p, of being rejected
by the Metropolis-Hastings transition kernel and we assume
that the overhead imposed by speculative moves is negligible
compared to the processing time per iteration (a reasonable
assumption on SMP computers), the use of speculative moves
using n processors or processor cores will reduce the runtime
to i:g; of its sequential runtime (under ideal conditions).
Combined with eq. (2) this gives the runtime for periodic
parallels plus speculative execution of the global phases as
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1-p
N‘Jngl -

3)

Where p,, is the probability that a Mgz move will be rejected
(similarly p;, is the probability a M) move will be rejected).

We can also use speculative moves to further increase
the number of M; moves that may be performed per unit
time. Though it appears preferable to utilise any spare
threads/processors to allow a greater number of partitions to
be made and processed simultaneously, there is a limit as to
how small a partition can be. Since we prohibit any changes
to features intersecting or very near to a partition boundary
(to avoid potential conflicts with the changing features in
neighbouring partitions) the area in which features may be
changed is somewhat smaller than the area of the partition.
For instance, for a square partition of length x, populated
with features whose impact on the likelihood/prior terms when
subject to M) moves is restricted to an area y across, the
actual area available for features to be moved/manipulated is
only (x — y)2. We may therefore choose to use speculative
moves during the M phase if we have spare processors and
do not wish to shrink the partition sizes any further. The
use of speculative moves during the M; phase may also
be encouraged by system architecture. We note that if M,
phases are set to be long enough it becomes feasible to deploy
each partition to a separate physical machine in a cluster. If
this is the case, and each machine in the cluster also has
true multithreading capabilities, it is natural to use separate
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Fig. 2. Example of periodic parallelisation on 1024x1024 images with only
four partitions, run on a Q6600. The horizontal line represents the runtime of
the sequential implementation.

physical machines for each partition, and multithreading in
each machine for speculative moves. For a cluster with s
machines each with ¢ threads, the best possible runtime
(assuming negligible overhead) is

N(1 —gg)n(1 — pir)
s(1—pj,)

In practise the frequency with which we alternate between
M, and M, phases will also have an impact on the total run-
time (recall the above predictions assume negligible overhead).
Statistically we want these phases to be as short as possible to
minimise any potential impact the partitioning may have to the
short-term results. Practically we want each phase to be long
enough to overshadow the overhead required in partitioning,
distributing the workload to the parallel threads/machines, and
the subsequent recombining the models. A similar balance
must be made between the number of partitions (more=faster)
and the corresponding size of the partitions. More partitions
mean each partition is smaller, which means the number of
features that may be modified (and how those features may
be modified) is more limited, thus is more likely to delay the
convergence of the MCMC algorithm.

Since different partitions will be allocated different numbers
of iterations to perform (depending on the number of model
features fully enclosed within each partition), the time taken
to complete the assigned iterations will vary considerably
(even if features are uniformly distributed, partitions along the
edge of the image will inevitably be less than their full size,
contain fewer than normal features and thus be allocated fewer
iterations to perform per local move phase). The processor
dead-time that results can be reclaimed through the use of
a task scheduler, allowing more partitions than there are
available processors to be employed.
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VII. PERIODIC PARTITIONING RESULTS

Let us consider processing a 1024x1024 image containing
150 cells of mean radius 10. Since the expected number of
cells is part of the prior term, any move that changes the
number of cells in the model must be a global move. Therefore
M, = {add, delete, merge, split, replace} and M; = {alter
position, alter radius}. The proposal probabilities are such that
60% of moves are from M;. The image will be split into
four rectangular partitions using a single coordinate where all

partitions meet (each square in the partition grid is larger than
the image). Whilst suboptimal in terms of processor utilisation
when 4 processors are available (partitions will rarely be of
equal size) this does minimise overhead from splitting and
merging configurations by keeping such operations simple.

Using these parameters, fig. 2 shows the time taken to
perform a fixed number (500 000) of MCMC iterations for
different frequencies of repartitioning on a quad-core Q6600,
the horizontal line representing the runtime of the sequential
implementation. In this case each global move phase must last
at least 4ms (~ 23 iterations) for the periodic parallelisation
method to be faster than the sequential implementation. There
is no substantial runtime improvement from spending more
than around 20ms in each global phase. This equates to around
130 iterations, and thus each local phase will perform 194
iterations spread amongst all the partitions, taking around
14ms). From this data, spending 20ms per global phase
is the ‘sweet spot’. More frequent cycling between phases
substantially impairs runtime, whilst less frequent cycling
brings minimal runtime benefits and increases the risk of the
alternative global/local phases distorting the development of
the Markov Chain.

With the 20ms global phase, the apparant runtime on
the Q6600 has been reduced by ~ 29% of the sequential
implementation. Repeating this program on a dual-processor
Intel Xeon achieved a runtime reduction of 23%, whilst a dual-
core Pentium-D managed a 38% reduction. The differences in
performance between these machines is due to the difference
between the time per iteration and the overhead required
to duplicate, arrange for parallel execution, and merge the
partitions. The Pentium-D can be expected to have the best
inter-thread communication times as it is a dual-core machine
and can execute two threads on the same physical die, whilst
the dual-processor Xeon machine has greater communication
times between threads as they must execute on different
physical processors. The Q6600 machine, with two dual-core
processors, falls in-between the Xeon and Pentium-D.

The Q6600 falls short of the 45% reduction as predicted
by eq. (2) when q; = 0.4, 7y = 7; (as is the case when
processing is strictly sequential) and s = 4. However, recall
that by restricting the number of partitions to 4 but permitting
(requiring) those partitions to be of varying sizes, the size
of the largest partition will always be greater than a quarter
of the image and potentially range to the size of the image
itself. Consequentially the four processors will never be fully
utilised, indeed comparable results were obtained using only
the two processors on the Xeon and Pentium-D. In these cases,
one processor will take the largest partition, the remaining
three small partitions being performed on the second processor.

More substantial reductions in runtime more in line with
predictions could be obtained by using a finer partitioning
grid and load balancing if (as in this case) the number of
partitions is greater than the number of available processors.
The runtime of the local phase would then tend towards
1/(number of partitions) of the sequential runtime, if the
overhead from communication and configuration split/merge



operations remained negligible compared to the time spent in
each phase.

VIII. IMAGE PARTITIONING

There are some applications where MCMC is a convenient
means of structuring a solution to some problem, but the statis-
tical robustness offered by MCMC is not required - obtaining
an ‘reasonable’ answer promptly is often more important than
waiting for a statistically pure result (for instance when the
program is used to flag samples for human review, such as in
high throughput screening). Experience and testing determines
whether the tradeoff is acceptable. Periodic parallelisation
takes the divide and conquer as far as it can inside the Markov
Chain framework, but more dramatic runtime reductions can
be obtained by partitioning the image, applying MCMC to the
partitions individually, then intelligently combining the results.
The MCMC processing of each of the partitions can proceed
much faster than the processing of the combined image as
a) there are fewer artifacts to match and b) those artifacts
present have a much smaller range of states (positions) they
may occupy. To be clear, unlike the periodic parallelisation and
speculative moves this method is not statistically equivalent to
conventional MCMC and so is not guaranteed to eventually
converge on the target solution. Though it depends on the
application, this may produce ‘reasonable’ solutions albeit
with the potential for anomalies and biases for certain type
of configurations. The advantage is that the results that are
produced can be obtained in a much shorter space of time as
all processing in each partition is performed independantly,
unlike periodic parallelisation with its M phases. Of course,
the use of partitioning and the recombination heuristic make
it impossible to obtain the differing model alternatives along
with their relative probabilities.

There are two issues with partitioning an image outside the
MCMC mechanism, whilst keeping legitimate MCMC inside
each partition. The first is the allocation of prior knowledge
to the separate positions, properties held to be true over the
single image may not apply to the partitions (expected number
of artifacts being the obvious example). The second is coping
with artifacts that span the partition boundaries. Whilst the
later is a common problem to all segmentation algorithms
employing image partitioning for parallelisation e.g. [12],
the former is unique to Bayesian inference-based algorithms,
primarily MCMC.

The allocation of prior knowledge concerning the partitions
is application specific, and plays a large role in determining
the viability of image partitioning as a tactic. For example,
consider the property of the expected artifact density of an
image (how many artifacts are expected to be contained in a
given area). Prior knowledge might provide the total number
of artifacts that may be in an image, but say nothing of
their distribution inside that image. If the artifact density
is incorrectly assumed to be constant throughout an image
then the partitions will all inherit this value thus assigning
potentially inaccurate prior information to some partitions. The
degree to which this matters depends on how the likelihood
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Fig. 3. Intelligent Partitioning in action.

and prior terms are balanced and whether enough iterations
will be performed on the most artifact-dense partition to allow
full convergence.

Ideally the estimate for the properties like the artifact
density should be mechanically generated based on the actual
image data, in which case the same mechanism used to obtain
the estimate for the complete image should be applied to the
partitions. A good estimate for artifact density in cell sample
images (such as in fig. 3) can be obtained by applying a
threshold filter and counting how many pixels are of high
intensity. Assuming all pixels passing the threshold criteria
belong to a cell nucleus we can estimate the number of cells
that are present to be

HY(x,y) € M : I(x,y) > p}|

2
7TTIL

o)

where M is the set of all pixels in the image or subimage,
I(z,y) is the intensity of pixel (x,y) and p is some suitable
threshold value. Note that we may use 7, in this expression
as unlike the estimated circle density the expected circle radii
can be assumed constant throughout all partitions (for these
images at least).

The second issue to address is that of the artifacts that span
partition boundaries. The first tactic we consider for addressing
these we term intelligent partitioning. If the target artifacts
are sufficiently disperse and identifiable, a comparatively fast
pre-processor may be applied to crop and segment the image
such that artifacts do not intersect the subimage boundaries,
thus sidestepping the issue. Note that artifacts must be far
enough away from the subimage boundaries to avoid double-
dipping - their presence influencing the results of more than
one subimage. This method devolves some of the operations
of the larger MCMC algorithm to the pre-processor, using the
(presumably) faster algorithm to reduce the statespace of the
Markov Chain needing to be explored. Complete confidence in
the reliability of the pre-processor is required, thus restricting
its use to situations where the presence, or more importantly
the absence of artifacts can be ascertained.

The degree of parallelisation (and hence performance im-
provement) of this method is not under the user’s control, as
partition boundaries are set according to the arranagement of
the data. Inconvenient datasets may not offer any substantial
parallelisation, consequently the program’s runtime for any
given image is also unpredictable.



Fig. 4. Blind Partitioning in action.

The second method for coping with partition-boundary-
spanning artifacts is blind partitioning. Here we do away
with the partitioning pre-processor and simply partition the
image in some arbitrary manner, such as a simple grid. When
combining the results for each partition we employ some
heuristics to procedurally ‘patch up’ any anomalies resulting
from the partitioning. To do this in a systematic fashion whilst
making the most of the per-partition MCMC processing, we
propose there be overlap between each partition such that the
largest expected artifact will fit inside (i.e. each partition will
extend 7374x further than normal in each direction), as in
fig. 4 (top left). Every artifact will then have the oppertunity
to be fully examined by MCMC processing. When merging
the resultant configurations, artifacts with their centerpoint
in the non-overlapping regions are automatically accepted,
whereas artifacts with centres in a overlapping region will need
comparing with nearby features from the other partition(s)
- fig. 4 (top right). If the MCMC algorithm applied to the
partitions yielded good results, such artifacts should appear in
both partitions with minimal differences and so can be merged
with little difficulty - fig. 4 (bottom left). Features without
a counterpart from the other partitions are disputable, you
may wish to accept or discard them depending on whether
it is more important to avoid false-positives or not missing
potential artifacts. Either way, blind partitioning does not rely
on a separate potentially complex partitioning algorithm, thus
places fewer preconditions on what datasets it can process. The
tradeoff is the reduction in confidence in the final result, unlike
intelligent partitioning and periodic partitioning the statistical
assurances accompanying MCMC cannot be applied to the
final model produced for the image. Anomalies may persist
along the partition boundaries if the MCMC processing in the
two partitions failed to construct a common interpretation for
any shared artifacts.

IX. INTELLIGENT AND BLIND IMAGE PARTITIONING
RESULTS

Figure 3 (top-left) shows a number of latex beads' in a petri
dish. Due to the clumping of the beads and the ease by which
the beads may be distinguished from their surroundings this

!atex beads are used for clarity in this illustration, the MCMC program at
work is the same used for finding stained cell nuclei.

TABLE I
RESULTS OF INTELLIGENT PARTITIONING ON FIG. 3. TIMING VALUES ARE
TAKEN FROM RUNS ON A Q6600 PROCESSOR. NUMBER OF ITERATIONS
AND RUNTIME REQUIRED AVERAGED OVER 20 RUNS.

A B C
Area (pixels2) 2.13 x 10°  3.14 x 10*  1.33 x 10°  4.82 x 107
Relative area 1 0.147 0.624 0.226

# obj. (visual) 48 6 38 4

# obj. (density) - 7.08 29.97 10.86

# obj. (thresh.) 46 49 38 3.1

~ time/iteration 4x10°° 1.9x107° 4.3x107° 2.0x107°
# itr to converge 27 000 4 000 22 500 900
Runtime (secs) 1.08 0.08 0.97 0.02
Relative runtime 1 0.07 0.90 0.02

makes a good candidate for the application of intelligent parti-
tioning. We apply a threshold filter as in eq. (5) where p = 0.5
and pixel intensity values in the range 0..1 to identify the
likely artifacts (fig. 3, top-right), and then partition the image
by scanning for rows or columns that are completely empty.
The partitions are made on columns/rows equidistant between
the closest columns/rows containing pixels(s) that passed the
threshold criteria (fig. 3 bottom-left). There are 48 artifacts in
the image. Were this number only provided as part of the prior
knowledge, we might be forced to assume the distribution
of artifacts was uniform, thus allocating an expected artifact
count of 7 to partition A, 30 to partition B and 11 to the
partition C. Fortunately this image contains no artifacts that
can be confused with non-target image entities when using
the threshold filter, so we may calculate an estimate for the
number of artifacts ()\) based on eq. (5). The results using this
information are in table I: If at least 3 processors are available
the intelligent-partitioning program runtime is the longest time
taken to process any of the partitions (in this case 0.97 seconds,
a reduction in runtime of 10%), as combining the results for
the three separate partitions is trivial. With only two processors
load balancing should be used, which for this example gives
the same runtime of 0.97 (as 0.07 + 0.02 < 0.97).

An irregular partitioning as in fig. 3 (bottom right) imposes
little additional overhead on the MCMC algorithm once the
partition lines have been drawn. The likelihood and prior
calculations will be oblivious to the partitioning as the pixel
data for neighbouring partitions will be blanked out (this is
safe to do as the validity of intelligently chosen partitions
depends upon the presumption that the contents of neighbour-
ing partitions are irrelevant to the consideration of the current
partition). Since there will be no pixel data for beyond the
partition boundary, features will not be placed there by the
MCMC algorithm. Should additional checks be necessary to
keep all artifacts within the partition bounds, they will take
place when changes to the model are proposed, before the prior
and likelihood calculation (that dominate runtime) take place.
The only difficulty will be the creation of such irregular parti-
tion boundaries and the time this takes, though since detecting
where features definitely do not exist is easier than identifying
with certainty the position and properties of features, a range
of comparatively fast segmentation algorithms (some of which
may themselves be based upon MCMC) will generally be
available.



To apply blind partitioning to the same example, the image
is first split into four equal sized areas as shown by the dotted
lines in fig. 4, top left. These areas are then expanded to the
solid lines to fully enclose any artifact whose centre was in
the original area. In this case we have extended each partition
boundary edge by 1.1 times the expected artifact radius, easily
encompassing such features as there is very little variation in
the radii of the latex beads. After determining the expected
number of beads in each partition using eq. (5) the MCMC
algorithm was applied to give the results in the top right of
fig. 4. Beads not completely enclosed in the partition (= beads
whose centre is not inside the dotted line marking the simple
quartering of the image) are deleted from each partition’s
model. The union of the partition’s models is then taken
and any beads centred in the overlap area that are in close
proximity (centerpoints within say 5 pixels of each other) are
merged (replaced with a bead with centerpoint and radii that
are the average of the original bead).

After performing a comparison similar to that of table I,
the relative runtimes of the top-left, top-right, bottom-left,
and bottom-right corners were 0.12, 0.08, 0.27, and 0.11
respectively. The runtime of the whole procedure (if four
processors are available) is &~ to the longest time taken to
process a partition as the merging of the partition models takes
negligible time compared to thousands of MCMC iterations.
In the example the runtime was reduced to 27% of the
original, with no apparent anomalies present as a result of
the partitioning. For this test image this is clearly superior to
the intelligent partitioning result of reducing the runtime to
only 90% of the original.

X. CONCLUSION

We have presented two approaches for applying the divide
and conquer technique of dividing image data to Markov Chain
Monte Carlo simulations. Periodic parallelisation conserves
the statistical model of MCMC, whilst image partitioning
(be it blind or intelligent) potentially allows for ‘reasonable’
(though not statistically pure) results to be obtained much
faster, although the magnitude of the speedup is highly data-
dependant.

Periodic parallelisation runtimes can be approximately pre-
dicted using eq. (4) (and has been demonstrated to reduce
runtime on the test data by 38% using a dual core machine).
The image partitioning runtime cannot be reasonably predicted
as it is highly data-dependant, however under ideal condi-
tions (artifacts evenly distributed amongst partitions, partitions
of equal size, and prior values correctly assigned) image
partitioning can be expected to provide speedups exceeding
(1 — L)% as both the expected number of artifacts and the
image area over which they can range will have been reduced
by this ratio compared to the original image. As demonstrated
by the results (reduction of 5% with intelliegent- and 73% for
blind- partitioning) a suitable dataset and the correct choice of
method are essential for obtaining desired benefits. Although
no anomalies were present in the tests, image partitioning

does not have the full statistical reliability and usefullness
of MCMC, and places preconditions on what datasets and
application it can be applied to.

Whilst periodic parallelisation does scale with the image
size (by allowing more partitions in M phases), this is limited
by the inability to parallelise Mg phases other than by the
speculative moves method covered in [11]. In contrast the
image partitioning methods are more suited for scaling to large
images as their partitions are considered independantly of each
other. Intelligent partitioning requires having the initial cost
of the preprocesor (scalability determined by the algorithm
used for this), whereas blind partitioning requires only a post-
processor that scales linearly with the number of partitions to
resolve artifacts in the overlapping areas of partitions. Both
intelligent and blind partitioning require a preprocessor to
assign suitable values for each partition’s ‘prior knowledge’.

Assuming multicore and/or multiprocessor hardware is
available, the methods presented in this paper can reduce the
impact that image size/complexity has on the time required
for processing to a set standard. When combined with more
traditional means of reducing MCMC runtime, this makes
viable the application of Markov Chain Monte Carlo methods
(thus Bayesian inference) to the processing of large/high-
resolution biomedical images, and can increase the throughput
of existing applications.
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