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Abstract 
 

Automatic de novo peptide identification from 
collision-induced dissociation tandem mass 
spectrometry data is made difficult by large plateaus in 
the fitness landscapes of scoring functions and the 
fuzzy nature of the constraints that is due to noise in 
the data. Two different scoring functions are combined 
into a parallel multi-objective optimization framework. 
 
1. Peptide identification 
 

High-throughput proteomic techniques seek to 
characterize the state of the proteome in a cell 
population. A typical procedure may involve extracting 
cellular proteins followed by tryptic digestion and then 
separating the peptides with liquid chromatography. 
The separated peptides are then identified by tandem 
mass spectrometry (MS/MS). Ideally, peptides will 
subsequently be quantitated, post-translational 
modifications will be determined and the information 
regarding the peptides will be assembled into a picture 
of the proteomic state of a cell population. Accurate 
identification of peptides is critical for drawing 
biologically meaningful conclusions.  
For this reason, there has been much work recently on 
developing peptide identification methods for MS/MS 
spectra. This area of research has proceeded on two 
fronts, the first of which seeks to take advantage of the 
wide availability of genome sequences. The database 
search methods try to identify the peptide that resulted 
in the observed MS/MS spectrum by picking the best 
candidate from a list of peptides generated from the 
genome sequence (e.g. Eng et. al. [8] and Perkins et. 
al. [22]). De novo methods on the other hand, seek to 
identify a peptide simply from the observed MS/MS 
spectrum (e.g. Dančík et. al. [6], Fernandez-de-Cossio 
et. al. [10], Jarman and Cannon [3,13] and Heredia-
Langner et. al. [12]).  

Generally, the work presented here focuses on an 
alternative to traditional graph theory-based de novo 

methods that additionally allows one to "jump-start" 
de-novo peptide identification using either existing 
peptide databases, or the results from database search 
methods such as SEQUEST [8]. The latter may be 
particularly useful when extended to the identification 
of post-translational modifications to peptides that are 
known to occur, but are currently hard to identify.  

The specific question addressed in this report is 
simply put: how can one combine effectively different 
scoring functions and constraints in order to enable 
automatic de-novo peptide identification without 
resorting to a peptide database. The solution proposed 
here is based on population (or sampling) based multi-
objective (or vector) optimization methods that 
combine the different scoring functions and constraints 
into non-commensurate objective functions. The result 
of one such optimization is a list of peptide sequences 
that best match the data under the assumption that the 
scoring functions cannot be ranked in order of 
importance or reliability. Surprisingly enough, this list 
is relatively small.  
 
2.1. De novo peptide identification from 
tandem mass spectrometry data  
 

Peptide identification via de novo methods are not 
widely recognized as an effective means to identify the 
best peptides from either first principles or from a short 
list of putative peptides. First, MS/MS spectra often do 
not contain enough information to allow for 
unambiguous determination of the entire peptide 
sequence. It has been estimated that 50% of spectra are 
missing enough peaks to allow only partial 
interpretation [15]. Second, de novo approaches can be 
computationally intensive, which is an important 
criterion for high-throughput proteomics. Third, graph 
algorithms that search the space of spectra peaks for 
putative peptide sequences can easily generate 
candidate sequences that fail to meet the constraints of 
the probabilistic model that underlies the scoring 
function. Yet, some of those trial sequences may on 
one hand contain information that is critical to the 



overall search, or on the other hand, they may have 
very high scores that hide the true peptide sequence. 
Still, there is a significant need for de novo sequencing 
methods because often the most biologically 
interesting peptides, such as those containing 
mutations and frame-shifts, may not be in the sequence 
database to begin with. This will be especially true in 
clinical or field settings where the genome of the 
organism being studied differs from the genome of the 
organism that was sequenced.  
 
2.2. Two scoring functions 
 

The problem of de novo peptide identification can 
be seen as one of numerical optimization, but one must 
keep in sight that the results of numerical optimization 
are only as meaningful as the underlying quantitative 
model or scoring function. It is assumed that this 
model is faithful to reality. Several models have been 
proposed for determining the likelihood of a match 
between the fragment ions in candidate sequence and 
an experimental mass spectrum, see for example 
[8,18,22,24,30,9,31,1,6,27,28,23]. In the context of 
biology, this creates a situation where many models 
exist that may lead to different predictions. Conflicts 
between predictions may be resolved through the 
development of more accurate models. A 
complementary approach is to develop optimization 
algorithms that are robust not only with respect to 
noise in the data but also to the quantitative models, 
leaving room for biologists to explore the implications 
of the various models and of their simplifying 
assumptions.  

Two scoring functions are considered in this paper. 
Both are based on probabilistic models of peak 
matching, neither is particularly expensive to compute 
compared to the overall computation time. That is not 
to say that current computer architectures are well 
suited for them. In fact, both involve many more 
conditional branches and non-strided memory accesses 
than is found in typical number crunching production 
applications run on high-end computing platforms. 
Both scores take as input a sequence of amino acids 
and an electrostatic charge. A synthetic spectrum is 
generated that is then compared to the experimental 
spectra. The execution time of both functions is 
roughly linear in the number of peaks in both spectra. 

The Η-score function: the score defined by Heredia-
Langner et al [12] is a weighted sum of terms that 
capture various aspects of peak matching. Only one of 
these terms is used here. That term quantifies how 
much two peptides have portions within them that are 
similar. The scoring algorithm sweeps the synthetic 
spectrum over the experimental spectrum and counts 
the matches, if any, are found. Computationally, the 

algorithm counts the number of different values in a 
table with as many rows and columns as are present in 
the synthetic and experimental spectra respectively.  

The ϑ-score function: Jarman et al [13] define a 
likelihood ratio with respect to two explicit hypotheses 
H0 and HA. The null hypothesis H0 is that spectral 
peaks match ion fragments purely by chance; the 
alternative hypothesis HA is that spectral peaks match 
ion fragments because the candidate sequence is in the 
sample. The ϑ fitness function is the likelihood ratio 
between H0 and HA. Further details of this scoring 
function are described in [13]. The time needed to 
compute any one ϑ-score is small and although details 
are omitted here, they do not affect the conclusions of 
this work. 
 
2.4 Optimization Constraints 
 

When scoring function parameters are 
unconstrained, peptide identification can result in high-
scoring sequences with little biological relevance. 
Constraints arise because of how tryptic digestion 
works and what this says about the matching peptide 
sequences one might expect to detect. First, the ratio 
m/z of mass to electrostatic charge of the parent 
peptide is known to some degree of accuracy along 
with the probable charge z. One also knows, that z is 1, 
2 or 3. Second, it is also very likely that the peptide 
sequence will end in K or R. The constraints on charge 
and terminal are embodied in the sequence 
representation. This will be made precise in the next 
section. 

Here, the mass constraint is embodied in the scoring 
function ∆ of a weak model, parallel to Η and ϑ. The 
∆-score of a putative sequence s is simply the negative 
of the magnitude of the difference of the mass of s and 
that of the experimentally measured parent peptide, m. 
The mass of the parent peptide is determined by 
assuming a charge and calculating the mass from the 
observed mass-to-charge ratio (m/z). However since 
the parent mass is only know up to some accuracy, an 
additive threshold is used such that the ∆-scores of two 
sequences s and s' are considered equal whenever their 
difference doesn't exceed this given threshold. The idea 
of handling constraints in terms of objective functions 
is not new. Surry and Radcliffe [26] proposed one such 
approach, called Constrained Multi-objective 
Optimization by Genetic Algorithm (COMOGA), 
when a large fraction of generated trial solutions do not 
satisfy the many constraints of a complex industrial 
problem. COMOGA switches back and forth between 
single-objective and multi-objective optimization to try 
maintain a minimum number of feasible solutions. In 
the present work, the number of objective functions is 
constant throughout the evolution, however one of the 



objectives is used preferentially during the local 
searches that are described in the next section as 
Lamarckian evolution.  
 
3. Multi-objective optimization 
 

Recent advances in numerical computing and 
computer science have enabled the solution of large-
scale single objective optimization problems with 
respect to millions of free variables in traditional 
quantitative sciences; see for instance [5,2]. Coello [4] 
and Deb [7] give a good overview of many current 
multiobjective optimization methods, including 
minimization of the weighted Lp norm of the vector of 
objective values, Goal Programming and Attainment 
methods and the ε�method. Evolutionary algorithms 
and in particular genetic algorithms do have the 
potential to utilize fully massively parallel computer 
clusters. Constraint handling and the availability of 
cheap parallel computing platforms are two reasons for 
looking at multi-objective optimization. There is at 
least one other reason, but before it is presented, some 
concepts from evolutionary computing need to be 
review first. 
 
3.1. Genetic algorithms and population based 
optimization 
 

The basic concepts of Genetic Algorithms are 
reviewed next, more details and specific techniques 
can be found in many good books and online courses 
including [19]. A genetic algorithm evolves a 
population of so-called genotypes through genetic 
operators such as selection, mutation and 
recombination. Those genotypes are called sequences 
in order to avoid confusion with the genomic data of 
Computational Biology. Beware that a sequence (in 
italics) need not be the same thing as an amino acid 
sequence; it may in fact represent a set of such 
sequences. Another source of confusion is that the 
values assigned to components of a sequence (a 
variable length vector) are called alleles; in the present 
context, these alleles would be the amino acids in 
putative peptide sequences. Whether or not sequences 
should be represented only has bit sequences or as 
some more congenial representation, such as character 
strings or integer vectors, is open to debate. Here we 
take the approach taken by many practitioners, that 
individual members of the population are vectors of 
unspecified atomic values. The basic constituents of a 
genetic algorithm are its representation, population 
(and structure), fitness, selection and reproduction 
(mutation and cross-over).  

Representation: Each of the sequences represents 
nine pairs of parent charges and amino acid sequences. 

For instance, the sequence RPNQTHL represents the 
sequences RPNQTHL, RPNQTHLK, and RPNQTHLR 
with charges of 1, 2 and 3. In the language of 
Evolutionary Computing, those pairs of amino acid 
sequences and charges are called the "phenotypes" of 
the sequence. Again, in order to avoid confusion in this 
paper with existing biological terms, "phenotypes" will 
be called realizations of the corresponding sequence. 
Realizations came in Evolutionary Computing from the 
observation that the effectiveness of genetic algorithms 
to identify regions of the search space where a global 
optima may be found does not translate in general in an 
ability to actually pin-point that global optima. Thus, 
the Darwinian evolution enacted by the genetic 
algorithm is complemented by a Lamarckian evolution 
that may be implemented by a standard Newton-
Raphson algorithm if first order derivatives are 
available. Those genetic algorithms are also known as 
memetic algorithms, see for example [20]. In this 
paper, a sequence is represented by a vector of integers 
between 0 and 18. The null allele is a placeholder; 
alleles between 1 and 18 encode amino acids amino 
acids having the same mass. There are 20 amino acids 
but the two pairs I/L and K/Q cannot be told apart from 
their masses alone. The scores of a sequence s are 
those of the sequence with the highest ϑ-score among 
the realizations of s. Any other score could serve for 
that matter; an unbiased approach more in line with 
COMOGA could be implemented instead, for instance 
by selecting a random scoring function for each 
sequence or for each generation. 

Population: An initial population is generated, often 
entirely at random or by perturbation of some given 
sequences; here, the three best candidates found by 
SEQUEST. At each generation, a subset of the 
population is selected for reproduction based on their 
intrinsic or relative fitness. The new sequences then 
replace some other selection of sequences in the 
population. Successive generations are computed until 
their number exceeds some threshold, or the maximum 
fitness within the population stabilizes for long 
enough, or until say 95% of the population is within 
one standard deviation from the maximum, or until 
some other criterion is satisfied. The population is said 
to have converged when the distribution of fitness 
values among the population has stabilized in some 
way. It is important to note that the population size 
remains fixed throughout the generations. 

The structure of a population imposes constraints 
on which sequences are allowed to mate together. Each 
sequence has a neighborhood, or deme, from within 
which mates can be selected. Sequences whose demes 
do not intersect cannot produce an offspring. In the 
diffusion models, individual sequences are assigned to 
nodes of a conceptual regular grid and the deme of a 
sequence consists of its nearest neighbors along that 



grid. In the island model, demes form a partition of the 
entire population, but random migrations of sequences 
at regular intervals ensure that the islands remain 
related. A population that consists of a unique island is 
called panmictic. The island and diffusion models were 
introduced in order to take advantage of parallel 
hardware. It was observed afterwards that structure 
could reduce the total number of sequences sampled by 
the genetic algorithm before it converges. Thus, 
population structure may speedup the convergence of 
serial algorithms as well. In this paper, each time a 
migration takes place a random cycle of all islands is 
computed. Each island sends one of its members to its 
left neighbor along the cycle and replaces that member 
by the sequence it receives from its right neighbor. 

Fitness: The fitness and value are two related but 
separate concepts. The value of a sequence is its score 
with respect to the target spectra. The fitness of a 
sequence is how well it fits the data relative to all 
sequences represented in the population. Note the use 
of italics. The important concept here is that of 
selection pressure imparted by the fitness function. If 
one defines the distance between two peptide 
sequences to be the minimum number of changes one 
must impart to one in order to get the other one, the 
scoring functions that are considered in this paper have 
large variations over short distances as well as very 
small variations over long distances. Thus when 
selection is based entirely on scores a population 
consisting of low fitness sequences may stagnate. 
Alternatively, a single highly fit sequence may be 
irremediably lost after a single "allele" is modified. 
Typically, in single objective optimization, the raw 
scores are rescaled to yield a fitness function. In multi-
objective optimization, the approach followed here is 
to rank the sequences based on the values of their 
realizations. The way this ranking is done is explained 
in the next section, the important point here is that the 
rank then becomes the value of the sequence, which is 
rescaled to produce a fitness value. In this paper, one 
score is arbitrarily chosen, say the ϑ-score and the Η, ϑ 
and ∆-scores of a sequence s are the corresponding 
scores of that realization of s with the highest the ϑ-
score. Other approaches are possible and not hard to 
implement.  

Selection: The probability of a sequence being 
selected is typically not proportional to its fitness or 
score. Randomness is introduced in the selection 
process in order to preserve any "genetic" diversity 
within the population. With binary tournament 
selection, two sequences from the current population 
are chosen at random (with equal probability unrelated 
to fitness) but the sequence with the highest score is 
selected for reproduction. There are many variations on 
this theme, for instance more than two sequences might 
be chosen initially and more than one of those might be 

allowed to mate. A similar selection process can occur 
when new sequences replace existing sequences, 
although in practice a simpler "replace-worst" or 
"replace-random" rule is commonly enforced. Here 
10% of the population is replaced at each generation. 

Reproduction: Most genetic algorithms select pairs 
of parent sequences, say p1 and p2. Unary or 1-point 
crossover creates two new sequences c1 and c2 by 
interchanging randomly selected initial segments from 
p1 and p2. With 2-point crossover, the new sequences 
are constructed by interchanging interior segments 
from the parent sequences. For example, if p1 is 
RPQTHLKPPN and p2 is nfihtvvaha, where case is not 
significant, a possible pair of children might be 
RPQfihtvPN and nTHLKPvaha. The children c1 and c2 
are said to complement each other. Some genetic 
algorithms insert both children back in the population 
but this is not common. It is common however to 
perturb sequences before they are inserted back into 
the population. A typical mutation operator will 
randomly replace each "allele" from a sequence with a 
preset probability. In the present context, that 
probability is equal to the inverse of the maximum 
sequence length, and on average, only a few "alleles" 
are changed during a mutation.  
 
3.2 Pareto dominance and ranking 
 

A sequence s is said to dominate (in the Pareto 
sense) any other sequence s' such that the Η, ϑ and ∆-
scores of s are higher than that of s'. If those three 
scores represented the judgments of three panelists, the 
sequence s' might be discarded has having no merit. In 
any given population, those sequences that are 
dominated by no other sequence in that same 
population are called, not surprisingly, non-dominated. 
The real interest is of course for those sequences that 
are non-dominated within the entire space of 
sequences. Those are called dominant, or efficient, 
sequences. 

It is common in practice to ascribe some hierarchy 
among fitness functions say by computing a weighted 
sum of the scores. One limitation here is that it can be 
very hard if at all possible to find a set of weights that 
is effective for a wide variety of peptide identification 
problems. Another limitation is that depending on the 
constraints and how they are handled, the weighted 
sum approach can miss some efficient sequences. This 
phenomenon is illustrated in Figure 1. The same 
genetic algorithm was run once over 1000 generations 
with an initial panmictic population of size 3000 using 
only the Η-score to determine fitness. It was run a 
second time using the same experimental spectra but 
then using only the ϑ-score. Finally, the algorithm was 



run a third time by combining the Η, ϑ and ∆-scores using Pareto ranking as described below. 
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Figure 1 Distributions of Η and ϑ-scores for different evolutionary paths of the same initial population. 

Figure 1 displays the distribution of the Η and ϑ-
scores for the initial population and the final 
populations for each of the three runs. In all cases, the 
maximum sequence length is 40. The horizontal and 
vertical lines indicate the scores of the best (straight 
line and square symbol), second best (dashed line and 
star symbol) and third best (dot-dashed line and 
triangle symbol) scoring peptides according to 
SEQUEST. The Η-driven and ϑ-driven populations see 
their fitness distributions migrating toward one side of 
their respective scatter plot. A linear combination of 
these two scores will migrate the score distributions 

also further away from the bottom left hand side corner 
but along a different axis. 

Multi-objective algorithms based on Pareto 
dominance do not ascribe arbitrary importance to the 
different scores, they retain all that cannot be thrown 
out, but they also rely on the dominance relation to stir 
the overall population toward efficient sequences 
across generations. Ranking starts at zero for non-
dominated sequences in the population. Different 
methods are employed to assigned higher ranks to the 
remaining sequences; see for instance [7]. The ranking 
used for this paper is due to Fonseca and Fleming, 
which is simply the number of sequences that dominate 



the given sequence. This rank can be computed within 
any one island by a single sweep of the sequences 
ascribed to that island. The rank is typically subtracted 
from the maximum rank to produce a fitness function 
that can be maximized. Table 1 illustrates this 
particular ranking algorithm using some sequences 
matched against the spectra from the sequence 
RNPQTHLKP. 

Table 1 Fonseca-Fleming ranks for a small sample 
of peptide sequences matches against the spectra of 
a known peptide. The last three sequences are the 
SEQUEST candidates; the sequence in italics is 
actually the putatively correct one.  

 Sequence Η ϑ ∆ Rank 
1 RPNQTHLK  1.79  76.13  -114.5 0 

2 RLPQTHNK  1.47  0.66  -114.5 2 

3 RLPTQHPK 1.56 0.57  -131.5 0 

4 RNPQTHLKP   1.84 23.33 -17.4 0 

 
Looking at Table 1 it would be incorrect to 

conclude that one scoring function is better than the 
others, for one thing, in [13], the ϑ is only evaluated on 
sequences whose total mass is close enough to the 
target parent mass. Similarly, there are many peptides 
that have all the right amino acids, but in the wrong 
order and hence the right mass but very low Η and ϑ-
scores. 
 
3.3 Parallel Computation 
 

We used a modified version of PGAPack [16] from 
among several equally good toolkits for implementing 
parallel genetic algorithms. Paraphrasing Levine: 
"PGAPack is a general-purpose, data-structure-
neutral, parallel genetic algorithm toolkit for building 
parallel genetic algorithms based on the Message 
Passing Interface [21] library". PGAPack is not a 
scripting language like RPL2 [25] and supports only 
panmictic population. The fact that PGAPack is public 
and its source is available made it possible to add 
support for both the island model and Pareto ranking. 
The parallel execution is very simple. MPI processes 
are ascribed to a single island throughout the evolution 
of the initial population. Each island owns a separate 
MPI communicator and operates as a task farm. A 
dedicated master process does all the bookkeeping and 
sorting required by the genetic algorithm and 
dispatches sequences to the other processes on the 
island. Pareto ranks are computed separately on each 
island by the corresponding master process. Global 
Pareto ranks across all islands could have been 

computed instead but would not have likely affected 
the scalability significantly at least for the Goldberg 
rank [17]. Migration occurs at regular intervals. A 
random cyclic path across all islands is computed and 
broadcasted by one of the master processes. Each 
master process then sends one sequence to its left 
neighbor along the cycle and this sequence is replaced 
by that received from the right.  
 
2. Parallel Scalability and GA Efficiency 
 

The interest of using parallel algorithms to search 
for peptide sequences that best match a single spectra 
comes from the fact that stochastic search algorithms 
such as genetic algorithms and Monte Carlo 
Simulations [11] can have both large warm up times 
and large overheads associated with the book-keeping 
of samples. Concurrent processes working together on 
the same experimental spectrum may reduce the warm 
up time they would require if they were assigned 
distinct spectra. This section addresses the question of 
the scalability of multi-objective genetic algorithms 
(GA) in the context of de novo peptide identification. 
All benchmarks ran on a Terascale HP cluster in the 
Molecular Science Computing Facility (MSCF) at 
Pacific Northwest National Laboratory. This cluster is 
composed of 1.5GHz Itanium 64-bit dual-processor 
workstations, linked together by a Quadrics QSNet 1 
interconnect.  

Table 2 illustrates how local populations can help 
reduce the bookkeeping time of the genetic algorithms 
while keeping the number of score evaluations 
constant. Table 2 shows the runtime in seconds for 100 
generations of panmictic populations of various sizes 
evolved by a 2-process genetic algorithm. The time 
spent evaluating scores increases linearly with the 
number of score evaluations. It is small compared to 
the bookkeeping time of the algorithm that is seen to 
increase as the square of the population size.  

Table 2 The cost in seconds of evaluating all 3 
scores is seen to grow linearly with the population 
size while the overall runtime of evolving a 
panmictic population on a single SMP node across 
100 generations rises much more sharply.  

Population Size Scoring Total Time 
512 0.51 22.21 

1024 0.99 90.66 
2048 1.99 349.02 
4096 4.01 1384.62 

 
Table 3 shows the time needed by a genetic 

algorithm to evolve an island structured population for 
100 generations using the same peptide identification 
problem as in Table 2 and the same algorithmic 



parameters when the number of islands (one for each 
two processors) increases. The population on a single 
island decreases by a factor of two each time the 
number of island is doubled. Although the total 
number of score evaluated remains constant and 
although those populations remain connected to one 
another, the overall runtime is considerably reduced.  

The last column of Table 3 shows the highest ϑ-
score in the 100th generation of the respective 
population. That maximal score decreases as the 
number of islands increases and "genetic" diversity 
improves compared to a panmictic population. In 
particular, on a parallel computer where the solution 
time is not proportional to the total number of score 
evaluations, one will want in practice to maintain large 
enough island populations. Table 3 addresses the 
question of why not simply do peptide identifications 
of all the generated spectra, all at once in an 
embarrassingly parallel fashion. Sharing the 
identification tasks decreases the overheads and helps 
preserve diversity in the sequence population. 
 

Table 3 For a constant total population size of 
2048 sequences over 100 generations the 
reduction in runtime the cost of book-keeping 
and memory overheads is seen to decrease 
rapidly with the number of islands, which is 
half the number of processors. Times are in 
seconds. 

p Islands Score 
time  

Total 
time  

Seq. 
per 
island 

Best  
ϑ-score 

2 1 1.99 349.29 2048 15639.77 
4 2 0.98 89.87 1024 19781.35 
8 2 0.66 89.52 1024 19781.35 
16 2 0.29 88.49 1024 19781.35 
8 4 0.50 23.99 512 6996.46 
16 8 0.26 6.35 256 6996.46 

 
4. Conclusions 
 

A framework has been presented for combining de 
novo peptide identification methods. The distinctive 
feature of our approach, based on Pareto ranking, is 
that it can accommodate constraints and possibly 
conflicting scoring functions. We have also shown how 
population structure can significantly improve the wall 
clock time of peptide identification while at the same 
time maintaining some exchange of information across 
local populations. This paper does not address the 
question of the quality or biological relevance of the 
identified peptides, nor does it addresses the questions 
of the optimal number of islands, the optimal number 

of processors per islands etc; the latter are problem and 
hardware dependent. 
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