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Abstract

As an essential part of in vitro analysis, biological
database query has become more and more important in
the research process. A few challenges that are specific
to bioinformatics applications are data heterogeneity, large
data volume and exponential data growth, constant appear-
ance of new data types and data formats. We have devel-
oped an integration system that processes data in their flat
file formats. Its advantages include the reduction of over-
head and programming efforts. In the paper, we discuss the
usage of indicing techniques on top of this flat file query sys-
tem. Besides the advantage of processing flat files directly,
the system also improves its performance and functionality
by using indexes. Experiments based on real life queries are
used to test the integration system.

1 Introduction
Modern biological researches are often complicated pro-

cesses and involve many steps. Among them, database query
is essential for many applications. It can be used to, for
example, identify research objects, collect relative informa-
tion, and search existing literature.

The biological databases range from the classic molec-
ular databases, such as GenBank, and literature databases,
such as PubMed, to the latest array data repository, such as
GEO, and network database, such as BIND. Because of the
diversity of the data they represent and other considerations,
these databases differ greatly in their choice of database
management system (DBMS).

Most of the biological databases are open to public. They
could be downloaded as flat files. One possible solution to
overcome the DBMS heterogeneity problem is to use these
flat files directly. As an alternative to loading data into a
DBMS and utilizing its query facility, the data could be ex-
tracted and examined from its original files.

The biological queries are often simple selection queries
on one or few attributes without many testing conditions.
Such queries can be supported on flat-file datasets with sim-
ple implementations. However, with this approach, the size
of the databases is a major factor that affects the system’s
response time. Biological data is growing at a phenomenal
speed and good performance is desirable by the users.

Indices have been widely used by database research com-
munity to improve query performance. A variety of indexing
algorithms have been proposed. They allow random retrieval
of data entries by using pre-processed summarization of the
dataset. When the query selectivity is low, use of index could
significantly reduce the I/O cost.

In recent years, there has been much work on developing
indexing mechanisms suitable for biological data [10, 12,
18, 23, 27, 9]. Despite such developments, it has not been
easy to incorporate indexing mechanisms into the biological
data processing tasks. There are at least two reasons for this.
First, as we mentioned above, many data processing tasks
simply process flat-file data with utility functions. Second,
biological data varies greatly, and as a result, a universal in-
dexing scheme does not exist.

Thus, it is highly desirable to have a toolkit, which will
allow indexing functions to be incorporated into biological
data processing. This paper reports the design, implemen-
tation, and evaluation of such a toolkit. Previously, we had
worked on systems and technologies [28, 30, 29] that pro-
vided database-like query interface on top of flat-file biolog-
ical data. However, in these systems, all data was scanned
and processed in a streaming fashion, making the query pro-
cessing time linear in terms of the dataset size.

In our enhanced system, we rely on users to provide in-
dexing functions specific to their applications. The role of
our integration system is to serve as a general platform that
evokes these functions when appropriate. The indices used
by our system follow the general form, which is a pair of an
index value and a pointer. Two types of indexing functions
are needed. Index generation functions specify how indices
can be built. Index retrieving functions implement how in-
dices are used to answer a query. Together these two types
of indexing functions provide an efficient way to access data
entries even if they are embedded in flat files. The general
interfaces of the indexing functions add great flexibility to
the system’s functionality. For example, in our experiments,
when DNA sequences are indexed appropriately, sequence
similarity search can be implemented as a selection query.

Overall, the data integration system is improved in both
performance and functionality by using indices. It allows
data embedded in the flat files to be queried in a database-
like fashion. It aims to provide a balance between data ac-
cessibility and query performance.

1



The rest of the paper is organized as follows. We ini-
tially give an overview of the work on indexing biological
data in Section 2. The overall system structure is illustrated
in Section 3. The algorithm and implementation details are
presented in Section 4. Experimental results are discussed
in Section 5. We conclude in Section 6.

2 Indexing Biological Data

This section reviews the indexing algorithms for biologi-
cal data.

Indexing is a technique that searches for data entries us-
ing reduced information of them. The basic index is a struc-
tured list of tuples. Each tuple contains one data attribute
value and one pointer to the corresponding data entry. By
comparing the attribute values and obtaining the pointers,
desired entries can be retrieved in shorter period of time.
Many advanced indexing algorithms have been developed.

Many biology databases [2, 25, 8] embrace the index
technology to improve the query performance. Indices are
widely used on the primary key attributes and other alphanu-
meric valued attributes. The increasing popularity of public
life science literature databases [6], such as PubMed Cen-
tral 1 and Medline 2, have attracted many efforts on litera-
ture index and retrieval. Most of the indices are word based
and similar to traditional electronic dictionary [5, 17, 24].
Some approaches, such as [19], use probabilities and filters
to refine the entry retrieval. Gene Reference Into Function
(GeneRIF) [16] was developed and maintained by the Na-
tional Library of Medicine (NLM) Gene Indexing initiative.
It enriches the literature search by linking PubMed articles
about the basic biology of a gene or protein within eight
organisms to the LocusLink, a database of gene products.
ISAID [3] was developed to help user create complex, pre-
cise, and accurate indexing for full-text documents semi-
automatically. The performance test done by Boyce and
Lockard [4] showed that the automatic indexing procedures
that are based on the full text of medical articles are compa-
rable to manual indexing.

Indexing on other types of biological data have been stud-
ied, too. Lowe et al [15] extend Pindex, a system associates
word phrases with Medical Subject Heading (Mesh) terms,
to index medical images based on their free-text description.
Tagare et al discussed similarity search of medical images
and application of numerical concepts to image indexing in
[26]. Suffix arrays were used to identify the conserved RNA
secondary structure motif without sequence alignment [1].
Sequence similarity search is central to biological research
and indexing approaches have also been explored. Shibuya
and Rigoutsos [20] search for gene candidates through the
use of the Bio-dictionary, which is based on indexing the
redundant and unique patterns derived from an existing se-
quence database. Singh et al have developed a set of index
structures for sequence alignment [10, 12, 14, 13] and sub-
string search [11]. Their approaches are based on wavelet
transformation and grid index structures. Frequency bases
efforts can also be found in [18, 23]. Several advanced tree
structures [27, 9] have been proposed for sequence homol-
ogy searches, too.

1Please see http://www.pubmedcentral.nih.gov/
2Please see http://medline.cos.com/
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Figure 1. Overview of the Query System Using
Indices

3 Challenges and System Overview
This section provides an overview of our system. We will

discuss the major challenges involved in incorporating in-
dexing to the query system and our approach.

Our query analysis system are summarized in Figure 1.
Compared with our previous work, the main enhancement
is on the QUERY-PROC program while a new module of in-
dexing functions were added and it interacts with the Syn-
chronizer module and accesses the index files. Each query
submitted to the system is analyzed by the Query Parser.
Datasets’ and attributes’ names are retrieved. Logical
schema and physical layout information about the datasets
are parsed by the Descriptor Parser. The application ana-
lyzer performs all the necessary analysis tasks and translates
each query into a set of forthright directions in forms of ta-
bles and parameters. Collectively, we call them QUERY-
INFOR. The details of the query analysis system will be
explained in Section 4.2. With a QUERYINFOR record
plugged in, the general modules and the indexing function
are complied into an executable program, QUERY-PROC.
The QUERY-PROC interacts with the datasets and indices di-
rectly to answer the query. The algorithms of its modules
are discussed in Section 4.3. Example indexing functions
are also given in the same section.

3.1 Major Goals
Most biologists don’t have sophisticated training on com-

puter programming. So the interface simplicity remains one
of our main design goals. An SQL like declarative language
is used to specify requests. We continued to use a meta-
data description language to describe the flat file datasets.
With these two languages, users need not to provide direc-
tions on how to extract values and how to process them to
answer their queries. Both will be deduced and executed
by the system. The metadata descriptors are independent of
queries. Thus, they could be reused by various queries and
users. This further simplify the usage.

In order to generate and use indices, the values of the
indexed field have to be known. When data is embedded
within a flat file, it is not trivial to get these values. Since
these values are also needed to answer queries, we dele-
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gated this task to a module named QUERY-PROC, which is
responsible for answering queries. This simplifies the imple-
mentation of the indexing functions. Similarly, the pointer
values are also provided by the QUERY-PROC program. The
choice of pointer values is not trivial, either. Traditionally in
DBMS, key attribute values are used as index pointers. This
is also the case with many down-loadable index files, such
as those provided by SWISSPROT. However, when data is
in its original flat files and not well organized as in DBMSs,
the key attribute look-up could be expensive. To save query
execution time, we picked lower-level values, the byte off-
sets of the data entries in the file, as their pointers. With
these pointers, the QUERY-PROC program can directly posi-
tion the curser to the beginning of the target data entry and
read the desired entry.

The only input that involves user’s programming efforts
are the indexing functions. This is unavoidable because dif-
ferent data fields contain different types of data and may re-
quest different indexing algorithms. Many biological data
indexing algorithms have been developed and they are avail-
able either through web service or down-loadable source
code. Besides the indexing function names, other informa-
tion, such as the name of the field to be indexed and the loca-
tion of the index file, is also needed. They are all properties
of the dataset and included as part of the metadata.

Special care has also been given to data re-usability.
Metadata descriptors, again, can be shared by all queries
that access the same dataset. Indices are reused, too, in the
forms of flat files. The QUERY-PROC program evokes the in-
dex generation function only when no current index file can
be found. Otherwise, indices are loaded by the calling the
index retrieving function.

3.2 Integrating Indexing Functions
In our implementation, the indexing functions are treated

as plug-in modules of the query execution program. There
is no constrain on the internal implementation of the algo-
rithms. However, the system requires these indexing mod-
ules to have a unified interface. This requirement is neces-
sary since Synchronizer, the caller of the indexing functions,
is implemented as a general module and it needs the mini-
mum information about how to invoke these functions. The
interface includes the following components.

• Names of two functions. The index generation func-
tion implements the creation of indices from the origi-
nal data file. The index retrieving function implements
loading of the indices and the usage of indices.

• The input to the index generation function is individual
data attribute value. The name of the target index file is
also passed to this function as parameters.

• The index retrieving function is only aware of the index
file and always assume such a file exists. It takes the
attribute value to be searched as input and returns a list
of pointers.

The interface poses some constrains on the implementa-
tion of the indexing algorithms. Our system stores informa-
tion about single data entry and is memoryless. Only indices
bases on individual entries are allowed. The current imple-
mentation also forbids generating indices from combined

multiple attributes. However, these constrains don’t affect
most of the bioinformatics applications. Most of the exist-
ing codes can be wrapped to meet the requirements, which
is illustrated by our experiments.

public bool index loaded← FALSE;
bool index sorted← FALSE;
idx list id index← ∅;

//——————— index generation function ———————
//attribute value, index pointer and index file are passed as arguments
void genomeIndex(string value, int pointer, FILE* index file) {

id index.push in(idx(value, pointer));
//each index is a pair of a (processed) value and a pointer
write value, value.length() and pointer to index file;
if (NOT index loaded)

index loaded← TRUE;
}

//——————— index retrieving function ———————
//query value and index file are passed as arguments, pointer list are returned
int list getGeneRandom(string query value, FILE* index file) {

int list candidate list← ∅;
if (NOT index loaded) {

read indices from index file into id index;
index loaded← TRUE;
}
if (NOT index sorted) {

sort id index by ID values;
index sorted← TRUE;
}
if (index loaded AND index sorted) {

binary search id index for query value;
if found

add pointer to candidate list;
}
return candidate list;
}

Figure 2. Algorithm of Example Indexing
Functions for Yeast Genome IDs

4 Algorithms and System Implementation
In this section, we explain our system and algorithms in

details. We will explain the data description and query lan-
guage briefly in Section 4.1. The implementation of the
query analysis module and query processing program will
be illustrated in details, because they relate directly to the
usage of indexing. Other system components, although up-
graded accordingly, are omitted in our discussion. Interested
parties can refer to our earlier publications [28, 29] for more
details.

4.1 Languages
This section describes the query and metadata descrip-

tion languages used in our system. With these languages,
high-level description of queries and datasets can be easily
written.

4.1.1 Query Language

The query language is similar to SQL and has been used
in our previous systems. We will use a simple ID look-
up query, Figure 4, as an example. The use of keywords,
highlighted in the figure, is similar to SQL standard. In this
query, the yeast genome database is searched by gene IDs.
The query IDs are from a microarray chip dataset, CHIP-
DATA. Once a matched gene is found, besides its gene ID,
its full description is retrieved.
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bool match found← TRUE;
int list offset list;
if(in compare field indexing, even valid entries are less than odd valid entries )
{ exchange Source1, Source2; }

while (not reach the end of Source1) { //scan Source1
call DataReader on Source1 until a full entry extracted;
clean offset list;
for (every tuple t in compare field) {

if (compare field indexing[2*t+1] is valid) { //Source2 index available
call index ret fun[compare field indexing[2*t+1]] with buffer value for

attr indexed[2*t+1];
store returned list as a candidate list;
}
}
offset list← intersection of all candidate lists;
sort offset list;
for (every offset i in the offset list) {

move cursor of Source 2 to position i;
call DataReader on Source2 until a full entry extracted;
match found← TRUE;
for (every tuple t in compare field) {

if (compare field indexing[2*t+1] is invalid) { //Source2 index not available
compare buffer value for compare field[2*t] with buffer value for

compare field[2*t+1];
if (not match)
{ match found← FALSE; }

}
}
if (match found)
{ call DataWriter until a full entry written to Target; }

clear Source2 values from value buffer;
}
clear Source1 values from value buffer;
}

Figure 3. The Algorithm for the Synchronizer
Using Indices

AUTOWRAP GNAMES //target dataset
FROM CHIPDATA, YEASTGENOME //source dataset(s)
BY CHIPDATA.GENE = YEASTGENOME.ID //testing condition(s)
WHERE //target attributes and their value sources

GNAMES.GENE = CHIPDATA.GENE
GNAMES.DE = YEASTGENOME.DESCRIPTION

Figure 4. Query Example

4.1.2 Metadata Description Language

We also reuse and extend the metadata description lan-
guage used in our previous tools. Each data resource is
represented with one descriptor with two components, the
Dataset Schema Description and Dataset Layout Descrip-
tion. The descriptors are stored on disk as flat files and can
be re-used by different queries. Data mining techniques are
available and they can help users to write the descriptors
semi-automatically [21, 22, 31].

The yeast genome data conforms with the FASTA for-
mat and Figure 5 shows its descriptor. As an extension for
explaining indexing information, the key word ”INDEX” is
used. Each index is a tuple of the following format

Attribute name : Index data file location : In-
dex Generation Function : Index Retrieving Function
: Functions Location.

Multiple attributes may be indexed and comma signs (”,”)
are used to separate them.

4.2 Query Analysis
Once a query is submitted to the system, a serial of anal-

ysis modules are evoked. The goal is to generate a QUERY-
INFOR data structure which captures all the instructions

Component I. Dataset Schema Description in DTD
<?xml version=’1.0’ encoding=’UTF-8’?>
<!ELEMENT YEASTGENOME (ID, DESCRIPTION, EC*, SEQ)>
<!ELEMENT ID (#PCDATA)>
<!ELEMENT DESCRIPTION (#PCDATA)>
<!ELEMENT EC (#PCDATA)>
<!ELEMENT SEQ (#PCDATA)>

Component II. Dataset Layout Description
DATASET ”YeastData” {

DATATYPE {YEASTGENOME} // Corresponding schema name
DATASPACE LINESIZE = 100 { // File layout

< // token <>: repetition, one or more times
”>” ID
” ” DESCRIPTION
[ ”EC:” EC ] // token []: repetition, zero or more times
< ”\n” SEQ >

>
}
DATA {data/Scerevisiae prot 20062005} // File location
INDEX {ID:data/protID.idx:genomeIndex:getGeneRandom:genomeIndex.h}

// index information
}

Figure 5. The Metadata Descriptor for Yeast
Genome

needed for answering the query. This section explains the
details, with emphasis on the indexing functionality.

4.2.1 Query and Descriptor Parser

The Query Parser is used in this system to parse the query.
The testing conditions and attributes pairs in the ”WHERE”
clause are extracted. The names of the source and target
datasets are also extracted. They are used to retrieve the right
metadata descriptors. These descriptors are parsed by the
Descriptor Parser. It has two components, Schema Parser
and Layout Parser, each corresponding to one component of
the descriptor. Accordingly, two parse trees, a schema tree
and a layout tree, are generated. To this point, all informa-
tion about the datasets and user query is converted to internal
structures and resides in memory.

4.2.2 Application Analyzer

The Application Analyzer is the core module of the code
generation system. It analyzes each query and captures all
necessary directions for the general modules of the query
answering program. These directions are organized into
QUERYINFOR. Since all the metadata analysis is done by
the Application Analyzer, the computation load is reduced
for the QUERY-PROC and the overall performance is im-
proved.

Specifically, the Application Analyzer performs follow-
ing tasks.

• Rename leaves in the parse trees by integers. The in-
tegers can not only be used as reference to the entities,
but also as pointers to look-up tables. Specifically,

– Assign all the DLM-VAR nodes in the source and
target layout trees with node numbers.

– Categorize all the leaves in source schema trees
into useful or useless attributes. The attributes not
called by the query is useless and are labeled with
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Layout Number ... 3 4 5 6
Schema Label ... R3 R2 0 0

(a) Label Look-up Table

Layout Number ... 3 4 5 6
Delimiter ... ”>” ” ” ”EC:” ”\n”

(b) Delimiter Look-up Table

Layout Number Reachables List
... ...
3 4
4 5, 6
5 5, 6
6 3

(c) Reachable Look-up Table

Index Number 0
attr indexed R3

index gen fun genomeIndex
index ret fun getGeneRandom

index file data/id.idx
(d) Index Look-up Table

Parameter Value
compare field (R1, R3)

compare field indexing (-,0)
semi size 0, 0
regl size 1, 2

complete in 2, 6
complete out 2

(e) Parameters

Figure 6. QUERYINFOR for Example Yeast
Genome Query

0. The useful attributes are further categorized by
their cardinalities into semi-structured or regular
attributes. They are labeled separately with node
labels.

– Using mapping information provided by the
Query Parser, label leaves in the target schema
tree with the same labels of the corresponding
nodes in the source schema trees.

• Draw correspondence between schema tree leaves and
layout tree leaves. The result is a label look-up table.
The i-th element in the table is the label of the schema
leaf associated with the DLM-VAR leaf with number i.

• Organize delimiters in a delimiter look-up table by the
DLM-VAR leaf numbers.

• Calculate the lists of reachable nodes for the DLM-
VAR leafs and record the lists in a reachable look-up
table. Intuitively, they contain all possible DLM-VAR
pairs that could be read or written next.

• Organize index information into index look-up table.
It contains labels of the indexed attributes, index func-
tions names and index file locations. Specifically,

– Record labels of the attributed indexed in
attr indexed[].

– Record the names of the index generation and
retrieving functions in index gen fun[] and in-
dex ret fun[].

– Record locations of the indices in index file[].

• For the test conditions, test their index availabil-
ity in the index look up table. Record it as com-
pare field indexing.

• Record query test conditions as pairs of labels in com-
pare field.

• Record the total numbers of useful source semi-
structured and regular attributes in semi size[] and
regl size[].

• Examine whether index is available for each query field
by checking compare field against index look-up table.
Record the results as pairs of pointers to the index look-
up table in compare field indexing[].

• Record the node numbers of last DLM-VAR nodes in
complete in[] and complete out. They indicates the
completion of reading and writing of one entry.

The QUERYINFOR for the example query on yeast
genome is illustrated in Figure 6. The layout number 3
through 6 correspond to the attributes from the yeast genome
file. Take its ID attribute (number 3) as an example. It was
labeled as the third regular attribute, R3. The ID values are
followed by the delimiter of the next attribute. It has only
one reachable node which is node 4. The genome ID val-
ues are compared with gene names from the other dataset
(R1) as indicated by the parameter compare field. The 0
value in the parameter compare field indexing means that
the genome IDs are indexed and the indexing information
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can be found from the first entry of the index look-up table.
The directions for the QUERY-PROC program can be solely
inferred from the QUERYINFOR alone, as will be discussed
in the next section.

4.3 Query Execution: The QUERY-PROC Program
The QUERY-PROC program accesses the datasets to an-

swer the query. When index functions are available for the
testing fields, it will create the indices if index files are not
available, load the indices and use them to search for the data
entries. Besides a query-specific QUERYINFOR record,
a complete QUERY-PROC contains three general modules,
DataReader , DataWriter and Synchronizer. The indexing
functions are provided by the user.

4.3.1 Value Buffer, DataReader and DataWriter

The implementation of value buffer, dataReader and
dataWriter is similar to the previous system. For the sake of
completeness, we will review them briefly here. The details
can be found in [28, 29]. Because of the big sizes of biologi-
cal datasets, we limit the amount of data stored in memory so
that a scalable performance could be achieved. At any time
of the query answering process, only useful data values of
one entry from each source dataset are kept in memory. The
exact configuration of the value buffer is query-specific and
determined by the parameter semi size and regl size from
the QUERYINFOR. Within the buffer, two types of buffer
units, string and string list, are used, each corresponds to
one type of the attributes.

The value buffer is accessible to all QUERY-PROC general
modules. DataReader and DataWriter, are responsible for
transferring data between the datasets and the value buffer.
The datasets are read/written by them sequentially. The
reachable lists in QUERYINFOR are used by DataReader
to search for the boundaries of the data values. The reach-
able delimiter that appears first in the source stream indi-
cates the end of the attribute value. Partial values are merged
by DataReader before written to the value buffer. On the
other hand, when a value’s length exceed the line limit,
DataWriter splits it and inserts appropriate delimiters in be-
tween.

4.3.2 Indexing Functions

Designing a system that is easy to use is one of our design
goals. The simplicity does not only refer to the high level
description of the query and datasets, but also relate to the
easiness of implementation or re-implementation of the in-
dexing functions.

As discussed earlier, QUERY-PROC program is responsi-
ble for parsing of the datasets. Users only need to provide
functions that write, load and search index values, assum-
ing the values of the data attributes and pointers are cor-
rectly passed as arguments. The lower level complexity of
the datasets are transparent to these functions.

A simple index generation and retrieving function are il-
lustrated in Figure 2 to show the interface. This example was
used to index the ID field of the yeast genome. Other algo-
rithms, as reviewed in Section 2, can also be plugged into
our system as long as the same interface can be provided.

4.3.3 Synchronizer

The Synchronizer serves as the central control module of
the QUERY-PROC program. It determines when to call
DataReader, DataWriter module and indexing functions.
Figure 3 shows its pseudo-code.

In order to make the QUERY-PROC capable of handling as
many queries as possible, we used the nested loops with in-
dexing technique for join queries. It makes little assumption
about the availability of the index and property of dataset.
When no testing attribute is indexed, the Synchronizer com-
pares every possible pair of data entries. The data entries are
scanned sequentially, which agrees with our design philoso-
phy. Whenever possible, indices are utilized to retrieve data
entry randomly for a better performance. The execution of
other types of queries, such as selection, can be easily incor-
porated into this structure.

The first sub-task of the Synchronizer is to check the
availability of index data files. If an index file cannot be
found but its indexing function is present, the source dataset
will be scanned once using DataReader and the missing in-
dices will be created by calling the right generation function.

Once all the necessary indices are ready, the Synchro-
nizer starts to answer the query. In the outer loop, it calls
the DataReader to scan the first dataset, Source1, until a
full entry has be extracted. Use the values stored in the
value buffer, the Synchronizer calls available index retriev-
ing functions to search the other dataset, Source2, for candi-
date entries. When more than one index is used, the returned
lists of entries are intersected. The Synchronizer then re-
trieves the entries in the candidate list one by one. The value
buffer units allocated for the Source2 are filled accordingly.
Whenever a full candidate entry is read, the test conditions
with no index are checked. Only the entries that pass all
the tests are the true answers. The DataWriter will then be
called and the answer will be deposited to the target dataset.
As the last step, the Synchronizer cleans the value buffer for
the new circle.

As a consequence of the nested loops structure, the order
of the target entries are the same as they are in the Source1
dataset. The algorithm will fail if reorganization of the data
is required. However, we found that most bioinformatics
applications do not need such reorganization.

5 Experimental Results

We tested our system with four applications. They are all
based on real biological problems. According to the index-
ing functions used, they can be categorized into two groups.
Classic indices are direct mapping of attribute values. These
indices can be used to answer queries with value compari-
son. We refer to these queries as general database searches
and three experiments were conducted and presented in Sec-
tion 5.1. Indices can also be built on values calculated from
the original attribute values. These indices are more com-
plicated and can be used to answer more involved queries.
Sequence similarity search is a good example from biology
domain. By converting the nucleic acid sequences using
wavelet, similar sequences can be extracted using these in-
dices. We will present two sequence indexing algorithms in
Section 5.2.
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5.1 General Database Search with Index
We first tested our system using classic indices. A sim-

ple index is a list of tuples in the form (value, offset). The
list is sorted by the indexed attribute value. Binary search
method can used to search the index. The implementation of
such indexing functions has been discussed in Section 4.3.2.
Three experiments were conducted. In all of them, the per-
formance of the QUERY-PROC program with and without in-
dexing is compared.

5.1.1 Microarray Genes Information Look-Up

High throughput experiments, such as microarray, allow bi-
ologists to monitor multiple objects at the same time. We
used our system to search the Comprehensive Yeast Genome
Database (CYGD) with names of all 120 genes from a yeast
kinase protein array [32]. The metadata analysis step took
less than 0.01 second. To create simple indices on the gene
names of CYGD, 0.72 second was used. With the indices,
it took the QUERY-PROC program 20.89 seconds to answer
the query. Without indexing, the brute-force method with
two nested file scanning loops took 81.59 seconds to finish
the same task. In this experiment, the use of a single index
resulted in 73.5% reduction on running time. When the in-
dices are reused, more performance gain could be achieved.

5.1.2 BLAST Output Enhancement

The outputs of BLAST programs only provide limited in-
formation about the returned sequences. We designed a
query to add user desired information to the BLAST out-
put. The SWISSPROT database was first searched using
NCBI BLAST service with random protein sequences. Us-
ing the BLAST output as one source dataset, the generated
QUERY-PROC program searches the SWISSPROT and adds
full protein names and full protein sequences to the returned
sequences. SWISSPROT flat file, which is of size 714.09
MB, was downloaded from one of the ExPASy servers 3.

Figure 7 summarizes the performance. Again, the meta-
data analysis time was less than 0.01 second and was omitted
from the figure. The size of query is in term of the number
of similar sequences returned by BLAST. As it increases,
the average time spend on each query sequence decreased
slightly. This is because the overhead of loading index only
needs to be paid once. It also explains the improvement of
the running time reduction on larger queries.

5.1.3 Link OMIM to SWISSPROT

Online Mendelian Inheritance in Man (OMIM) [7] is a cat-
alog of human genes and genetic disorders. Its flat file is
63.04 MB. It contains 12,158 entries and 5,994 of them are
referred by SWISSPROT. However, the reverse links are not
available. Therefore it is difficult to retrieve related amino
acid sequence of the gene responsible for a disease. We use
our system to add such a link to OMIM. The original OMIM
format was maintained except that one data field was added
to each entry and it contained the ID of the referring SWIS-
SPROT record.

3Please see http://us.expasy.org/sprot/download.html
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Figure 8. Performance of CYGD Similarity
Search Using Singh’s Algorithm

It took the system 0.01 second to analyze the query. A
total of 794.62 seconds were used by the generated QUERY-
PROC program to answer the query on bare datasets, in
which 188.31 seconds were used to index the SWISSPROT
ID field, 606.31 seconds were used to answer the query with
the indices. Compared with the results from our previous
system, the performance was 1321 times faster with indices.

5.2 Similarity Search on Sequence Databases
Sequence similarity searches are important to biological

research and many algorithms, such as BLAST, have been
developed. Feature based indexing, in which sequences are
first transformed into multi-dimensional feature space, is an
important approach to search sequence databases. Among
many algorithms developed by various research groups, we
implemented two of them. The algorithm proposed by Singh
et al [10] indexes the wavelet coefficients of sub-sequences
using Minimum Bounding Rectangles. Ferhatosmanoglu
et al [18] use R-trees and scalar quantization based struc-
tures to index transformed sequence data. In our experi-
ments, we used these two index approaches to search real
biological sequence databases. They are the Comprehen-
sive Yeast Genome Database (CYGD) 4 from Munish In-
formation Center for Protein Sequences (MIPS) and Gen-
Bank 5 mammalian sequence entries part 1 (gbmam1.seq).
Both databases were downloaded in flat files. The query se-
quences were random DNA sequences. For every query se-
quence, twenty most similar sequences were extracted from
the database. The experimental results are summarized in
Figure 8 and 9.

In both experiments, we replicated the database to test
the scalability of the system. The results show that the index
creation and query answering time of the generated QUERY-
PROC programs scaled linearly with respect to the size of the
database. As the number of query sequences increases, the
query answering time increases linearly, too.

On the other hand, the time used by the system to analyze
the metadata and generate the QUERYINFOR structure was
constant. Less than 0.01 second were used in all experiments

4Please see http://mips.gsf.de/genre/proj/yeast/
5Please see ftp://ftp.ncbi.nih.gov/genbank/
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Query Size 3 5 12

Time (seconds)
Index Generation 186.16

Query Answer with Index 1.96 2.73 6.95
Query Answer without Index 191.88 413.86 1097.86

Time Reduction With Index Generation 2.0% 54.4% 82.4%
Without Index Generation 99.0% 99.3% 99.4%

Figure 7. Performance of BLAST-ENHANCE Query
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Figure 9. Performance of GENBANK Similarity
Search Using Ferhatosmanoglu’s Algorithm

and are negligible compared to the query answering times.

6 Conclusion
We enhanced our previous query processing system to

answer queries with indices when they are available. The
new system supports indexing functions that are provided by
the users and allows various indexing mechanism to be ap-
plied. These functions can be reused by multiple datasets on
different attributes. We believe that the system’s interface is
easy enough to use because declarative languages are used.
Our approach is flat file based and requires no database sup-
port. Experiments showed that the use of indices on flat files
can improve the system’s performance and functionality.
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