
Hybrid MPI/Pthreads Parallelization
of the RAxML Phylogenetics Code

Wayne Pfeiffer
San Diego Supercomputer Center

University of California, San Diego
La Jolla, California, USA

pfeiffer@sdsc.edu

Alexandros Stamatakis
Department of Computer Science
Technische Universität München

Munich, Germany
stamatak@cs.tum.edu

Abstract—A hybrid MPI/Pthreads parallelization was imple-
mented in the RAxML phylogenetics code. New MPI code was
added to the existing Pthreads production code to exploit par-
allelism at two algorithmic levels simultaneously: coarse-
grained with MPI and fine-grained with Pthreads. This hybr-
id, multi-grained approach is well suited for current high-
performance computers, which typically are clusters of multi-
core, shared-memory nodes.

The hybrid version of RAxML is especially useful for a
comprehensive phylogenetic analysis, i.e., execution of many
rapid bootstraps followed by a full maximum likelihood
search. Multiple multi-core nodes can be used in a single run
to speed up the computation and, hence, reduce the turna-
round time. The hybrid code also allows more efficient utiliza-
tion of a given number of processor cores. Moreover, it often
returns a better solution than the stand-alone Pthreads code,
because additional maximum likelihood searches are con-
ducted in parallel using MPI.

The comprehensive analysis algorithm involves four stages,
in which coarse-grained parallelism continually decreases from
stage to stage. The first three stages speed up well with MPI,
while the last stage speeds up only with Pthreads. This leads to
a tradeoff in effectiveness between MPI and Pthreads paralleli-
zation.

The useful number of MPI processes increases with the
number of bootstraps performed, but typically is limited to 10
or 20 by the parameters of the algorithm. The optimal number
of Pthreads increases with the number of distinct patterns in
the columns of the multiple sequence alignment, but is limited
to the number of cores per node of the computer being used.

For a benchmark problem with 218 taxa, 1,846 patterns,
and 100 bootstraps run on the Dash computer at SDSC, the
speedup of the hybrid code on 10 nodes (80 cores) was 6.5
compared to the Pthreads-only code on one node (8 cores) and
35 compared to the serial code. This run used 10 MPI
processes with 8 Pthreads each. For another problem with 125
taxa, 19,436 patterns, and 100 bootstraps, the speedup on the
Triton PDAF computer at SDSC was 38 on two nodes (64
cores) compared to the serial code. This run used 2 MPI
processes with 32 Pthreads each.

Keywords; hybrid parallelization; MPI/Pthreads; phylogene-
tics; RAxML

1. INTRODUCTION
The calculation of phylogenetic trees from multiple se-

quence alignments is extremely intensive computationally

and will only become more so as the deluge of molecular
sequence data continues. The use of parallel codes is thus
essential for analyzing large data sets in a reasonable amount
of time.

Fortunately, phylogenetic computations are amenable to
parallelization at multiple algorithmic levels. Fine- or me-
dium-grained parallelization can be used within a tree, while
coarse-grained parallelization can be used across trees. Ap-
proaches that parallelize at multiple levels simultaneously
are called multi-grained, while approaches that simulta-
neously use different programming models (such as MPI and
OpenMP) are called hybrid.

Coarse-grained parallelization is straightforward with
MPI and has been implemented in the MrBayes [1] and
GARLI [2] phylogenetics codes. Various versions of the
RAxML phylogenetics code [3-10] have included a similar
implementation as well as fine- or medium-grained paralleli-
zations using MPI, Pthreads, OpenMP, and Cell-specific
code. To date, however, production versions of RAxML
have allowed only one parallel approach to be used at a time.
On the other hand, experimental versions of the code have
included multi-grained and hybrid approaches, and a hybrid
MPI/OpenMP version of the IQPNII phylogenetics code [11]
was developed that parallelizes at two different levels, one
medium-grained and the other fine-grained.

This paper describes a hybrid, multi-grained version of
RAxML (Random Axelerated Maximum Likelikhood) that
recently became publicly available for production use as
open-source code [10]. New coarse-grained MPI code,
which is simpler and often more efficient than in previous
versions, was added to the production, fine-grained Pthreads
code.

Whereas virtually all RAxML analyses can benefit from
fine-grained Pthreads parallelization within a single tree
search, the following three types of analyses involving mul-
tiple trees are also amenable to coarse-grained MPI paralleli-
zation.

1. Multiple maximum likelihood (ML) searches on the
same data set, but starting from different initial trees. Typi-
cally 10 or more such searches might be made to find a near-
optimal ML solution.

2. Multiple bootstrap searches, which are ML searches
on data sets obtained by randomly re-sampling the columns
of the multiple sequence alignment. Bootstrapping allows
confidence values to be assigned to the interior branches of

the ML tree obtained in the first analysis. Typically 100 or
more bootstraps are used.

3. A so-called comprehensive analysis that combines the
two preceding analyses. Specifically, many rapid bootstraps
are performed followed by a full ML search as described in
[12]. This algorithm allows a complete, publishable, phylo-
genetic analysis in a single run.

The hybrid treatment of the first two analyses is
straightforward, since they have essentially constant paral-
lelism throughout, apart from minor load imbalances. By
contrast, the comprehensive analysis proceeds in multiple
stages with continually decreasing coarse-grained paral-
lelism. This complicates its hybrid treatment, which is the
primary topic of this paper, and leads to an interesting tra-
deoff between the preferred numbers of MPI processes and
Pthreads.

Compared to the Pthreads-only code, the hybrid version
of RAxML provides significant performance benefits for all
three of the preceding analyses performed on clusters, cur-
rently the most common high-performance computers. Of
particular importance is the ability to use multiple computer
nodes to achieve greater speedup and shorter turnaround in a
single run. This and other benefits are demonstrated here for
comprehensive analyses of representative real-world data
sets run on several modern clusters.

2. IMPLEMENTATION
RAxML has been parallelized in various ways and at var-

ious levels of granularity as the capabilities of the code have
evolved. Table 1 summarizes this evolution.

RAxML-II [3] was the first version of the code to be pa-
rallelized. This implementation was medium-grained and
done with MPI. In RAxML-OMP [4] the search algorithm
was revised, and the parallelization was changed to fine-
grained using OpenMP. This evolved into RAxML-VI-HPC
[5], which also allowed multiple bootstraps or multiple
searches on different starting trees to run in parallel using a
coarse-grained MPI approach. However, such MPI runs
could not use OpenMP simultaneously.

Subsequently, three experimental versions of RAxML
were developed. The first [6] was specific to the Cell
Broadband Engine. It was both multi-grained and hybrid,
but involved Cell-specific code for the fine-grained paralleli-
zation as well as a Cell-specific system-level scheduler for
efficiently exploiting the coarse-grain parallelism with MPI.

The second experimental code [7] was targeted at the IBM
Blue Gene/L. It was multi-grained, but used MPI at both
levels of granularity.

The third experimental version [8] of RAxML was
developed as part of a performance study comparing
fine-grained parallelizations done with MPI, Pthreads,
or OpenMP. Although each approach could be fastest
depending upon the data set and computer, the
Pthreads implementation was adopted in production
Version 7.0.0 [9] and replaced the earlier OpenMP
implementation. The Pthreads approach was chosen
because it is more widely available, easier to compile
for biologists, and simpler to use when prototyping.
The MPI option was retained in Version 7.0.0, but dis-
abled in 7.1.0 [10] when bootstopping [13] was added.

Version 7.2.4 (available at [10]) is the first version to in-
clude the hybrid parallelization described here. The fine-
grained Pthreads parallelization is the same as in recent ver-
sions and is over the number of patterns (which are defined
in Section 3). The coarse-grained MPI parallelization is over
the number of separate tree searches, similar to that in Ver-
sion 7.0.0. However, the new MPI approach is simpler than
the former master/worker approach and has minimal MPI
communication. Thus a fast and expensive interconnect is
not required. The new approach is also more efficient when
there is reasonable load balance, which is often the case.

The hybrid parallelization works well for all three ana-
lyses mentioned in the Introduction, but is expected to be
particularly useful for the comprehensive analysis. Howev-
er, the current implementation only handles a fixed number
of bootstraps, not the case where that number can vary de-
pending upon a bootstopping test [13]. Parallelization of
that test, which operates on bipartitions of trees stored in a
hash table, will require implementation of a framework for
parallel operations on hash tables on multi-core nodes.

The comprehensive analysis consists of four main stages:
100 bootstrap searches, followed by 20 fast ML searches, 10
slow ML searches, and one final thorough ML search,
where the numbers are those for the typical case described
in [12]. The latter three stages comprise the full ML search.

TABLE 1. EVOLUTION OF PARALLEL VERSIONS OF RAXML

Year Code version Coarse-grained Fine-grained Multi-grained Hybrid Reference
2004 II MPIa [3]
2005 OMP OpenMP [4]
2006 VI-HPC MPI OpenMP No No [5]
2007 Cell MPI Cell-specific Yes Yes [6]
2007 Blue Gene/L MPI MPI Yes No [7]

2008 Performance MPI, Pthreads,
or OpenMP No No [8]

2008 7.0.0 MPI Pthreads No No [9]
2009 7.1.0 Pthreads [10]
2009 7.2.4 MPI Pthreads Yes Yes This paper, [10]

 a. This parallelization was medium-grained.

The first three stages can run completely in parallel via
coarse-grained MPI parallelization, at least up to 10 MPI
processes, and so can achieve significant speedup. By con-
trast, there is no speedup from MPI in the last stage, as dis-
cussed in the next subsection.

The new MPI code begins by having each MPI process
parse its own input and then gives each process N/p boot-
straps, where N is the number of bootstraps specified, and p
is the number of processes. As the analysis proceeds, there
are four noteworthy differences between the MPI and non-
MPI code that affect the final solution. These differences are
discussed in the next four subsections.

2.1. One versus p thorough searches
The most significant difference is in the final stage. Af-

ter the slow searches are completed, the non-MPI code se-
lects the tree with the best ML score from the slow searches
to continue with a thorough tree search. By contrast, the
MPI code lets each process continue with a thorough search
starting from the best tree generated by the slow search com-
puted locally by that process. Doing several thorough
searches instead of just one as in the serial code increases the
total work, but does not increase the run time very much.
This additional, useful work is conducted in parallel, and the
load from each process is typically well balanced.

Once all p thorough searches are done, the best solution
among them is selected for output using a call to MPI_Bcast.
That and a call to MPI_Barrier after the bootstrap stage are
the only noteworthy MPI communications in the new code.

2.2. Sorting between fast and slow searches
The non-MPI code typically selects only a fraction of the

fast searches to continue with slow searches. The searches
selected are those with the best ML values. This requires a
sort by ML value of all of the fast searches.

In the MPI code each process sorts only its own local fast
searches. This avoids communication, but is in general less
optimal than sorting all of the searches at once. In practice,
any loss of optimality seems to be more than offset by the
additional thorough searching described previously.

2.3. Numbers of bootstraps and subsequent searches
In the non-MPI code the number of bootstraps done is

that specified via the command line (excluding the case of

bootstopping). By contrast, the number of bootstraps done in
the MPI code can be slightly larger than the specified num-
ber depending upon the number of processes, since each
process does an equal number of bootstraps. This in turn
affects how many fast and slow searches are carried out
based on hard-coded parameters.

Table 2 lists how many bootstraps and subsequent
searches are done for various numbers of processes, given
that the specified number of bootstraps is 100 for most rows
or 500 for the last two rows. Since every process does a sin-
gle thorough search, no speedup from MPI is expected for
that stage. The first three stages, however, should speed up
nearly perfectly for 2, 5, and 10 MPI processes, given rea-
sonable load balance, while one or more of these stages will
scale more slowly for other process counts.

Speedup beyond 10 processes becomes more limited be-
cause all processes are then doing a single slow search and a
single thorough search. By 20 processes, speedup of the fast
searches is also limited for the case of 100 bootstraps, though
not for the case of 500 bootstraps. As shown in Section 5,
using more than 10 or 20 processes is seldom justified.

2.4. Treatment of random numbers
Getting reproducible results is highly desirable in a paral-

lel code, but requires special attention when the code uses
random numbers. In contrast to the previous coarse-grained
version of RAxML, the MPI code gives reproducible results
for a given set of input parameters and a given number of
MPI processes, provided random number seeds are specified
via the –p parameter and either the –x parameter for rapid
bootstrapping or the –b parameter for standard bootstrapping.
Reproducibility is ensured by using the specified seeds on
MPI Process 0 and seeds incremented by constant amounts
(specifically, multiples of 10,000) on the other processes.

3. BENCHMARK DATA SETS
A data set is described by its multiple sequence align-

ment, which is a matrix of aligned molecular sequences. The
rows of the matrix correspond to different taxa, and the col-
umns correspond to character positions in the aligned se-
quences. Because some character positions may be redun-
dant, the number of distinct columns, called patterns, is a
more descriptive parameter than the number of characters.

TABLE 2. NUMBERS OF BOOTSTRAPS AND SEARCHES VERSUS NUMBER OF PROCESSES

Processes Bootstraps Fast
searches

Slow
searches

Thorough
searches

Bootstraps/
process

Fast
searches/
process

Slow
searches/
process

Thorough
searches/
process

1 100 20 10 1 100 20 10 1
2 100 20 10 2 50 10 5 1
4 100 20 12 4 25 5 3 1
5 100 20 10 5 20 4 2 1
8 104 24 16 8 13 3 2 1

10 100 20 10 10 10 2 1 1
16 112 32 16 16 7 2 1 1
20 100 20 20 20 5 1 1 1
10 500 100 10 10 50 10 1 1
20 500 100 20 20 25 5 1 1

Indeed, the amount of work to be done is roughly propor-
tional to the number of patterns for a fixed number of taxa.

The benchmark results presented here are for five
DNA and RNA data sets with the parameters listed in Ta-
ble 3. These data sets (and more) are also considered in
[12] and available at [14]. The data sets in the table are
ordered by increasing number of patterns. Also listed in
the table is the number of bootstraps recommended based
upon the WC bootstopping test in [13].

4. BENCHMARK COMPUTERS
The benchmark runs used four computers, whose key

characteristics are listed in Table 4. All of these comput-
ers are clusters with x64 processors that have similar clock
speeds. However, the newer Nehalem and Shanghai pro-
cessors are expected to perform better than the older Clo-
vertown and Barcelona processors. Also, the bus-based
memory subsystem of the Clovertown processor is gener-
ally slower than the memory subsystems of the other pro-
cessors. The varying speeds of the interconnects (which
are not shown) have a negligible effect on the performance
of RAxML because the MPI communication is minimal.

All times reported here are for runs that had exclusive
use of the assigned node(s). Indeed, for all of the comput-
ers except Triton PDAF, this is the normal mode of opera-
tion, and the user is charged for all cores in each assigned
node, whether they are used or not. Thus it is desirable to
run on core counts that are multiples of the cores per node.
Nevertheless, some results are presented here on fewer
cores than in a single node just to show complete scaling
curves starting from the serial case.

Some runs were repeated to check on timing variabili-
ty. It was found to be a few percent at most except on
Triton PDAF, where variations of more than 20% were
occasionally observed. The reason for such variations has
not been determined. For cases when repeat runs were
made, the fastest time is reported here.

On all of the computers the hybrid code was built using
the Intel compiler and Open MPI. On Abe, Ranger, and

TABLE 3. BENCHMARK DATA SETS

Taxa Characters Patterns Recommended
bootstraps [13]

354 460 348 1,200
150 1,269 1,130 650
218 2,294 1,846 550
404 13,158 7,429 700
125 29,149 19,436 50

TABLE 4. BENCHMARK COMPUTERS

Computer Location Processor Cores/
node

Abe NCSA 2.33-GHz Intel Clovertown 8
Dash SDSC 2.4-GHz Intel Nehalem 8

Ranger TACC 2.3-GHz AMD Barcelona 16
Triton
PDAF SDSC 2.5-GHz AMD Shanghai 32

Triton PDAF the compiler automatically invoked the
SSE3 instructions. On Dash the compiler directive –
xsse4.2 was used to invoke SSE4.2 instructions, which
improved performance by about 10%. SSE3 directives
available in the code since Version 7.2.1 were not invoked,
because doing so had little effect when the Intel compiler
was used as just described.

5. PERFORMANCE
To investigate performance of the hybrid code, bench-

mark runs were made for all five data sets on one or more
of the four computers. All runs were for comprehensive
analyses. The first runs specified 100 bootstraps, with key
input parameters on the RAxML command line being -m
GTRCAT -N 100 -p 12345 -x 12345 -f a. Additional runs
were made for the first four data sets using the larger num-
bers of bootstraps recommended by the WC bootstopping
test in [13].

5.1. Results for 100 bootstraps specified
Fig. 1 shows a speedup plot for the medium-sized data

set with 1,846 patterns run on Dash with 100 bootstraps
specified. (Speedup is just the speed normalized to 1 on a
single core.) Four curves are shown for constant numbers
of threads, and one curve is shown for a single process.
Also shown are curves for two values of the parallel effi-
ciency (which is the speedup per core). A parallel effi-
ciency of 1 corresponds to ideal, linear speedup.

Runs for the limiting cases of one process and one
thread did not use the hybrid code. Instead, runs for one
process and multiple threads used the Pthreads-only code
to avoid the overhead associated with using a single MPI
process. That overhead was found to be more than 10%
for the smallest data sets. Runs for one thread and mul-
tiple processes used an MPI-only code, since the Pthreads
code with its master/worker parallelization does not work
for a single thread. Runs for one process and one thread
used the serial code.

Fig. 1 shows good scaling up to 80 cores. There the
speedup is 35 using 10 processes and 8 threads. Also,
shown are differences in performance at lower core counts
depending upon the number of threads. However, these
differences are difficult to see in the speedup plot.

Thus, Fig. 2 displays the same data in a parallel effi-
ciency plot, which rotates the curves in Fig. 1 until the
lines of constant parallel efficiency are horizontal. This
increases the separation between the curves and makes the
differences in performance much clearer. In particular,
using 4 threads is fastest on 8 and 16 cores, while using 8
threads is best on 64 and 80 cores. In between, 4 and 8
threads perform similarly.

Fig. 2 also shows that the parallel efficiency on 40 and
80 cores is better than on 32 and 64 cores, respectively.
This is because the more efficient runs use 5 and 10
processes, which are expected to scale better than 4 or 8
processes based on the numbers listed in Table 2.

Figures 1 to 4. Scaling plots showing speedup (1), parallel efficiency (2), and run-time components (3 and 4) for the problem with 1,846 patterns on Dash

Additional insight into the scaling can be obtained

from Figs. 3 and 4, which plot the run-time components
versus the number of cores for the same problem using
either 4 or 8 threads on Dash. The time for the first three
stages (bootstraps, fast searches, and slow searches) de-
creases up to 40 cores using 4 threads and up to 80 cores
using 8 threads. This reflects the effectiveness of MPI for
these stages. However, the time for the last stage (tho-
rough searches) is roughly constant, since the only paral-
lelism exploited for its speedup is that via Pthreads.

Comparing Figs. 3 and 4, the time for the thorough
searches is almost twice as long using 4 threads as with 8.
By contrast, the times for the other stages are slightly
shorter using 4 threads as compared to 8. This leads to a
total time that is shorter using 4 threads at low core counts
and shorter using 8 threads at high core counts, consistent
with the parallel efficiency curves in Fig. 2.

One point of note is that the MPI implementation has
no barriers between the last three stages, so the times for
those stages vary depending upon the MPI process, since

the load is not perfectly balanced. The times shown are
those for the last process to finish.

The availability of the hybrid code not only allows
greater speedup than is possible with the earlier Pthreads-
only code, but also allows more efficient use of the availa-
ble cores. For example, on a single 8-core node of Dash,
using 2 processes and 4 threads is 1.3x faster than using 8
threads in the Pthreads-only code and nearly 1.4x faster
than using 8 processes in the MPI-only code. This leads to
a speedup of 6.5 on 10 nodes using the hybrid code as
compared to a single node using the Pthreads-only code.

In general, the optimal number of threads increases
with the number of patterns in the data set. This can be
seen in Figs. 5 and 6, which show parallel efficiency plots
for runs on Dash for the two data sets with the largest
number of patterns. For these data sets, runs on 16 or
more cores of Dash should use 8 threads, the maximum
possible, for optimal performance.

Runs for the data set with the largest number of pat-
terns were also made on Triton PDAF, which has 32 cores
per node. The resulting parallel efficiency plot is shown in

Figures 5 to 8. Scaling plots showing parallel efficiency (5 to 7) and best speed per core (8) for various problems and computers

Fig. 7. As can be seen there, optimal performance is
achieved using all 32 threads available, and the scaling at
high core counts is better than on Dash.

For the same data set, Fig. 8 compares the best speeds
per core on all four computers. (Here best means the fast-
est at each core count for the optimal number of threads,
and the plotted speed per core is just the parallel efficiency
normalized to that for Abe.) The scaling differences are
striking.

From 1 to 4 cores, all of the computers except Dash
show superlinear speedup (increasing parallel efficiency),
because their cache utilization is improving. By contrast,
Dash exhibits ideal, linear speedup up to 8 cores, suggest-
ing that its newer cache design is more effective.

As the core count increases further, efficiency drops
off fastest for Abe and then Dash. Both have 8 cores per
node, but the memory bandwidth is much higher on Dash.
The drop in efficiency is more gradual on Ranger and Tri-
ton PDAF, which have 16 and 32 cores per node, respec-
tively, and can therefore use more threads. Thus, even

though Dash is fastest up to 16 cores, Triton PDAF be-
comes faster at higher cores counts. Having fast proces-
sors (as Dash does) is always beneficial, but having more
cores per node (as Triton PDAF does and many future
computers will) allows more threads, which is advanta-
geous for data sets with a large number of patterns.

The upper part of Table 5 summarizes the fastest times
for each data set at various core counts for runs with 100
bootstraps specified. For the first four data sets, Dash is
fastest in all cases. For the largest data set, Triton PDAF
is faster at high core counts, as noted previously.

The table also lists the number of threads at which the
best time on the indicated computer is achieved. On 80
cores of Dash, for example, the optimal number of threads
is 4 for the first data set and 8 for the last four data sets.
Those values correspond to using 20 and 10 processes,
respectively. Similarly, the optimal number of threads on
64 cores of Triton PDAF is 32 for the last data set, which
corresponds to using 2 processes.

TABLE 5. FASTEST TIMES FOR EACH DATA SET

1c, 8c, 16c, 40c, and 80c refer to the number of cores used in a run. The run with a * was made on 32c, while that with a + was made on 64c.

The scaling on Dash improves as the number of pat-
terns increases in the first four data sets, consistent with
the scalability of fine-grained parallelism discussed in
Subsection 4.2 of Ott, et al. [7]. The scaling on Dash
drops for the last data set because the fraction of time
spent doing thorough searches is much larger, and those
searches are not sped up by MPI. As noted previously and
as is apparent from the table, much better scaling is
achieved for that data set on Triton PDAF, which allows
more threads.

5.2. Results for more than 100 bootstraps specified
The preceding results are all for comprehensive ana-

lyses using a nominal value of 100 for the number of boot-
straps. However, Pattengale, et al. [13] developed a so-
called WC bootstopping test to determine how many boot-
straps are needed for adequate statistical support and con-
cluded that more than 100 bootstraps are typically re-
quired. In particular, the recommended values for the
number of bootstraps for the first four data sets vary from
550 to 1,200, as listed in Table 3, and only the last data set
has a smaller recommended value of 50.

Thus, additional runs were made on Dash for the first
four data sets using the larger, recommended values for the
number of bootstraps. The results for the fastest times and
corresponding numbers of threads at various core counts
are listed in the bottom part of Table 5.

Two changes from the results in the upper part of the
table are apparent. First, the scaling is significantly im-
proved. Second, the optimal number of threads is reduced.
These changes occur because the fraction of time spent
doing bootstraps and fast searches increases, and both of
these stages are especially amenable to coarse-grained
MPI parallelization.

The improvement in scaling is greatest for the first data
set, where the increase in the number of bootstraps from
100 to 1,200 is largest. For this case the speedup on 80
cores increases from about 15 to 35, and the optimal num-
ber of threads drops from 4 to 2 (so the corresponding
number of processes increases from 20 to 40). The highest
absolute speedup is nearly 57 for the fourth data set, cor-

responding to a drop in run time from more than 4 days to
less than 1.8 hours.

These results give optimistic estimates for the spee-
dups achievable when a hybrid version of RAxML that
includes bootstopping becomes available. The actual
speedups will be reduced somewhat, because some time
will be required to perform the bootstopping tests.

6. QUALITY OF SOLUTION
As mentioned previously, the additional thorough

searches in the hybrid algorithm for the comprehensive
analysis often give a better solution. This can be seen
from the data in Table 6. In all cases shown, the multi-
process solutions are as good as or better than the serial
solutions. The largest improvement is for the third data
set. Comparing the last two columns also suggests some
benefit from doing more fast searches when the number of
bootstraps is greater than 100.

7. DISCUSSION
As a rule of thumb, runs are not cost effective when the

parallel efficiency becomes less than 1/2. However, the
reference for calculating the parallel efficiency is relevant.
In Section 5, the reference is a single core. Since users are
often charged for all cores in a node, the reference could
instead be a single node. In this case, larger core counts
can be justified.

As an example, consider the first row of data in Table
5, which corresponds to the comprehensive analysis with
100 bootstraps of the data set with the fewest patterns. For

TABLE 6. FINAL MAXIMUM LIKELIHOODS FOR EACH DATA SET

Results for data sets with * vary with number of threads, while those with + vary with processor
type. Results listed are for 8 threads on Dash.

354 * 348 -6,560.07 -6,560.09 -6,559.65
150 1,130 -39,604.89 -39,601.30 -39,601.30
218 1,846 -134,170.79 -134,160.23 -134,154.49
404 *+ 7,429 -156,117.94 -156,116.77 -156,117.94
125 19,436 -825,204.82 -825,204.82

Taxa Patterns
Final ML for
1 process &

100 bootstraps

Final ML for
10 processes &
100 bootstraps

Final ML for
10 processes &
>100 bootstraps

8c

354 348 1,980 432 /2 307 /2 168 /4 130 /4 4.58 6.45 11.79 15.23 Dash
150 1,130 2,325 456 /4 283 /4 139 /4 95 /8 5.10 8.22 16.73 24.47 Dash
218 1,846 9,630 1,370 /4 846 /4 430 /8 271 /8 7.03 11.38 22.40 35.54 Dash
404 7,429 72,866 9,494 /4 5,497 /8 2,830 /8 1,828 /8 7.67 13.26 25.75 39.86 Dash
125 19,436 22,970 3,018 /8 2,006 /8 1,314 /8 1,092 /8 7.61 11.45 17.48 21.03 Dash
125 19,436 32,627 3,844 /8 2,179 /16 1,351 /32 * 847 /32 + 8.49 14.97 24.15 * 38.52 + Triton PDAF

354 348 15,703 2,286 /1 1,287 /1 702 /2 443 /2 6.87 12.20 22.37 35.45 Dash/1,200
150 1,130 10,566 1,714 /2 980 /2 473 /2 290 /4 6.16 10.78 22.34 36.43 Dash/ 650
218 1,846 33,738 5,184 /2 2,778 /2 1,290 /4 845 /4 6.51 12.14 26.15 39.93 Dash/ 550
404 7,429 355,724 45,851 /4 25,454 /4 11,229 /4 6,270 /8 7.76 13.98 31.68 56.73 Dash/ 700

 Results for 100 bootstraps specified
40c 80c

Speedup onBest time (s) / threads on

 Results for >100 bootstraps specified

Taxa Computer/
bootstrapsPatterns

1c 8c 16c 40c 80c 16c

this case the parallel efficiency on 40 cores of Dash is only
0.29 using a single core as reference, whereas it is 0.51
using a single node as reference. Thus using 40 cores for
this case seems justified. Likewise, using 80 cores seems
justified for most of the other cases.

Looking to the future, data sets with many more pat-
terns than considered here will become commonplace.
This will have two important consequences for compre-
hensive analyses, both of which favor using a hybrid code
with many threads per process and, hence, a computer
with many cores per node.

First, fewer bootstraps will be needed than were rec-
ommended by the bootstopping test for most of the data
sets considered here. In fact, the recommended number of
bootstraps could turn out to be close to the nominal value
of 100 considered in Subsection 5.1.

Second, not enough memory per core will be available
to analyze a single tree using one MPI process per core.
Instead the memory of multiple cores, perhaps even the
entire node, will be needed for each MPI process.

8. SUMMARY
This paper has described a hybrid MPI/Pthreads paral-

lelization of the RAxML phylogenetics code that simulta-
neously exploits coarse-grained and fine-grained paral-
lelism. The hybrid code works for all analyses with mul-
tiple tree searches, but is especially targeted at the so-
called comprehensive analysis, in which many rapid boot-
straps are followed by a three-stage maximum likelihood
search.

The bootstrapping and first two stages of the subse-
quent search speed up well with MPI. However, the last
stage, a thorough ML search, speeds up only with
Pthreads. This leads to a tradeoff in effectiveness between
MPI and Pthreads parallelization.

The useful number of MPI processes increases with the
number of bootstraps performed, but typically is limited to
10 or 20 by the parameters in the comprehensive analysis
algorithm. The optimal number of Pthreads increases with
the number of patterns in the data set and the total number
of cores being used, but is limited to the number of cores
in a node.

The hybrid code is available for production use and has
three significant benefits over the most recent Pthreads-
only code.

1. Multiple computer nodes can be used in a single run
to achieve greater speedup. For a comprehensive analysis
of an example problem with 218 taxa, 1,846 patterns, and
100 bootstraps, the speedup on 10 nodes (80 cores) of the
Dash computer using 10 MPI processes and 8 Pthreads
was 6.5 compared to that on one node (8 cores) using 8
Pthreads alone. For the same problem, the speedup on 80
cores was 35 compared to the serial run on a single core.

2. The number of Pthreads per node can be adjusted to
achieve more efficient use of cores. For the example just
described, the speed using 2 MPI processes and 4 Pthreads
on a single node of Dash was 1.3x faster than using 8
threads with the Pthreads-only code.

3. Additional thorough ML searches in the compre-
hensive analysis algorithm often lead to a better solution.

In general, the hybrid code provides a versatile tool for
analyzing the data sets of today as well as those of tomor-
row.

ACKNOWLEDGMENTS
Funding was provided by the National Science Foun-

dation (NSF) and the German Science Foundation (DFG).
Code development and benchmarking were done on Abe
at NCSA, Dash at SDSC, and Ranger at TACC, all of
which are supported by NSF. Additional benchmarking
was done on the Triton PDAF computer at SDSC, which is
supported by the University of California, San Diego.

REFERENCES
[1] F. Ronquist, J.P. Huelsenbeck, and P. van der Mark,

MrBayes 3.1 Manual, 2005, mrbayes.csit.fsu.edu/
mb3.1_manual.pdf.

[2] D.J. Zwickl, MPI version of GARLI, www.nescent.org/
wg_garli/MPI_version,

[3] A. Stamatakis, T. Ludwig, and H. Meier, “Parallel Infe-
rence of a 10.000-Taxon Phylogeny with Maximum Like-
lihood,” Proc. Euro-Par 2004, LNCS 3149, Springer-
Verlag, 2004, pp. 997-1004.

[4] A. Stamatakis, M. Ott, and T. Ludwig, “RAxML-OMP: An
Efficient Program for Phylogenetic Inference on SMPs,”
Proc. PaCT 2005, LNCS 3606, Springer-Verlag, 2005, pp.
288-310.

[5] A. Stamatakis, “RaxML-VI-HPC: Maximum likelihood-
based phylogenetic analyses with thousands of taxa and
mixed models,” Bioinformatics, vol. 22(21), 2006, pp.
2688-2690.

[6] F. Blagojevic, D.S. Nikolopoulos, A. Stamatakis, and C.D.
Antonopoulos, “Dynamic Multigrain Parallelization on the
Cell Broadband Engine,” Proc. PPoPP ’07, 2007, pp. 90-
100.

[7] M. Ott, J. Zola, S. Aluru, and A. Stamatakis, “Large-scale
Maximum Likelihood-based Phylogenetic Analysis on the
IBM BlueGene/L,” Proc. SC07, 2007.

[8] A. Stamatakis and M. Ott, “Exploiting Fine-Grained Paral-
lelism in the Phylogenetic Likelihood Function with MPI,
Pthreads, and OpenMP: A Performance Study,” in M.
Chetty, A. Ngom, and S. Ahmad (Eds), Proc. PRIB 2008,
LNBI 5265, Springer-Verlag, 2008, pp. 424-435.

[9] A. Stamatakis, The RaxML 7.0.0 User Manual,
icwww.epfl.ch/~stamatak/index-Dateien/software/RAxML-
Manual.7.0.0.pdf

[10] A. Stamatakis, Exelixis Lab Web site, wwwkra-
mer.in.tum.de/exelixis/software.html.

[11] B.Q. Minh, L.S. Vinh, H.A. Schmidt, and A. von Haeseler,
“Large Maximum Likelihood Trees,” Proc. NIC Sympo-
sium 2006, 2006, pp. 357-366.

[12] A. Stamatakis, P. Hoover, and J. Rougemont, “A Rapid
Bootstrap Algorithm for the RaxML Web Servers,” Syst.
Biol., vol. 57(5), 2008, pp. 758-771.

[13] N.D. Pattengale, M. Alipour, O.R.P. Bininda-Emonds,
B.M.E. Moret, and A. Stamatakis, “How Many Bootstrap
Replicates are Necessary?” Proc. RECOMB 2009, LNCS
5541, Springer-Verlag, 2009, pp. 184-200.

[14] icwww.epfl.ch/~stamatak/RAPID-RESULTS.tar.bz2.

