
Parallel Detection of Regulatory Elements with gMP

Bertil Schmidt, Lin Feng,
School of Computer Engineering

Nanyang Technological University
Singapore 639798,

{asbschmidt,asflin}@ntu.edu.sg

Amey Laud, Yusdi Santoso
Helixense Pte Ltd

73 Science Park Drive, 02-05 Science Park
Singapore 118254

{alaud,ysantoso}@helixense.com

Abstract

The detection of regulatory elements from a large set of
regulatory regions is a challenging problem in
computational genomics. However, computational
methods to extract this biological meaningful information
suffer from high computational requirements. In this
paper we present a parallel algorithm to detect
regulatory elements using correlation with gene
expression data and its implementation with gMP. gMP is
a new purely Java-based interface that adds MPI-like
message-passing and collective communication to the
genomics Research Network Architecture (gRNA). The
parallel implementation leads to significant runtime
savings on our distributed gRNA system.

1. Introduction

A fundamental question in biology is how the
expression level of several thousands of genes is
regulated. A general assumption is that the regulation is
controlled by regulatory elements (so-called motifs) in the
regulatory region of a gene (the upstream region).
Therefore, several computational methods have been
introduced to detect putative motifs from the upstream
regions and micorarray gene expression data [4,5,21].
Because of the large genomic scale data sets involved,
high computing power is required for their calculation.
Since even more genomic data will be available in the
future, parallel and distributed processing is needed to get
high quality results in reasonable time [14].

In this paper we present how to detect regulatory
elements using correlation with gene expression in
parallel using the gRNA Message Passing interface
(gMP). gMP is a Java-based communication library that
adds MPI-like functionality to the genomics Research
Network Architecture (gRNA). The gRNA is a highly
programmable and extensible platform specifically

designed to facilitate the implementation of genome-
centric tools. It provides a development environment
consisting of application programming interfaces (APIs)
in which new applications can be quickly written and
tested using object-oriented methodologies. The
deployment framework of the system enables these
applications to use biological databases and computing
resources systematically and transparently.

The rest of this paper is organized as follows. Section
2 provides a description of the gRNA architecture. The
new message passing interface gMP is introduced in
Section 3. Section 4 illustrates the development of the
parallel application to detect regulatory elements. Its
performance is then evaluated on a distributed gRNA
system. Our approach is compared to previous work in
Section 5. Section 6 concludes the paper with an outlook
to further research topics.

2. The gRNA framework

The gRNA [15,18] comprises a development platform
in which to prototype and build new applications, and a
deployment environment in which to provide access to
distributed computing and data resources. The
development platform consists of application
programming interfaces (APIs) designed to provide
abstractions for and the foundational basis for new
functionality in bioinformatics applications. Figure 1
shows an architectural overview of the development
platform. The APIs are inter-related, yet decoupled. This
means that the APIs can be used, extended and improved
independently.

Three of the APIs are focused on organizing,
modeling and querying biological data. The Data Hounds
API is used for transporting, wrapping, storing and
indexing external databases. The Data Services API
provides object-relational abstractions built from multiple
primary sources of data; and the XomatiQ API provides a
query language to systematically query and correlate

multiple warehouses of life-sciences data (see [1] for
more details).

Systems API
Cluster Administration, Resource Monitoring, Distributed Processing, User Registry,

Application and Class Registry, Developer Registry, “Trigger” based Applications and Events

Data Hounds API
Daemons for automatic warehousing of remote/

local data, Automated update of warehouse

Xomatiq API
XML-based query

language,
query multiple sources,

query local &
distributed sources,

Vocabulary translation
within query

Genomics API
Sequence Analysis,

Phylogenetic Analysis,
Gene Expression

Analysis,
Comparative Genomics

3rd Party APIs

Distributed Data Services API
Creation and extension of biological models,

Creation of DTD’s/Ontologies, Trivial querying
and correlation of distributed data-sources

Policy Definition and Management API

Visual Component API: Data organization and querying components, Image processing
& display, Sequence display and visual manipulation, Tree display and manipulation

Workflow API: Scripting language, workflow plugin development

Workflow Plugin Applications

Standalone Applications

gRNA Desktop

Figure 1. The gRNA development platform.

gRNA consists of two domain dependent APIs. The
Genomics API provides specific abstractions and
functionality from the biological world; and the Visual
Component API provides multi-modal displays for
displaying biological data and visual building blocks for
typical experiments. The independent Workflow API is a
generic, configurable engine to pipeline a set of tasks and
data into a unified process.

Within the gRNA, we refer to the following as
resources: computers, computing clusters, data
warehouses, implemented Data Hounds, implemented
Data Services, toolkits and Document Type Definitions
(DTDs). Accordingly, the gRNA maintains a centralized
directory of all resources, their status and properties. A
Policy API allows for the imposition of ownership and
conditions for the use of various resources. This means
that owners of resources are allowed to assign such
conditions as “view only”, “read only”, “write” and
“execute” to various resources, as applicable. Owners are
also allowed to embed terms and conditions to define the
basis of agreement between a third party user wanting to
use resource under the given party’s ownership. Lastly,
the Systems API provides access to underlying systemic
tasks such as distributed programming and access to
centralized directories of available resources.

We believe that the simplicity of the deployment
environment makes for an important consideration in the
successful adoption of new programmable systems. The
gRNA environment operates on a clustered computing
environment. We refer to the system as the gRNA Grid
(see Figure 2).

The typical application written for the gRNA must
therefore execute as a multiple tier application, with parts
of it executing on the client computer, and parts executing
on several server-side, distributed computers.

Applications operate from the client’s computer by
communicating with the cluster through a single
computer that hosts an Enterprise Java Bean (EJB) server
as application server. This coordinating server then
identifies one or more “processing nodes” which are
computers running a small footprint EJB server, to
perform the task of executing the server-side functionality
of the application.

Application

Local Grid
Manager

Sun Solaris based
server running
coordinating
EJB server

Dedicated database hosting
gRNA data middleware

processing node

processing node

processing node

processing node

processing node

Local cluster coordination

Distributed processing

distributed
data

transactions

Figure 2: The gRNA grid - clustered deployment
environment

The use of a single coordinating server is beneficial
in several ways. The cluster can decide, at the point of
initiation of the application, decide the number of
computers that need to be assigned for that application,
depending on availability and necessity. Moreover, the
coordinating server also maintains directories of available
resources discussed in the previous section, using an
LDAP server. As processing nodes are essentially treated
as computing resources, the LDAP server can be
configured to interface with heterogeneous hardware as
well as specialized resources such as vector computers.

The gRNA has been primarily written using Java, with
interoperability support for Perl and Python scripting
languages (fairly popular within the bioinformatics
community). Where performance is a consideration,
functionality can be written in C or C++ and interfaced
with the overall system using the Java Native Interface
(JNI).

3. The gRNA message passing interface

Distributed programming in gRNA is provided
through the gRNA Message Passing (gMP) API. gMP is a
Java-based message-passing tool and comes as part of the
gRNA platform. To provide with a highly efficient tool,
the gMP API is built directly on top of sockets.
Furthermore, the gMP API abstracts the physical
configuration of the servers from the program point of
view. It will automatically manage virtual processors to
run on the available machines.

Since it has been implemented as a set of pure Java
APIs, the gMP API can seamlessly use (or be used from)
any gRNA and Java library. It is also designed to be
scalable by allowing new machines to be added and

removed from the setup transparently. The configurations
are done dynamically and automatically without the need
of manual intervention.

The gMP process management follows the Java thread
management paradigm closely. Processes are grouped. A
group is created before any execution is started, and all
corresponding processes will join the group. The process
that initiates the execution is called the master process.
This master process plays an important role in execution.
It takes care of gathering results, distributing parameters,
and so on. The other processes are called slave processes.
Each process is given a rank. The group ID and rank
together provide the process with a unique identifier.
Following subsections will describe different aspects of
the gMP API in more detail.

3.1 Group management

The gMP API uses the concept of a group for grouping
related processes into an easily managed entity. The
group is formed before the gMP execution takes place. To
ensure sound communication semantics, the grouping is
done before any execution is performed. Once the group
is formed, it is immutable (cannot be modified). The
immutability of the group is necessary to ensure the
consistency of group members and ranks among different
processes.

void startGroup()
void startGroup(int numOfProcs)
void startGroup(GroupConfig grpCfg)
void deleteGroup()

The creation of a group is started with a call to the
startGroup method. There are three flavors of startGroup
– one with no group size, one with the group size
specified, and another one with the exact group
configuration specified. When the version with no
parameter is invoked, N processes are automatically
allocated, where N is the number of available machines at
that time.

The second variant of the startGroup method asks for
the number of processes to be used. Depending on the
number of available machines, extra processes might be
run on one or more machines. The allocation of virtual
processes is done transparently and tuned to make the
process distribution balanced.

The third version of startGroup allows more control
over the process distribution mechanism. When used
together with gMPGatewayAPI (that manages running
machines), this method allows exact control over which
set of processes is executed where.

The method deleteGroup has to be executed at the
end of a computation. This is to ensure that resources are
returned to the server and processes are cleaned. As we
have mentioned before, each process in the group is given

a unique rank. The number of processes created in the
group is given by the getGroupSize() command. The
ranks of the processes are from 0 to GroupSize–1. The
rank of the current process can be obtained from the
getRank() method. To check if the current process is the
master process (process 0), we can use the isMaster()
function.

3.2 Communication primitives

These primitives can be categorized as either
synchronous or asynchronous communication.
void sendSync (int destination,

java.io.Serializable data)
void sendAsync (int destination,

java.io.Serializable data)
java.io.Serializable receive

 (int source)
int available (int source)
java.io.Serializable rendezvous

(int destination,
 java.io.Serializable data)

The sendSync function performs the synchronous
send operation. This method call is blocking. Receive can
be used to receive a synchronous or an asynchronous
message. This method is blocking and will only return if
any sendSync or sendAsync messages are received. The
sendAsync command performs asynchronous send. The
method will return without waiting for the other side to
respond. If the destination process never calls receive,
this message will be kept in the message queue until the
next receive command is executed.

The method available can be used to have a peek on
the message queue for incoming messages. The number
of available messages is given by the return value. This
method is non-blocking and will return directly after
counting the number of messages.

Unlike the other primitives, rendezvous is a
symmetric method. This means that the same method has
to be invoked from two processes. These processes will
exchange data. This method is also blocking and will not
return until a matching rendezvous is called.

3.3 Collective communication

Unlike end-to-end communication between two
machines, collective communications are communication
operations that deal with groups of processes. There are
few operations that fall under this category. The
semantics of these operations follow from those in MPI
[12], but have been adjusted to work naturally with Java.
Basically, MPI messages consist of arrays of given data
types. Although, important for many scientific codes,
arrays cannot serve as general-purpose data structure in

Java’s object model. Instead, collective operations should
deal with serializable objects in the most general case.

Broadcast is one of the most commonly used
collective communication methods. When we broadcast a
piece of data, this data is made available to all processes
that participate in the group. The master process will
supply the data and send it asynchronously to all other
processes. The master is not blocked when broadcasting
the message, but the slaves are blocked until the broadcast
message is received.

The barrier operation is commonly used for
synchronization among distributed processes. All
processes that call this method will be blocked until every
other process has reached the barrier statement.

java.io.Serializable broadcast(
java.io.Serializable data)

void barrier()
java.io.Serializable scatter

(hlx.gmp.Partitionable data)
hlx.gmp.Partitionable gather

(hlx.gmp.Partitionable rootObj,
 java.io.Serializable data)
hlx.gmp.Partitionable allGather

(hlx.gmp.Partitionable rootObj,
 java.io.Serializable data)

java.io.Serializable reduce
(java.io.Serializable data,

 hlx.gmp.Reducer reducer)
java.io.Serializable allReduce

(java.io.Serializable data,
 hlx.gmp.Reducer reducer)

When a scatter operation is performed, each process
in the group will obtain a portion of a bigger set of data
being scattered by the master process. This mechanism
relies on a data structure defined by the
hlx.gmp.Partitionable interface. The Partitionable
interface defines how an object can be partitioned
dynamically:

public interface Partitionable
extends Serializable {
public void setElementAt

(int index,
 int groupSize,

 Serializable object);
public Serializable elementAt

(int index,
 int groupSize); }

The setElementAt method is used to set the ith

element of data of size N, where N is the virtual size
given by the groupSize parameter. Of course, the actual
data itself might not be of size N, but virtually it is
divided into N parts. By allowing an object to be divisible
consistently we can construct a very flexible data
structure that allows division into an almost arbitrary
group size. There is also an elementAt method that allows
one to retrieve the ith element from data of size N. Any

data structure that wants to use these operations has to
implement the Partitionable interface.

While scatter disperses data, the gather operation
collects data from different processes and presents them
to the master process. Each part of the data given by the
data parameter is passed to the master process. The
master process then populates its Partitionable object
using the given data portion. This method will return the
complete Partitionable object only to the master. Other
processes will receive a null value. The method allGather
is a variant of the gather operation. It is equivalent to
gather followed by the broadcast operation.

The method reduce defines a group of operations that
perform global reductions such as summation or
maximum on a set of data, e.g. finding the maximum of N
numbers distributed over N processes. To provide the
ability to flexibly define the reduction operation, the
hlx.gmp.Reducer interface can be implemented. The
binary reduction operator should be commutative and
associative.

public interface Reducer {
public Serializable reduce(

Serializable obj1,
 Serializable obj2); }

Once the reducer class is created, the method reduce
can be performed on that set of data. The result is
returned to the master process. The slave processes get a
null value as the output. allReduce is similar to reduce,
but subsequently broadcasts the result to all members

4. Parallel detection of regulatory elements

The search for regulatory DNA elements (motifs)
upstream of genes is of high importance in biology. These
motifs act as sites for the binding of trans-activating
factors and therefore play an important role in the
activation and inhibition of those genes.

A common approach to motif detection is to group
genes into clusters based on similarity in expression
under different experimental condition [21]. The
upstream regions of these clustered genes are then
analyzed to find statistically significant common motifs.
However, this method is imprecise, as there are several
genes, which respond to the same stimuli but do not share
the same motif. There are also genes, which have the
same motif but do not respond to the same stimuli.

Recently, Bussemaker et al [4] have published of
REDUCE (“Regulatory element detection using
correlation with detection”), a new way to identify
statistically significant motifs within a given set of gene
expression data.

Figure 3: Graphical user interface of the REDUCE application.

Table 1: Motif frequency counter for six ORFs of length 16 base-pairs. The occurrences of each
possible motif up to length 2 are counted.

ORFs A C G T AA AC AG AT CA CC CG CT GA GC GG GT TA TC TG TT

TACATCAATCCACCGC 5 7 1 3 1 2 0 2 3 2 1 0 0 1 0 0 1 2 0 0
ATCTCGAACTTCTTGG 3 4 3 6 1 1 0 1 0 0 1 3 1 0 1 0 0 3 1 2
AATGTGAAAAATTTTT 7 0 2 7 5 0 0 2 0 0 0 0 1 0 0 1 0 0 2 4
AGTATATTATCATGTA 6 1 2 7 0 0 1 4 1 0 0 0 0 0 0 2 4 1 1 1
TAAAGTACAGTCTACG 6 3 3 4 2 2 2 0 1 0 1 1 0 0 0 2 3 1 0 0
AACAAATTTCGAGTCA 7 3 2 4 3 1 1 1 2 0 1 0 1 0 0 1 0 2 0 2

It is based on a model in which upstream motifs
contribute additively to the expression level of each gene.
Because all genes are fit and are not biased by the
clustering, the authors claimed this method to be
advantageous over the conventional method. This
algorithm is very interesting from several points of view
and is definitely worth implementing and testing on both
public available and local gene expression data. gRNA
provides an ideal environment for the rapid maturation of
an algorithm into an application. Figure 3 shows the GUI
of our gRNA implementation of REDUCE.

A bottleneck of the application is the high runtime,
since the complexity depends on the product of number of
possible motifs and that of genes. In the following, we
will describe an efficient parallelization of the REDUCE
algorithm and its implementation using gMP.

4.1 REDUCE algorithm

The REDUCE algorithm consists of two parts: a motif
frequency counter and a significant motif finder.

The frequency counter simply calculates the
occurrences of each possible DNA motif up to a given
length (typically between 7 and 11 nucleotides) in each
given upstream region (a so-called Open Reading Frame
(ORF)). Only those motifs that occur within an upstream

region of the translation start-site of each ORF are
counted. A typical length of this region is 600 base-pairs,
because most of the known transcription binding sites fall
into that range [22]. Table 1 illustrates a small example.

In order to find a significant motif, all motifs are
ranked as follows. Firstly, the occurrence vector nµ of
every motif µ is normalized. Secondly, the dot product of
each vector nµ and the normalized vector of the
logarithms of gene expression ratios a is calculated: a •
nµ. All motifs are then ranked according to the square of
this dot product (a • nµ)2 and the largest one µmax is
selected. We proceed by calculating the residual vector a’
= a − (a • nµmax) nµmax and normalizing it.

Afterwards, all motifs except µmax are ranked again by
using (a’ • nµ)2. This procedure is iterated until the most
significant n motifs are found (a typical value is n=20).
Table 2 shows again an example. We proceed by
calculating the residual vector a’ = a − (a • nµmax) nµmax

and normalizing it. Afterwards, all motifs except µmax are
ranked again by using (a’ • nµ)2. This procedure is
iterated until the most significant n motifs are found (a
typical value is n=20). Table 2 shows again an example.

Table 2: Finding significant motifs: all occurrence vectors from Table 1 are normalized. Subsequently
the dot product of each vector with the vector of gene expression ratios a is calculated. This example
uses a = (0.5816, 0.2522, 0.2886, −0.5947, −0.1595, −0.3683). All motifs are ranked by the square of the
dot product. In this example GT is then selected as the most significant motif. The computation would
proceed by finding the second significant motif by using the normalized residual gene expression
vector a’ = (0.3037, −0.2382, 0.4749, −0.3252, 0.3907, −0.6059).

Motifs NORMALIZED OCCURRENCE VECTORS (a • nµ) (a • nµ)2

A (−0.1980, −0.7921, 0.3961, 0.0990, 0.0990, 0.3961) −0.4212 0.1774
C (0.7303, 0.1826, −0.5477, −0.3651, 0.0, 0.0) 0.5299 0.2808
G (−0.6931, 0.4951, −0.0990, −0.0990, 0.4951, −0.0990) −0.2905 0.0844
T (−0.5626, 0.2164, 0.4761, 0.4671, −0.3029, −0.3029) −0.2584 0.0668

AA (−0.25, −0.25, 0.75, −0.5, 0.0, 0.25) 0.2133 0.0455
AC (0.5, 0.0, −0.5, −0.5, 0.5, 0.0) 0.3641 0.1326
AG (−0.3651, −0.3651, −0.3651, 0.1826, 0.7303, 0.1826) −0.7022 0.4931
AT (0.1091, −0.2182, 0.1091, 0.7637, −0.5455, −0.2181) −0.2469 0.0610
CA (0.7013, −0.4463, −0.4463, −0.0638, −0.0638, 0.3188) 0.0972 0.0095
CC (0.9129, −0.1826, −0.1826, −0.1826, −0.1826, −0.1826) 0.6371 0.4059
CG (0.2887, 0.2887, −0.5774, −0.5774, 0.2887, 0.2887) 0.2651 0.0703
CT (−0.2462, 0.8616, −0.2462, −0.2462, 0.1231, −0.2462) 0.2205 0.0486
GA (−0.4082, 0.4082, 0.4082, −0.4082, −0.4082, 0.4082) 0.1410 0.0199
GC (0.9129, −0.1826, −0.1826, −0.1826, −0.1826, −0.1826) 0.6371 0.4060
GG (−0.1826, 0.9129, −0.1826, −0.1826, −0.1826, −0.1826) 0.2763 0.0764
GT (−0.5, −0.5, 0.0, 0.5, 0.5, 0.0) −0.7941 0.6306
TA (−0.085, −0.3405, −0.3405, 0.681, 0.4256, −0.3405) −0.5812 0.3378
TC (0.2132, 0.6396, −0.6396, −0.2132, −0.2132, 0.2132) 0.1831 0.0335
TG (−0.3651, 0.1826, 0.7301, 0.1826, −0.3652, −0.3651) 0.1286 0.0165
TT (−0.4423, 0.1474, 0.7372, −0.1474, −0.4423, 0.1474) 0.0967 0.0093

4.2 Parallelization with gMP

The parallel REDUCE algorithm consists of three parts:
(i) a parallel motif frequency counter, (ii) a matrix
transposition and (iii) a parallel significant motif finder.
These parts are now explained in more detail.

(i) The computation of motif frequencies in each
ORF is performed independently (computation of each
row in Table 1). Thus, we split the set of given ORFs into
equal sized pieces and distribute them evenly across the
number of available processing nodes. Each node then
calculates the respective occurrences in parallel (see
Figure 4 (i)).

(ii) After Step (i) the occurrence vectors are scattered
across the nodes. For efficient parallelization in Step (iii)
it is advantageous to store each occurrence vector within
a single node. This partitioning can be achieved by
transposing the motif frequency matrix. The transposition
is implemented by gMP’s asynchronous send operation as
shown in Figure 4(ii).

(iii) The significant motif finder normalizes the
locally stored occurrence vectors within each node first.
Afterwards, all squares of dot product are computed
concurrently and each node determines its local

maximum. Finally, a global maximum computation is
required. This global reduction operation is performed
with gMP’s Allreduce(obj,reducer) operation.

The reducer interface allows for flexible
implementations of our own reduce operation. In our
example the reducer is a simple maximum operation that
will take two motif objects consisting of their DNA
sequence, frequency vector and significance value and
return the one with the higher significance value.

Afterwards, the most significant motif is available to
all nodes in the group. Subsequently, the next iteration
step can be initiated by computing the residual gene
expression vector a’ in each node.

4.3 Performance evaluation

We have evaluated the performance of our parallel
implementation with gMP on an gRNA installation on a
Compaq Alpha system. It consists of a cluster of eight
AlphaServer SC/ES45 connected by a high-speed Alpha
SC 16-Port switch and ELAN PCI adapter cards. Each
server contains four Alpha EV68 processors.

Table 3: Timing (in seconds) and speedup of our parallel program for 7090 gene expressions of yeast,
ORFs of length 600 and motifs up to length 7 on different number of nodes. The bisection throughput
of the matrix transposition operation (in MBytes/s) is also given.

#nodes 1 2 4 8 16
Overall Runtime (speedup) 355 182 (1.9) 104 (3.4) 61 (5.8) 39 (9.1)
Frequeny Counter 74 36 18 8 4
Transpose (throughput) N/A 10 (15) 6 (38) 4 (66) 3 (91)
Motif finder 281 136 80 49 32

P0

P1

P2

P3

motifs

O
R

Fs

P0

P1

P2

P3

occurrence
vectors

P0

P1

P2

P3

m
otifs

(i) (ii)

(iii)

(a •n
µ) 2

allreduce
Figure 4: The three phases of our parallel
algorithm using 4 processes P0,…,P3: (i) parallel
frequency counter (ii) transposition of frequency
matrix (iii) parallel significant motif finder.

Table 3 shows the runtime for a different number of
nodes using Compaq Java FastVM. Our evaluation uses a
data set of 7090 gene expressions of yeast (dataset form
[21]), yeast ORFs of length 600 base-pairs each and
motifs up to length 7 (i.e. there are 21844 motifs
altogether). The 20 most significant motifs are computed.

The measurements show that the overall runtime
scales pretty well with the number of processing nodes.
The frequency counter scales perfectly since there is no
communication involved. The motif finder also scales
with the number of nodes, but cannot achieve perfect
speedup due to the collective communication involved.
Some overhead compared to the sequential program is
introduced by the matrix transposition. However, it is
only a fraction of the overall computing time and its
throughput also scales with the number of nodes.

5. Related work

There exist a number of systems that provide modular
and configurable mechanisms for many issues in
computational biology. A number of notable systems
target a key bottleneck within bioinformatics problem-
solving, by providing systematic approaches to the issue
of biological data integration and management.
DiscoveryLink [17] follows the approach of providing
configurable wrappers as consistent interfaces to the wide
range of remote data sources. The Kleisli [7] system
provides is a systematic approach to managing and
integrating external databases, and uses a functional

query language to perform correlation across nested
databases.

There are a number of toolkits designed to
encapsulate functionality from specialized areas within
computational biology. Notable examples include
BioJava [2] and BioPerl [3], primarily designed for
sequence analysis; and the Phylogenetic Analysis Library
(PAL) [9]. The Ensembl initiative at the European
Molecular Biology Labs (EMBL) [10] and the related
Distributed Annotation System (DAS) [8] are systems
that provide extensible approaches to the issue of
annotating genomic data.

The gRNA distinguishes itself by factoring in the
whole range of foundational requirements that go into
typical applications in computational biology. It
emphasizes on providing decoupled, yet inter-related
subsystems that are essentially designed with the ease of
third-party programmability as a key criterion. The gRNA
also emphasizes on the ability to easily deploy new
applications, and provides that as part of an integrated
development and deployment environment.

There have also been previous approaches of using
Java as a platform for high performance computing.
These approaches can be grouped into two categories (1)
bindings into native message passing APIs, such as MPI
or PVM, where some native libraries are called by Java
programs through JNI wrappers (e.g. JavaMPI [11],
DOGMA [16], MPJ [6]), and (2) pure Java
implementations (e.g. JMPI [19], CCJ [20]).

Although, the native approach provides efficient
communication, it does not allow for seamless integration
with larger scale Java applications. MPI for instance does
not execute only a particular program segment; instead it
will try to duplicate the execution of the caller program
on all nodes.

JMPI, CCJ and gMP are pure Java message passing
interfaces and allow for a certain degree clean integration
into Java’s object-oriented framework. However, JMPI
and CCJ are implemented on top of Java’s RMI (Remote
Method Invocation), which is inherently slower compared
to the raw socket communication used in gMP. CCJ tries
to overcome this problem by using RMI on top of Manta
(optimized RMI implementation for Myrinet networks).

Unfortunately, this solution is not portable. The CCJ and
JMPI frameworks also suffer from the fact that they are
not designed with respect to integration. Thus, they lack
several features that can greatly assist application
development and deployment, such as dynamic class
reloading, simplified server management and automated
application deployment, which are provided by gMP
through the various gRNA services.

6. Conclusions and future work

In this paper we have demonstrated how the gRNA
provides an efficient and systematic mechanism for the
development of genome-centric applications. In
particular, design and usage of gMP has been discussed, a
purely Java-based API that seamlessly integrates MPI-
like message passing and collective operations into
gRNA. We have presented the development of a parallel
application for detecting regulatory elements using
correlation with gene expression data with gMP that leads
to almost linear speedups.

The exponential growth of genomic databases
demands more parallel and distributed processing in life
science research in the future. Because genomics and
bioinformatics are evolving fields, novel algorithms are
discovered on a daily basis, e.g. the extensions to
REDUCE recently proposed in [13], which require an
even higher computing power. Thus, scientists need a
high performance computing platform that allows easy
implementation, integration and extension of those
algorithms. Therefore, we advocate the use of a number
of specialized programming interfaces for the
management, integration and analysis of biological data.

Our future work on gMP will include identifying
communication patterns that are frequently used on
popular data structures in computational biology such as
sequences, trees and matrices. The results of this study
will influence our design of a new API, which will extend
the functionality of gMP to these patterns and thus allows
easy parallelization of many compute-intensive genomics
applications.

References

[1] Bhowmick, S., Cruz P., Laud, A.: XomatiQ: Living with
Genomes, Proteomes, Relations and a Little Bit of XML, to
appear in Proc. IEEE ICDE 2003, Bangalore, India, 2003.
[2] BioJava Project: www.biojava.org.
[3] BioPerl Project: www.bioPerl.org.
[4] Bussemaker, H.J., Li, H., Siggia, E.D.: Regulatory element
detection using correlation with expression, Nature Genetics 27,
pp. 167-171, 2001.

[5] Bussemaker, H.J., Li, H., Siggia, E.D.: Regulatory Element
Detection using a Probabilistic Segmentation Model, Proc. Int.
Conf. Intell. Syst. Mol. Biol. 8, pp. 67-74, 2000.
[6] Carpenter, B., Getov, V., Judd, G., Skjellum, A., Fox, G.:
MPJ: MPI-like Message Passing for Java, Concurrency:
Practice and Experience, 12 (11), pp. 1019-1038, 2000.
[7] Chung, S.Y., Wong, L.: Kleisli: A New Tool for Data
Integration in Biology, Trends Biotechnology 17 (9), pp. 351-
355, 1999.
[8] Dowell, R.D., Jokerst, R.M., Day A.: The Distributed
Annotation System, BMC Bioinformatics 2:7, 2001.
[9] Drummond, A., Strimmer, K.: PAL: An Object-Oriented
Programming Library for Molecular Evolution and
Phylogenetic, Bioinformatics 17, pp. 662-663, 2001.
[10] www.ebi.ac.uk/embl/.
[11] Getov, V.: MPI and Java-MPI: Contrasts and Comparison
of Low Level Communication Performance, in
Supercomputing’99, Portland, OR, 1999.
[12] Gropp, W., Lusk, E., Doss, N., Skjellum, A.: A High-
performance, Portable Implementation of the MPI Message
Passing Interace Standard, Parallel Computing, 22 (6), pp. 789-
828, 1996.
[13] Grossman, D.M., Ruzzo, W.L.: Extensions to REDUCE:
Regulatory Element Detection using Correlation with
Expression, CSE Qualifying Project, University of Wahington
(http://www.cs.washington.edu/homes/grossman/projects/qualsp
roject/), 2002.
[14] Hampson, S. Baldi, P., Kibler, D., Sandmeyer, S.: Analysis
of Yeast's ORFs Upstream Regions by Parallel Processing,
Microarrays, and Computational Methods,
Proc. ISMB’00, AAAI Press, pp. 190-201, 2000.
[15] Helixense Pte Ltd, www.helixense.com.
[16] Judd, G., Clement, M., Snell, Q.: DOGMA: Distributed
Object Group Metacomputing Architecture, Concurrency:
Practice and Experience, 10, pp. 977-983, 1998.
[17] www3.ibm.com/solutions/lifesciences/discovery.html.
[18] Laud, A., Bhowmick, S., Cruz, P., Singh D.T., Rajesh, G.:
The gRNA: A Highly Programmable Infrastructure for
Prototyping, Developing and Deploying Genonics-Centric
Applications, Proc. VLDB 2002, Hong Kong, 2002.
[19] Morin, S., Koren, I., Krishna, C.M., JMPI: Implementing
the Message Passing Standard in Java, Proc. Int. Parallel and
Distributed Processing Symposium (IPDPS 2002), Ft.
Lauderdale, FL, 2002.
[20] Nelisse, A., Maassen, J., Kielmann, T., Bal, H.E.: CCJ:
Object-based Message Passing and Collective Communication
in Java, Joint ACM JavaGrande-ISCOP 2001 Conf., pp. 11-20,
Stanford, 2001.
[21] Roth F.R., Hughes, J.D., Estep, P.W., Church, G.M.:
Finding DNA regulatory motifs within unaligned noncoding
sequences clustered by whole-genome mRNA quantitation,
Nature Biotechnology 16, pp. 939-945, 1998.
[22] Spellman, P.T. et al.: Comprehensive identification of cell
cycle-regulated genes of the yeast Saccharomyces cerevisiae by
microarray hybridization, Mol. Biol. Cell. 9, pp. 3273-3297,
1998.

