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Abstract—Approximate string matching is the problem of
finding all factors of a text t of length n with a distance at most
k from a pattern x of length m ≤ n. Fixed-length approximate
string matching is the problem of finding all factors of a text
t of length n with a distance at most k from any factor of
length h of a pattern x of length m ≤ n, where h ≤ m. It
is thus a generalisation of approximate string matching and
has numerous direct applications in molecular biology—motif
extraction and circular sequence alignment, to name a few.

MaxShiftM is a bit-parallel algorithm for fixed-length ap-
proximate string matching under the Hamming distance model
with time complexity O(mdh/wen), where w is the size of the
computer word (Crochemore et al., 2010). An implementation
of this algorithm is straightforward as long as the maximal
length of alignments is less than or equal to w. In this article,
our contribution is twofold: first, we propose a generalised
implementation of MaxShiftM, that is, for any given h ≤ m,
under the Hamming distance model; and second, we show how
our implementation can be used to improve the accuracy and
efficiency of multiple circular sequence alignment in terms of
the inferred likelihood-based phylogenies.

Keywords-algorithms on strings; approximate string match-
ing; dynamic programming.

I. INTRODUCTION

Various algorithms exist to tackle the problem of finding
an exact or similar string pattern in a given string text.
The topic contains many competing algorithms for solv-
ing specific problems in particular branches of scientific
research [17]. In the field of molecular biology, string
matching algorithms are used for extracting motifs or regions
of interest [18] or for the alignment of short reads to longer
DNA or protein sequences [24]. This is important for solv-
ing problems such as gene classification, protein function
identification, mutation discovery, and genetic sequencing.

The current state of art in the field present a number
of applications with algorithms that are general-purpose
or directly applicable in molecular biology. The general
computing problem these algorithms attempt to solve is
known as exact string matching and aims to determine
whether or not a string of letters is present inside another
string. Furthermore, this problem expands into the realms of
approximate string matching; approximate matching allows
for a limited number of errors or, dually, edit operations
needed for the searched pattern to have a match in the text.

One of the most commonly used error models is the so
called edit distance model, which uses substitution, deletion
and insertion of letters in both strings. Each of these different
operations can have a different edit cost or the cost may
depend on the letters involved; in this case we speak of the
general edit distance model. Otherwise, if all the operations
have a unit cost, we speak of simple edit distance or just edit
distance. In the latter case we simply seek for the minimum
number of operations to transform the one string into the
other. A further simplification of this model is the Hamming
distance model and this variant only allows for substitutions.

DNA errors occur at a steady rate with the average single
nucleotide substitution mutation rate in humans estimated
to be 1.20 × 10−8 per nucleotide per generation [13].
Apart from single-nucleotide substitution, there is also nu-
cleotide deletion and insertion rates but these are signif-
icantly lower. Although more specialised—but computa-
tionally more expensive—error models exist for molecular
sequences [11], the edit and Hamming distance models are
still extensively used as a reasonable accuracy-efficiency
trade-off.

Two approaches to devising search algorithms can be
found in the literature, termed off-line and on-line. Off-line
algorithms have a preprocessing stage where they take the
input datasets and generate exhaustive intermediate indexes
which can then be searched. Off-line algorithms presuppose
the search datasets remain mostly static and index-storage
space is abounding. Often, indexing time is of secondary
importance to search time and this makes it impractical for
our purposes. On-line search algorithms work on changing
and expanding datasets and run on-the-fly with little or no
preprocessing. On-line search algorithms are better suited for
immediate and on-demand searching of variable datasets. In
this work we consider only on-line approaches.

With edit distance, the searching problem is known as
approximate string matching with k-errors. The first al-
gorithm for solving this problem has been rediscovered
many times in the past in different areas [17]. However this
algorithm computed the edit distance, and it was converted
into a search algorithm only in 1980 by Sellers [22]. Sellers
algorithm requires time O(mn), where m is the length of
the pattern and n is the length of the text. The major theoret-
ical and practical achievements are O(kn)-time algorithms,
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presented in [8], [9], [26], where k is the maximum edit
distance allowed. An intensive study on the question is by
Navarro [17].

A thread of practice-oriented results exploits the hardware
word-level parallelism of operations. It takes advantage of
the intrinsic parallelism of the word-level operations inside
a computer word. By using this fact cleverly, the number
of operations that a bit-parallel algorithm performs can be
cut down by a factor of at most w, where w is the size of
the computer word. In order to relate the behavior of bit-
parallel algorithms to other work, it is normally assumed
that w = Θ(log n), as dictated by the RAM model. Wu
and Manber, in [29], gave an O(kdm/wen)-time algorithm
for the k-errors problem by simulating the non-deterministic
automaton [25] using word-level parallelism. Baeza-Yates
and Navarro, in [1], gave an O(dkm/wen)-time variation
of the Wu-Manber algorithm, implying O(n) performance
when km = O(w). In 1994, Wright [28] presented an
O(m log(|Σ|)n/w)-time algorithm, where |Σ| is the size
of the input alphabet Σ. This was the first work using
word-level parallelism on the dynamic programming matrix.
Myers, in [16], gave an O(dm/wen)-time algorithm using
word-level parallelism for computing the dynamic program-
ming matrix more efficiently. Another general solution based
on existing algorithms can be found in [5].

A generalisation of this problem—instead of searching
for all matches of the pattern—is to search for all matches
of any factor of some fixed length h ≤ m of the pat-
tern. This problem is known as fixed-length approximate
string matching and it was introduced by Iliopoulos et
al. in [12]. Crochemore et al. devised MaxShiftM [6], a
bit-parallel algorithm for fixed-length approximate string
matching under the Hamming distance model with time
complexity O(mdh/wen). MaxShiftM is currently the core
computational task of at least two applications in molecular
biology:
• MoTeX: a tool for single and structured motif extraction

from large-scale datasets [18], [19]. With MoTeX,
MaxShiftM is used to detect overrepresented motifs
in the same or related genetic sequences. Regulatory
regions such as promoter and enhancer binding sites
can be found surrounding genes in DNA. They are
the attachment points for transcription factors and
are mostly conserved but can contain substitutions of
non-conserved bases and a small number of gaps.
MaxShiftM is adept at finding regulatory regions as
it can find these binding sites, short patterns, in long
strings by using fixed-length approximate string match-
ing.

• BEAR: a tool for multiple circular sequence align-
ment [2]. With BEAR, MaxShiftM is used to iden-
tify common approximate factors between circular se-
quences in order to find a sufficiently good rotation of
the involved sequences. This is a crucial step because

sequences of circular structure may be cut at arbitrary
positions to be sequenced so one copy of a genetic
code will not be aligned with another. BEAR uses
MaxShiftM to search for a sufficiently good rotation
for each of the sequences against one another, so that
when they are passed onto a conventional multiple
sequence alignment tool, it will be able to provide a
better multiple alignment.

MaxShiftM operates by maintaining a variant of the
traditional dynamic programming matrix D, denoted by D′,
through iteratively comparing the letters in text t against the
letters in the pattern x to provide a representation for solv-
ing the fixed-length approximate string matching problem.
MaxShiftM maintains the alignments information in matrix
D′ via word-level shift-or operations. Edit operations
are stored in individual bits of a computer word and at the
end of this computation, the sum of these operations denote
the alignment cost; this cost can be determined by obtaining
the sum of bits set on in the computer word via a word-level
popcount operation. The resulting matrix D′ holds the
binary encoding for obtaining the optimal alignment between
any factor of length h of x and some factor of t.

MaxShiftM requires time O(mn) under the assumption
that the maximal length of the stored alignments is less than
or equal to w. This ensures that each cell of the dynamic
programming matrix can be computed in constant time. For
instance, a naı̈ve implementation running on a regular 64-bit
computer, cannot handle alignments for h > 64. Hence it is
well understood that, while this may be sufficient for short
alignments, it is not general enough for certain applications.

OUR CONTRIBUTION

In this article, we present MW-MaxShiftM, a robust and
generalised implementation of MaxShiftM which overcomes
the limitations of a naı̈ve implementation of the algorithm,
so that it no longer requires that the maximal length of the
alignments is less than or equal to w (h ≤ w). With MW-
MaxShiftM, the fixed length h can be set as long as length
m of pattern x (h ≤ m).

MW-MaxShiftM carries out a similar process as
MaxShiftM but stores the alignments across dh/we
words per cell giving it an overall time complexity of
O(mdh/wen). In particular our contribution is twofold:

1) We provide the full details of a generalised imple-
mentation of the word-level operations used for the
maintenance of the dynamic programming matrix.

2) We show how our implementation can be used to im-
prove the efficiency and accuracy of multiple circular
sequence alignment in terms of the inferred likelihood-
based phylogenies.

II. DEFINITIONS AND NOTATION

In order to provide an overview of our results and algo-
rithms, we begin with a few definitions. We think of a string
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x of length m as an array x[0 . .m − 1], where every x[i],
0 ≤ i < m, is a letter drawn from some fixed alphabet Σ
of size σ. The empty string of length 0 is denoted by ε. A
string x is a factor of a string t if there exist two strings u
and v, such that t = uxv. Consider the strings x, t, u, and
v, such that t = uxv. If u = ε, then x is a prefix of t. If
v = ε, then x is a suffix of t.

Let x be a non-empty string of length m and t be a string.
We say that there exists an occurrence of x in t, or, more
simply, that x occurs in t, when x is a factor of t. Every
occurrence of x can be characterised by a position in t.
Thus we say that x occurs at the starting position i in t
when t[i . . i + m − 1] = x. We say that x occurs at the
ending position i in t when t[i−m+ 1 . . i] = x.

Given a string x and a string y, the edit distance, denoted
by δE(x, y), is defined as the minimum total cost of oper-
ations required to transform one string into the other. For
simplicity, we only count the number of edit operations,
considering the cost of each to be 1. The allowed edit
operations are as follows:
• Insertion: insert a letter in y, not present in x;

(ε, b), b 6= ε
• Deletion: delete a letter in y, present in x; (a, ε), a 6= ε
• Substitution: replace a letter in y with a letter in x;

(a, b), a 6= b,and a, b 6= ε.
We write x ≡E

k y if the edit distance between x and y is at
most k. Equivalently, if x ≡E

k y, we say that x and y have
at most k errors.

Given a string x and a string y both of length m, the
Hamming distance, denoted by δH(x, y), is the number of
positions i, 0 ≤ i < m, such that x[i] 6= y[i]. Given an
integer k > 0, we write x ≡H

k y if the Hamming distance
between x and y is at most k. Equivalently, if x ≡H

k y, we
say that x and y have at most k mismatches.

We say that there exists an occurrence of a non-empty
string x of length m in a string t of length n ≥ m with at
most k mismatches, or, more simply, that x occurs in t with
at most k mismatches, when u ≡H

k x and u is a factor of
t. We refer to the standard dynamic programming matrix of
x and t as the matrix defined by D[i, 0] = k + 1, 0 < i ≤
m, D[0, j] = 0, 0 ≤ j ≤ n

D[i, j] =

{
D[i− 1, j − 1] : x[i] = t[j]

D[i− 1, j − 1] + 1 : x[i] 6= t[j]

for all 0 < i ≤ m, 0 < j ≤ n.
Similarly we refer to the standard dynamic programming
algorithm as the algorithm to compute the Hamming dis-
tance between x and any factor of t through the above
recurrence in time O(mn). That is, D[m, j] ≤ k denotes
an occurrence of x at the ending position j − 1 in t with at
most k mismatches.

A circular string of length m can be viewed as a tra-
ditional linear string which has the left- and right-most
letters wrapped around and stuck together in some way.

Under this notion, the same circular string can be seen as
m different linear strings, which would all be considered
equivalent. Given a string x of length m, we denote by
xi = x[i . .m− 1]x[0 . . i− 1], 0 < i < m, the i-th rotation
of x and x0 = x. Consider, for instance, the string x =
x0 = abababbc; this string has the following rotations:
x1 = bababbca, x2 = ababbcab, x3 = babbcaba,
x4 = abbcabab, x5 = bbcababa, x6 = bcababab,
x7 = cabababb.

In this article, we consider the following problem.

FIXEDLENGTHAPPROXIMATESTRINGMATCHING
Input: a pattern x of length m, a text t of length n ≥
m, an integer h ≤ m, and an integer threshold k < h
Output: all factors u of t such that u ≡H

k v, where v
is any factor of length h of x

III. ALGORITHM MAXSHIFTM

Let D′[0 . .m, 0 . . n] be a matrix, where D′[i, j] contains
the Hamming distance between factor t[max{0, j−h} . . j−
1] of t and factor x[max{0, i − h} . . i − 1] of x, for all
1 ≤ j ≤ n, 1 ≤ i ≤ m. This matrix can be obtained through
a straightforward O(hmn)-time algorithm by constructing
matrices Ds[0 . . h, 0 . . n], for all 0 ≤ s ≤ m − h, where
Ds[i, j] is the Hamming distance between factor t[j−h . . j−
1] and the prefix of length i of x[s . . s+h−1]. We obtain D′

by collating D0 and the last row of Ds, for all 0 ≤ s ≤ m−h.
Matrices Ds can be obtained using the standard dynamic
programming algorithm. We say that x[max{0, i−h} . . i−1]
occurs in t ending at t[j−1] with k mismatches iff D′[i, j] ≤
k, for all 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Let x = CAAACCTTT, t = CGAAAGTAT, and h = 3.
Matrix D′ is given below.

0 1 2 3 4 5 6 7 8 9

ε C G A A A G T A T

0 ε 0 0 0 0 0 0 0 0 0 0
1 C 1 0 1 1 1 1 1 1 1 1
2 A 2 2 1 1 1 1 2 2 1 2
3 A 3 3 3 1 1 1 2 3 2 2
4 A 3 3 3 2 1 0 1 2 2 2
5 C 3 2 3 3 2 1 1 2 3 2
6 C 3 2 2 3 3 2 2 2 3 3
7 T 3 3 2 2 3 3 3 2 3 2
8 T 3 3 3 2 3 3 3 2 2 2
9 T 3 3 3 3 3 3 3 2 2 1

The algorithm finds D′[4, 5] = 0, since
δH(x[1 . . 3], t[2 . . 4]) = 0. The algorithm finds D′[9, 9] = 1,
since δH(x[6 . . 8], t[6 . . 8]) = 1.

Crochemore et al. devised MaxShiftM [6], a bit-parallel
algorithm with time complexity O(mdh/wen), where w
is the size of the computer word. By using word-level
parallelism, MaxShiftM can compute matrix D′ efficiently.
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Let B[i, j] = bh−1 . . . b0, a bit-vector matrix holding the
binary encoding for obtaining the Hamming distance be-
tween the factor of the text t[j−h . . j−1] and x[i−h . . i−1]
with a total of D′[i, j] mismatches. The maintenance of
matrix B is done via operations defined as follows:

• shift(v): an operation that, given a bit-vector v,
shifts the bits of v one position to the left, and returns
the resulting bit-vector.

• leftmostbit(v): an operation that, given a bit-
vector v, returns the leftmost bit of v.

• shiftc(v): same as shift, but also truncates the
leftmost bit of v.

• |: the bitwise OR operator.
• &: the bitwise AND operator.
• popcount(v): an operation that, given a bit-vector
v, returns the number of 1’s in v.

Algorithm MaxShiftM(x,m, t, n, h)

D′[0 . .m, 0 . . n]← 0;
B[0 . .m, 0 . . n]← 0;
foreach i ∈ {1,m} do

B[i, 0]← min(i, h) 1’s;
foreach j ∈ {1, n} do

B[i, j]←
shiftc(B[i− 1, j − 1])|δH(x[i− 1], t[j − 1]);
D′[i, j]← popcount(B[i, j]);

The algorithm requires constant time for computing each
cell B[i, j] by using the aforementioned operations, assum-
ing that dh/we = O(1). In the general case, it requires time
O(dh/we). The space complexity can be reduced to only
O(mdh/we) since each column of D′ only depends on the
immediately preceding column.

Theorem 1 ([6]): Given a string x of length m, a string
t of length n, an integer h, and the size of the computer
word w, algorithm MaxShiftM requires time O(mdh/wen)
to solve the FIXEDLENGTHAPPROXIMATESTRINGMATCH-
ING problem.

IV. IMPLEMENTATION

In this section we provide the full details of a generalised
implementation. In particular, we provide an implementation
for the operations used for the maintenance of the dynamic
programming matrix. For the rest of this section we denote
by:

• v an array of bit-vectors used to represent a cell of the
dynamic programming matrix;

• s := dh/we the size of array v;
• ` := h the length of the alignment (bit-vector) stored

in v.

The mw-shift function is an implementation of oper-
ation shift on multiple words. The mw-shift function
performs a bitwise left-shift operation on v. It starts from
right to left, performing a bitwise left-shift on the rightmost
element in v, and moves left the array towards the leftmost
element performing a bitwise left-shift on each element as
it goes along. It checks if a bit needs to be carried onto the
next element in the array and carries these bits along at each
step. It requires time O(s).

Function mw-shift(v, s, w)

a← 1� (w − 1);
b← 0;
for i← s− 1 downto 0 do

c← v[i];
v[i]← (v[i]� 1)|b;
if (c&a) > 0 then

b← 1; /* we need to carry a bit */
else

b← 0; /* we do not need to carry a bit */
return v;

An example of this function is shown below.

Example 1: mw-shift for h = 32 and w = 8
v0 v1 v2 v3

10000011 10000010 10011101 01111111
00000111 00000101 00111010 11111110

The mw-shiftc function is an implementation of opera-
tion shiftc on multiple words. The mw-shiftc function
is almost identical to the mw-shift function, except that
it truncates the most significant bit in the most significant
element after performing the shift. The location of this bit
is maintained by ` and it represents the current length of the
alignment. The function uses a bit-mask (variable y below)
which is calculated based on ` and w to truncate the most
significant bit in order to stop more errors that are no longer
part of the alignment being counted. It requires time O(s).

Function mw-shiftc(v, s, w, `)

mw-shift(v, s, w); /* we first shift and then truncate */
j ← ` mod w;
y ← j 1’s;
i← s− d`/we;
v[i]← v[i]&y;
return v;

An example of this function is shown below.
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Example 2: mw-shiftc for ` = 20 and w = 8
Operation v0 v1 v2
mw-shift 00001011 10011101 01111111
v[0]&1111 00010111 00111010 11111110

Result 00000111 00111010 11111110

The mw-popcount function is an implementation of op-
eration popcount on multiple words. The mw-popcount
function performs a popcount on all the elements in v. It
returns the total count of set bits set on in all the elements
of the array. Each “1” represents an error in the alignment.
Function mw-popcount requires time O(s) assuming that
operation popcount is implemented in constant time.

Function mw-popcount(v, s)

c← 0;
foreach i ∈ {0, s− 1} do

c← c+ popcount(v[s]);
return c;

An example of this function is shown below.

Example 3: mw-popcount for h = 16 and w = 8

D′[i, j] v1 v2
8 10011010 00111001

We are now in a position to present the implementation
of algorithm MaxShiftM on multiple words. The MW-
MaxShiftM implementation takes six arguments: x is the
pattern string and m its length; t is the text string and n its
length; h is the length of the factor we are looking for; and
w is the size of the computer word.

Algorithm MW-MaxShiftM(x,m, t, n, h, w)

s← dh/we;
D′[0 . .m, 0 . . n, 0 . . s− 1]← 0;
B[0 . .m, 0 . . n, 0 . . s− 1]← 0;
foreach i ∈ {1,m} do

B[i, 0]← min(i, h) 1’s;
foreach j ∈ {1, n} do

B[i, j]← mw-shiftc(B[i− 1, j −
1], s, w, h)|δH(x[i− 1], t[j − 1]);
D′[i, j]← mw-popcount(B[i, j], s);

Overall, our implementation requires constant time for
computing each cell D′[i, j] by using word-level operations,
assuming that dh/we = O(1). In the general case, it requires
time O(dh/we). Trivially, the space complexity can be
reduced to only O(mdh/we) since each column of D′ only
depends on the immediately preceding column.

V. EXPERIMENTAL RESULTS

• Project name: MW-MaxShift
• Project home page: http://github.com/webmasterar/

mw maxshift
• Operating system: GNU/Linux
• Programming language: C
• Other requirements: compiler gcc version 4.6.3 or

higher
• License: GNU GPL
• Any restrictions to use by non-academics: license

needed
The experiments were conducted on a Desktop PC using

one core of a 64-bit Intel 2.8GHz Core-I7 processor with
8GB of RAM under 64-bit GNU/Linux.

EXPERIMENT 1: EFFICIENCY

As the first experiment we tested the efficiency of our
implementation. As an input dataset we used a pattern
sequence of length m = 1, 536 and a text sequence of
length n = 2, 000, both over the DNA alphabet; notice
that the time complexity of MaxShiftM does not depend
on the alphabet’s size. To measure the efficiency of our
implementation we used different values for the fixed factor
length h, 8 ≤ h ≤ m. The results are shown in Figure 1. The
shape of the curve fully confirms the theoretical findings.
For h ≤ 64, we make use of a single computer word as the
maximal length of any alignment is bounded by h = 64.
Since the x axis (fixed length h) is on logarithmic scale this
implies that the execution time grows linearly in h thereafter.
This linear growth is represented by the dh/we factor in the
time complexity of MaxShiftM (see Theorem 1).

EXPERIMENT 2: APPLICATION I (SYNTHETIC DATA)

Circular DNA can be found in viruses, archaea, and
bacteria as plasmids and in the mitochondria and plastids
of eukaryotic cells. Hence algorithms on circular sequences
are important in the analysis of organisms with such genetic
structures [3]. An application of circular sequences has
been in the context of reconstructing phylogenies using
Mitochondrial DNA (MtDNA) [10], [7], [27]. MtDNA is
generally conserved from parent to offspring, and so it can
be used as an indicator of evolutionary relationships among
species. The absence of recombination in these sequences
allows it to be used as a simple test of phylogenetic
evolution, and the high mutation rate leads to a powerful
discriminative feature. However, when sequencing a DNA
molecule, the position where a circular genome starts can
be totally arbitrary. Due to this arbitrary definition, using
conventional tools to align such sequences could yield an
incorrectly high genetic distance between closely-related
species. For instance, the linearised human (NC 001807)
and chimpanzee (NC 001643) MtDNA sequences do not
start in the same region. Their pairwise sequence alignment
using EMBOSS Needle [20] gives a similarity of 85.1%
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Figure 1: Fixed length h versus elapsed time for m = 1, 536 and n = 2, 000 using MW-MaxShiftM

and consists of 1195 gaps; taking different rotations of these
sequences into account yields an alignment with a similarity
of 91% and only 77 gaps.

Approximate circular string matching is the problem of
finding all factors of t that are at a distance at most k from
x or from any of its rotations [3], [4]. Consider comparing
x and t under the Hamming distance model. We can apply
MaxShiftM(x′, 2m, t, n, h) with x′ = xx and h := m.
Notice that cell D′[p, q], say D′[p, q] = e, denotes that factor
x′[p − h . . p − 1] matches factor t[q − h . . q − 1] with e
mismatches. Hence by setting h := m we can report all
factors of t that are at a Hamming distance at most k from
x or from any of its rotations. Notice that x′[p−m. . p−1],
p−m ≥ 0, denotes rotation xp−m of x.

Similarly, setting h to smaller values can be sufficient,
in practice, for pairwise circular sequence alignment. To
test this ability of MW-MaxShiftM, pairs of 1, 000 bp-long
sequences were generated randomly with varying degrees
of dissimilarity—10, 20, 30 and 40%—for the Hamming
distance model. Consider a single pair of two sequences x
and y. A script was written to take one of the two sequences,
x, cut it at a random position and swap around the two
resulting segments. This essentially rotates x at an arbitrary
position creating a new sequence x′. The two sequences, x′

and y, would then be compared using the aforementioned
method; that is, MaxShiftM was applied with x′x′, y, and
different fixed lengths h, ranging from 16 to 512.

When MaxShiftM found the cell with the lowest number

of errors, the coordinates (i, j) returned by the program
could be used to rotate sequence x′ back to (ideally) its
original state, thereby creating a new sequence x′′. To
evaluate MaxShiftM for this task, the newly created x′′ se-
quence was compared against y using the standard dynamic
programming algorithm. Ideally, MaxShift would find that
this distance is equal or close to the one between x and y.
The results of comparing x′′ and y, for varying degrees of
dissimilarity, using different fixed lengths h are shown in
Table I. The control column denotes the original number of
errors between the randomly generated sequences prior the
random rotation of x takes place.

Fixed length h
control 16 32 64 128 256 512 1,000
100 100 100 100 100 100 100 100
200 200 200 200 200 200 200 200
300 300 300 300 300 300 300 300
400 400 400 400 400 400 400 400

Table I: Hamming distance between x′′ and y for different
fixed lengths h

As can be observed from Table I, the results have 100%
match with the control column denoting that all sequences
were rotated back to their original state. This in turn implies
that algorithm MaxShiftM can be used for the application
of pairwise circular sequence alignment under the Hamming
distance model.
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EXPERIMENT 3: APPLICATION II (REAL DATA)
We have incorporated our implementation in BEAR [2],

a tool for improving multiple circular sequence align-
ment, as follows. Given a set of molecular sequences
x0, x1, . . . , xd−1 as input, the objective of BEAR is to
compute an array R of size d, such that R[j], for all
0 ≤ j < d, stores a sufficiently good rotation of xj . Then

x
R[0]
0 , x

R[1]
1 , . . . , x

R[d−1]
d−1 could be used as the input dataset

for a conventional multiple sequence alignment algorithm to
obtain the alignment. For clarity of presentation, we assume
that m = |x0| = |x1| = . . . = |xd−1|.

In order to compute array R, the idea in BEAR is to apply
MaxShiftM for fixed-length approximate string matching,
for every pair of strings (xi, xj), with x′i = xi[0 . .m −
1]xi[0 . . h− 1] and x′j = xj [0 . .m− 1], for some 1 ≤ h ≤
m. Notice that cell D′[p, q], say D′[p, q] = e, denotes that
factor x′i[p−h . . p−1] matches factor x′j [q−h . . q−1] with e

mismatches. Equivalently, factor xp mod m
i [m−h . .m− 1]

matches factor xq mod m
j [m−h . .m−1] with e mismatches.

Hence setting h := m solves exactly the approximate
circular string matching problem; however setting h to
smaller values can be sufficient in practice for the considered
application. Given the output of this approach, for all pairs
of strings, BEAR constructs a matrix M of size d × d
of pairs, such that M[i, j] stores (e, r), denoting that the
Hamming distance between some factor of length h of
x

M[i,j].r
i and some factor of xj is M[i, j].e. This step requires

time O(d2m2dh/we), which, in practice, is much faster than
the O(d2m3)-time algorithm implemented in cyclope [15].
After constructing matrix M, BEAR applies standard ag-
glomerative hierarchical clustering to obtain array R.

To test the efficiency and accuracy of our methodology,
we compared BEAR to cyclope using real data. As input
datasets we used three sets of MtDNA sequences: the
first set includes sequences of 16 primates; the second set
includes sequences of 12 mammals; and the last one is a
set of 19 distantly-related sequences (the 16 primates, plus
the Drosophila melanogaster, the Gallus gallus, and the
Crocodylus niloticus). The MtDNA genome size for each se-
quence in the datasets is between 16 and 20 Kbp. To ensure a
fair efficiency comparison between the two programmes, we
made sure that they both produce a unique phylogenetic tree
(using ClustalW [14] for multiple sequence alignment and
RAxML [23] for phylogenetic reconstruction) by computing
the pairwise Robinson and Foulds (RF) distance [21] of the
inferred trees. The results in Table II using a single core
show that BEAR can accelerate the computations by more
than a factor of 20 compared to cyclope, producing, via
ClustalW and RAxML, identical trees.

VI. CONCLUSION

Approximate string matching is a core computational task
in molecular biology and has been extensively studied over

Dataset BEAR cyclope RF distance
First set (Primates) 2m11s 41m46s 0
Second set (Mammals) 1m15s 26m19s 0
Third set (Primates et al) 3m01s 61m35s 0

Table II: Execution-time comparison and pairwise RF dis-
tance using real data

the past decades. Fixed-length approximate string match-
ing is a generalisation of this problem that has beneficial
applications in biology and beyond. MaxShiftM is a bit-
parallel algorithm for fixed-length approximate string match-
ing under the Hamming distance model. The computation
in this algorithm is realised by dynamic programming tech-
niques on bit-vectors. A straightforward implementation of
MaxShift imposes a restriction on the maximal length of
any represented alignment: it must be less than or equal to
the size of the computer word.

In this article, we provided the full details of a gen-
eralised implementation of the word-level operations used
for the maintenance of the dynamic programming matrix.
In particular, we showed how MW-MaxShiftM can support
arbitrarily long alignments that exceed the size of the
computer word and successfully carry out its functionality in
time O(mdh/wen). Moreover, we showed some preliminary
results on how our implementation can be used to improve
the efficiency and accuracy of multiple circular sequence
alignment in terms of the inferred likelihood-based phylo-
genies.

The main advantage of using MW-MaxShiftM over a
naı̈ve implementation of MaxShift would be the ability
to use arbitrarily large fixed lengths to measure similarity
between sequences. This would in turn provide a more
confident similarity measure, especially if the sequences had
many repeating factors; larger fixed lengths of factors would
more likely find distinct regions in the sequences under
study.

Future work will concentrate on: reducing the memory
footprint and running time through more technical low-
level optimisations; and extending our approach to the edit
distance model.
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