
Preliminary results in accelerating profile HMM search on FPGAs

Arpith C. Jacob, Joseph M. Lancaster, Jeremy D. Buhler, and Roger D. Chamberlain

Department of Computer Science and Engineering
Washington University in St. Louis

St. Louis, Missouri 63130–4899
{jarpith, jmlancas, jbuhler, roger}@cse.wustl.edu

Abstract

Comparison between biosequences and probabilistic
models is an increasingly important part of modern DNA
and protein sequence analysis. The large and growing num-
ber of such models in today’s databases demands computa-
tional approaches to searching these databases faster, while
maintaining high sensitivity to biologically meaningful sim-
ilarities. This work1 describes an FPGA-based accelera-
tor for comparing proteins to Hidden Markov Models of the
type used to represent protein motifs in the popular HM-
MER motif finder. Our engine combines a systolic array de-
sign with enhancements to pipeline the complex Viterbi cal-
culation that forms the core of the comparison, and to sup-
port coarse-grained parallelism and streaming of multiple
sequences within one FPGA. Performance estimates based
on a functioning VHDL realisation of our design show a
190× speedup over the same computation in optimised soft-
ware on a modern general-purpose CPU.

1. Introduction

Biosequence comparison reveals the biological functions
of a DNA or protein sequence by discovering similarities
to other sequences of known function. As the size and di-
versity of biosequence databases has grown, it has become
common to group a family of related sequences and sum-
marise their shared features using a probabilistic model,
such as a Hidden Markov Model (HMM) [8]. Comparing
new sequences to the model, rather than to its constituent se-
quences, provides a more sensitive and more nuanced mea-
sure of how well a new sequence matches others in the fam-
ily.

1This research was supported by NIH/NGHRI grant 1 R42 HG003225-
01 and NSF grants CCF-0427794 and DBI-0237902.

1-4244-0910-1/07/$20.00 c©2007 IEEE.

The exponential growth of biosequence databases over
the last two decades [1] has led to ever larger databases
of sequence family models. As of this writing, the PFAM
model database [3] contains over 195, 000 such models,
with a doubling time of roughly five years. Comparing
bacterial and human proteomes against PFAM require 1 to
500 days of CPU time. To keep up with growth in model
databases, biologists have sought ways to search them more
efficiently, including dividing the database over a large
computing cluster or devising special hardware [2, 6, 16]
and software [12, 15] to accelerate the search.

Field Programmable Gate Arrays (FPGAs) are one form
of specialised hardware that has proven especially useful
as a platform for biological applications. FPGAs are hard-
ware devices that can be programmed at the basic logic
level to directly implement the core, computationally in-
tensive blocks of an algorithm. These devices exploit the
parallelism of their target applications to achieve order-
of-magnitude speedups relative to a general-purpose CPU.
FPGA-based accelerators require less power and mainte-
nance than a large computing cluster, and their ability to be
reprogrammed on the fly allows them to implement multiple
applications, unlike an ASIC. Although they require more
hardware expertise to develop, advances in tools have made
them more accessible. This accessibility, coupled with re-
cent rapid growth in the sizes of FPGA parts, have enabled
acceleration of increasingly complex and resource-hungry
applications.

In the domain of computational biology, FPGAs have
traditionally been used to accelerate the highly regu-
lar structure of dynamic programming algorithms for se-
quence comparison, reporting several orders of magnitude
speedup [17]. More recently, other bioinformatic tasks
such as the pattern-matching heuristics of BLAST [7] have
also been accelerated. By combining FPGAs’ traditional
strength in dynamic programming with new implementa-
tion techniques and high I/O bandwidth into the accelerator,
it is possible to achieve large speedups for complex tasks

Figure 1. A protein motif in five different
proteins. Bold-faced residues are invariant
across all instances; a dot indicates a miss-
ing residue in an instance.

such as alignment of sequences to probabilistic sequence
models.

In this work, we present preliminary results on a
hardware design to accelerate the Viterbi decoding algo-
rithm [13] at the core of the popular HMMER software
package [5], which compares protein sequences against
conserved sequence patterns, or motifs, modeled by HMMs.
Building on previous work in this area [10], our accelerator
acts as a filter that eliminates the vast majority of potential
matches between proteins and HMMs, leaving only a small
fraction to be validated in software. We describe a systolic
array architecture and methods to handle the large amounts
of data involved in modeling the motifs. We introduce a
novel pipelining technique to exploit coarse-grained paral-
lelism in individual processing elements, while satisfying
cell data dependencies. Our design, which has been imple-
mented in the VHDL language, synthesised, and simulated,
provides an estimated speedup for the Viterbi computation
of 190x over a single modern general-purpose CPU.

2. Related Work

There have been limited algorithmic improvements to
the HMMER computation. Heuristic approaches using a
seeding strategy such as HMMERHEAD [12] achieve mod-
est improvements in speed. Recently, a pattern matching
based prefilter stage [15] has been employed to realise up to
8× speedups without a loss in sensitivity. These approaches
typically operate as prefilters, reducing the data stream into
the full Viterbi computation of HMMER. While we have
choosen to accelerate the Viterbi computation in hardware,
heuristic approaches complement our work, and can be used
as a hardware prefilter stage prior to full Viterbi.

Most efforts in accelerating HMMER have concentrated
on exploiting coarse-grained parallelism, for example using
workstation clusters. Clusters typically have high acquisi-
tion, maintenance, and energy costs as compared to single-
node solutions.

JackHMMer [16] is a Network Processor based imple-
mentation that distributes the search process over a num-
ber of Microengines. On an Intel IXP 2850, they achieve
a speedup of approximately 1.8× over a Pentium 4 based
workstation. ClawHMMER [6] uses commodity graphics

D3D2

I1I1 I2I2 I3I3

E

B

M1 M2 M4M3

Figure 2. Simplified Plan7 HMM structure for
a motif of length m = 4.

processors to achieve speedups of up to 25× over a Pen-
tium 4 Xeon workstation.

Single Instruction Multiple Data (SIMD) instructions on
general-purpose processors have been used to exploit fine-
grained parallelism. Lindhal reports an implementation on
the Altivec G5 [9] running up to 8× faster than an integer
implementation. However, the same technique has failed to
produce considerable speedup on x86 processors due to the
lack of critical SIMD instructions.

A commercial FPGA implementation of the HMMER
computation is available from TimeLogic [2]. Using sev-
eral PCI FPGA cards and a multi-processor host system,
they claim a speedup of 2600× over a Pentium III processor.
However, no published information exists to perform a fair
comparison with our architecture. Oliver et al. [11] report
an architecture for accelerating the simple Plan 7 HMMER
computation. They report a throughput of 5.3 GCUPS, ap-
proximately half our throughput on the same FPGA device.

3. Background: Detecting Motifs via Hidden
Markov Models

In this section, we briefly review the structure of the
HMMs used in protein motif finding, including key sim-
plifications assumed by our implementation. We also re-
view the core Viterbi algorithm used to determine whether
the motif described by an HMM occurs in a given protein
sequence. We assume that the reader has basic familiarity
with HMMs; a more detailed description of these models
and their use in similarity search may be found in [4].

3.1. HMMs as a Model of Protein Motifs

The core problem addressed in this work is recognition
of a motif, which is a conserved pattern of amino acids, or
residues, that occurs in multiple protein sequences. Figure 1
shows a motif as it appears in five different proteins. A
motif consists of a series of conserved positions, each of
which has one or more characteristic residues that occur in
that position with high frequency. Not all positions need
be present in every instance of a motif, and positions may

i,jV

A

λ(j, D

λ(j, I

i)
i

)

λ(j, M i)

V3,1 V3,3 V3,4V3,2λ(3, B) λ(3, E)

V2,1 V2,2 V2,4V2,3λ(2, B) λ(2, E)

V1,1 V1,2 V1,3 V1,4λ(1, B) λ(1, E)

λ(4, B) V4,1 V4,2 V4,3 V4,4 λ(4, E)

B

pr
ot

ei
n

po
si

tio
n

motif position

Figure 3. Organisation of the Plan7 Viterbi re-
currence as a dynamic programming matrix.
(A) values grouped into one matrix cell Vi,j;
(B) data dependencies between cells.

occasionally be separated by non-conserved “background”
residues.

In this work, the variations observed across the in-
stances of a motif, are modeled by HMMs structured ac-
cording to a simplified version of the “Plan7” schema, as
defined by the HMMER motif-finding software [5]. Fig-
ure 2 shows the structure of one such HMM. A motif model
of length m (m = 4 in the figure) contains m “match
states” M1 . . . Mm, where Mi emits the residue for the mo-
tif’s ith conserved position. A parallel sequence of non-
emitting “deletion states” states D2 . . . Dm−1 allows any
substring of motif positions to be skipped, while another
parallel set of “insertion states” I1 . . . Im−1 can emit back-
ground residues between any two motif positions. The non-
emitting states B and E act as the model’s initial and final
states; each is connected directly to every other match state,
allowing emission of partial motifs starting or ending at any
position.

Any path through a motif’s HMM emits a sequence of
residues comprising one instance. To distinguish between
sequences that are more or less likely to be observed, an
emitted sequence is associated with a score, derived as fol-
lows. Each pair of HMM states (qi, qj) connected by a tran-
sition is associated with a transition score τ(qj | qi), while
each emitting state qi is associated with a set of emission
scores ε(a | qi) for each possible residue a2. Suppose a se-
quence s is emitted along a path of states q0 . . . qn (where
q0 = B and qn = E), such that residue s[j] is emitted by
state qij

. Then the total score of this sequence given this
path is

n∑
i=2

τ(qi | qi−1) +
∑

j

ε(s[j] | qij
).

Higher-scoring paths correspond to motif instances that are
more likely to appear in real proteins.

2A probabilistic interpretation of these scores is given in [4]; in this
work, we treat them as given for any motif model.

3.2. Recognising Motifs with the Viterbi
Algorithm

To determine whether a protein sequence s contains
a motif that matches an HMM M, a motif-finding tool
finds the highest-scoring path through M that emits s. If
the score L(s,M) of this path exceeds some user-defined
threshold ρ, then M is said to hit s, and the path indicates
which residue of the protein (if any) correspond to each po-
sition of the motif.

The Viterbi algorithm [13] calculates L(s,M) by the
following dynamic programming recurrence. Let λ(j, q) be
the highest score for any path through M from initial state
q0 = B to a later state q that emits the string of residues
s[1..j]. Then for any j and q,

λ(j, q) =
{

Pe(j, q) if q is emitting
Pn(j, q) otherwise. (1)

where

Pe(j, q) = max
q′∈M

[λ(j − 1, q′) + τ(q | q′) + ε(s[j] | q)]

Pn(j, q) = max
q′∈M

[λ(j, q′) + τ(q | q′)] .

Any path through M must end at the unique end state E
of the model after emitting all of s; hence, L(s,M) =
λ(|s|, E) is the score of the best path through M emitting
s.

The model schema of Figure 2 exhibits two important
simplifications compared to the full Plan7 schema used by
HMMER. Firstly, the full Plan7 schema contains a feedback
loop from state E to state B. This loop enables the Viterbi
algorithm to recognise multiple copies of a motif in a single
protein, yielding a total score which is effectively the sum
of scores for all motif copies. In contrast, our simplified
schema lacks this feedback loop; hence, the Viterbi algo-
rithm with our models will match only the single best copy
of the motif in a protein.

While full Plan7 models are better able to detect weak
motifs that appear in multiple copies per protein, the data
dependencies induced by the feedback loop greatly impede
parallelisation of the Viterbi algorithm. We previously ex-
plored this issue in [10] and showed that the sensitivity of
full Plan7 models can be matched by our simplified models,
at a manageable increase in computational cost, by reducing
the hit threshold ρ for detecting a motif in a protein.

The second simplification of our schema versus full
Plan7 is that we do not explicitly model the background
sequences flanking an instance of the motif. In HMMER,
these flanking sequences contribute an amount proportional
to their lengths to the total Viterbi score of a protein s
against a model M, independent of their amino acid con-
tent. While we do not currently include this contribution in

our scoring, it could easily be computed given the starting
and ending points of a motif instance and the total protein
length.

3.3. High-Performance Viterbi for Motifs

The special structure of motif HMMs suggests a fruitful
approach to accelerating the Viterbi algorithm. We organ-
ise the values to be computed into a dynamic programming
matrix V . Rows of the matrix correspond to amino acid po-
sitions i in a protein, while columns correspond to positions
j in a motif. Figure 3 illustrates this matrix for the example
model of Figure 2.

For a motif of length m and a sequence s of length �, the
matrix V contains m� cells. As shown in Figure 3A, each
cell Vi,j holds the values λ(i,Mj), λ(i, Ij) and λ(i,Dj)
computed by the Viterbi algorithm. The structure of the
Plan7 model and Equation (1) together imply that the val-
ues in Vi,j can be computed given the value λ(i−1, B) and
the three cells Vi−1,j−1, Vi,j−1, and Vi−1,j . The global de-
pendencies can be converted to a local dependency from the
left cell. These four dependencies are shown for cell V3,3 in
Figure 3B by solid arrows flowing into it.

For local alignment, the values λ(i, B) of a single mo-
tif instance to a protein are zero for all i. The remaining
data dependencies are all downwards and to the right. This
highly localised dependency structure, analogous to that of
the well-known Smith-Waterman algorithm [14] for pair-
wise sequence alignment, permits simultaneous computa-
tion of an entire band of cells at once, as follows. The first
step of computation computes V1,1; the second computes
both V1,2 and V2,1; the third computes all of V1,3, V2,2, and
V3,1, and so forth, with the dth step computing Vi,d−i+1 for
all rows i. The band of cells computed in each step is called
an anti-diagonal of the matrix V .

In addition to the local dependencies described above,
the output of each cell Vi,j also contributes to the score
λ(i, E), as shown by the dashed line in Figure 3B. This in-
cremental contribution can be computed as part of the work
for a cell and so adds only constant overhead per cell. The
best score obtained by local alignment is maxi λ(i, E).

We emphasise that the HMMER accelerator described in
this paper computes the score of a protein sequence against
a model. It does not however retrieve the most likely motif.
That is, the HMMER accelerator acts as a filter to the input
stream. The predicted motif can be retrieved by maintain-
ing path information during the Viterbi algorithm, run on
an attached general-purpose processor (typically 1% of the
execution time). In practice, only a small fraction of input
sequences are passed to this stage, and so its execution time
is dominated by that of the FPGA hardware.

Model

P
ro

te
in

S
eq

ue
nc

e

Systolic Array

Protein
Sequence

Score

Projection

Figure 4. Projection of the Plan7 Viterbi ma-
trix to a systolic PE array. The array is shown
computing cell values in the anti-diagonal.

4. FPGAs as a Platform for High Throughput
Sequence Analysis

Field Programmable Gate Arrays (FPGAs) are special-
purpose hardware programmable devices used to acceler-
ate computationally bound applications. An FPGA con-
sists of programmable logic blocks called lookup tables
(LUTs) with interconnects between them. LUTs can be pro-
grammed to function as basic logic gates, thereby realis-
ing digital circuits. A number of LUTs (typically two) are
grouped into a slice and associated with a clocked flip-flop.
Limited on-chip memory is also available as block RAMs.
FPGA designs are clocked at a much lower frequency than
ASICs, but their advantage is in the parallel computing and
memory resources available. Such designs typically exploit
fine-grained parallelism in algorithms to realise several or-
ders of magnitude speed-up over general-purpose proces-
sors.

The basic design of an FPGA accelerator for the Viterbi
algorithm is similar to one for Smith-Waterman. However,
the more resource intensive computation in each cell of the
matrix, coupled with the large number of parameters in a
motif model make it a challenging task to implement ef-
ficiently. FPGA devices have only recently become large
enough to accommodate such designs.

5. System Architecture

In the following sections we describe a hardware archi-
tecture to implement the Viterbi computation of the HM-
MER model. We describe a processing element, the basic
computational block of the Viterbi algorithm. We then de-
tail the data flow design of the profile parameters. Finally,
we describe the overall HMMER engine.

PEj

V1(i, j)

V2(i, j)

V1(i+1, j)

#2#1

Figure 5. Coarse-grained scheduling in a
pipelined, two-stage PE where the computa-
tion of cells is interleaved between two pro-
tein sequences. Our implementation uses a
four-stage PE.

5.1. Processing Elements

The local data dependencies of the single motif-
matching model in the Viterbi algorithm naturally lead to
a systolic array architecture. Each cell Vi,j of the Viterbi
matrix is mapped to a processing element PEj , where PEj

computes cells for the jth position of the model. A linear
array of such PEs computes the score of cells in an entire
anti-diagonal.

Figure 4 shows the projection of the Viterbi matrix to the
PE array. The protein sequence flows left to right through
the PE array, one residue per time step. The data depen-
dency structure of the Viterbi algorithm restricts PE com-
munication to its two adjacent neighbours. Each processing
element computes the score of the M, I, and D states at a
particular position in the model as described in the previous
section. In addition, the contribution of each cell to the sin-
gle E state at the end of the model is also computed, and the
best value in the row so far is forwarded to the next PE. As
the computation proceeds vertically down in anti-diagonal
sweeps, the score of the E state for each row is emitted
from the final PE. The score of the Viterbi computation is
the maximum of these scores emitted for each row.

A cell’s computation is implemented using parallel
signed adders and maximisers. A HMMER PE uses sub-
stantial hardware resources for transition and emission pa-
rameters at the PE’s model position which must be made
available synchronously with the addition operations. Pre-
vious work [10] has determined that signed 16-bit values are
sufficient to reduce underflow/overflow errors over a wide
range of input sequences.

The addition of two signed n-bit values produces, in gen-
eral, an (n + 1)-bit result. Consequently, the result of each
operation has to be saturated to the maximum or minimum
representable value on an overflow or underflow, respec-
tively. The latter is especially common in the HMMER
computation since “impossible” state transitions or emis-
sions are modeled with a transition score of negative in-
finity, i.e. the lowest possible score value. We increase a

Table 1. Variation of throughput with
pipelined stages in a PE.

Stages LUTs Est. Freq.
(MHz)

1 402 70
4 437 180

PE’s datapath internally to 18 bits by sign extension. Two
extra bits are sufficient to hold the result of two addition op-
erations without an overflow or underflow. Maximum and
minimum operators are then applied at the end of the final
addition operation.

Coarse-grained Parallelism in PEs: The PE computa-
tion as outlined emits the set of state scores for a cell at each
time step, i.e. the computation for a cell is performed in a
single clock cycle. A HMMER PE, however, has a large
logic propagation delay due to its computational complex-
ity and the relatively large datawidth. An FPGA HMMER
accelerator using an array of such PEs would be limited in
its clock speed, and hence in its overall throughput, by this
logic path.

The throughput of FPGA designs can be increased by
pipelining the combinational logic with the longest prop-
agation delay. This increased throughput comes at the ex-
pense of increased latency. FPGAs are specifically designed
with pipelining in mind; every logic slice includes a flip-flop
for this purpose. Pipelining results in little to no increase in
the area of the PE, since the flip-flops would otherwise re-
main unused.

Pipelining makes effective use of hardware resources by
time-multiplexing them with other cell computations. The
challenge is to schedule cells of the Viterbi matrix to a PE
at each clock period. For example, for an array of PEs each
with a latency of two clock cycles (i.e. a two-stage PE), as-
sume that anti-diagonal di is scheduled to the first stage at
time tk. At time tk+1, computation for cells in anti-diagonal
di proceeds to the second stage of the PE. At the same time
step, the anti-diagonal di+1 cannot be scheduled to the first
stage, since it depends on the as-yet-unavailable cells in di.
The data dependencies of the Viterbi algorithm make it im-
possible to time-multiplex multiple cells of the matrix in a
single PE.

We introduce a novel approach to exploit coarse-grained
parallelism in the PEs. The pipelined array of PEs in our de-
sign simultaneously computes the Viterbi matrix cell values
of multiple protein sequences against the same motif model.
From our previous illustration, anti-diagonal dj

i is sched-
uled at time tk, and anti-diagonal dj+1

i at time tk+1. Here,
j is the protein sequence being compared, with there being
as many sequences as is the latency of the PE. This approach

Pass i = 1 Pass i = 2

Model (1..n)

P
ro

te
in

S
eq

ue
nc

e

Model (n+1.. 2n)

Figure 6. Supporting large models by a multi-
pass vertical sweep of the Viterbi matrix

is successful due to the lack of dependencies between two
independent protein sequences. The residue stream can be
modified to contain multiple protein sequences interleaved
with each other, to support coarse-grained parallelism. No
further hardware support is required to enable this design.

Figure 5 shows the interleaved computation of two
Viterbi matrices V 1 and V 2 in a two-stage PE. Cells V 1

i,j

and V 2
i,j from the two protein sequences can be scheduled

one after the other due to their complete independence. Ta-
ble 1 shows the results of pipelining the PE on the through-
put of our design. A four-stage pipeline increases the LUT
count by just 9% while increasing the expected clock fre-
quency by more than 2.5×. Clearly, the hardware resource
increase is negligible compared to the gain in throughput
provided by a pipelined PE design.

5.2. Model Parameters

The main feature distinguishing profile-HMM search
from the simpler Smith-Waterman algorithm is the data re-
quirements of the motif model. Each PE must have con-
current access to nine transition scores and fourty emission
scores for its position in the motif model. To support an effi-
cient design, these parameters must be stored using on-chip
resources.

We use nine 16-bit registers for the transition parameters
and a dual-ported block RAM to store the emission tables of
the match and insert states for every position in the model.
The block RAM is organised as 32-bit words, with each
word containing the emission scores of the M and I states.
A lookup is performed every clock cycle using the residue
that is streamed into a PE. Careful scheduling is necessary
to ensure that the scores are available at the appropriate
time-point in the PE. Note that each dual-ported block RAM
may be addressed independently from two sources and so
can be shared by two adjacent PEs. A single such model
position block (MPB) is associated with each PE, with the
total design using half as many block RAMs as the number
of PEs.

Another challenging task is the loading of parameters

during the setup of a search. A motif model is collected
by a top-level controller and must be distributed to the var-
ious MPBs. Having point-to-point links from the controller
to every parameter requires a large amount of routing re-
sources on the FPGA, which results in an inefficient imple-
mentation. Our design uses a simple bus architecture. The
controller acts as the master and initiates parameter trans-
fers to the MPBs. A 32-bit data bus is capable of transfer-
ring up to two parameter values, with a 5-bit address bus
denoting the transition score being written, or the residue of
the emission score. A parameter select line is used to distin-
guish between a transition and emission parameter transfer.
Finally, an MPB select bus indicates the model position be-
ing written. A model of length m requires 25m clock cycles
to be loaded into the MPBs before a search task can be ex-
ecuted. However, the load time is easily amortised over the
entire search.

5.2.1. Supporting larger models

The average HMM model in the Pfam-A database is of
length m = 170, with many models larger than 1000 po-
sitions. The model size on the HMMER accelerator is lim-
ited by the number of PEs, n, that can be implemented on
an FPGA using available resources. On currently available
FPGAs, this is typically too small to support all models in
the Pfam-A database. Our solution is to divide the Viterbi
matrix into vertical bands. Viterbi decoding is done in mul-
tiple passes 1 ≤ i ≤ �m/n� over the protein sequence,
each pass decoding a fixed-size fraction of the model. To
support multiple passes, the HMM models are padded to be
of size equal to a multiple of n, with the query sequence be-
ing streamed on each pass. Figure 6 illustrates this process.

Two important design enhancements are required to sup-
port multiple passes: cell store-and-forward logic, and a
quick model position turn-around time. Due to the cell de-
pendency structure, cells at the first model position in pass i
depend on cells at the final model position of pass i− 1. To
satisfy this dependency, we implement a store-and-forward
logic block designed to store the cell value (scores of states
M, I,D, and E) of the final PE for each protein residue dur-
ing pass i− 1. The forward logic initialises the first PE dur-
ing pass i using this information. Two on-chip dual-ported
block RAMs are sufficient to implement store-and-forward
logic, supporting a sequence length of up to 1024.

Secondly, the model parameters for the ith pass must
be loaded as quickly as possible to reduce the turn-around
time. We enhance the MPB by adding on-chip block RAMs
for storage of transition scores. In addition to storing the
emission scores at multiple model positions in each emis-
sion score table, we store transition parameters for multiple
positions in a second dual-ported block RAM. When initial-
ising the next pass, each MPB independently reads the tran-

HMMER ENGINE

Model

8 PE Systolic array

Param
bus

Pass init

Score

Protein
sequence

Start

Figure 7. Organisation of the HMMER engine
with n = 8 PEs. PEs are indicated by the cir-
cular blocks, MPBs by the blue boxes, and
the store-and-forward logic by the orange
box.

sition parameters for the next position, two per clock cycle.
The design now uses n block RAMS, but the turn-around
time is just 5 clock cycles.

The address for each block RAM is a triple of the form
(p, i, a) where p ∈ 0, 1 indicates one of the two shared PEs,
i is the pass number (corresponding to the model position)
and a is the the transition score being read, or the residue
whose emission score is being retrieved. Our implementa-
tion supports up to i = 8 model positions per MPB.

5.2.2. Protein sequence streaming

The design of the HMMER engine enables comparison of
a single model against a database of protein sequences. A
model is first loaded in to the FPGA, after which multiple
protein sequences are streamed through. Our hardware de-
fines a few special symbols to enable streaming. One of
these is the reset residue which terminates every protein se-
quence in the stream. As it propagates through the array, it
initialises each PE, with the final one forwarding the E state
score of the previous protein sequence comparison. The use
of the reset residue has an important consequence for pro-
tein sequence interleaving. Rather than considering coarse-
grained parallelism as the simultaneous comparison of mul-
tiple protein sequences, it is better understood as a com-
parison of multiple streams against the same model. Each
stream in turn is an independent concatentation of protein
sequences, separated by reset residues. A simple offline
pre-processing step creates the streams from a set of pro-
tein sequences, with necessary padding to ensure that the
streams have equal length.

5.3. The HMMER engine

Figure 7 shows the block diagram of our FPGA based
HMMER engine with n = 8 PEs. The systolic array com-
putes the scores of the three states in each cell. Inter-PE
communication is restricted to its immediate two neigh-

bours. An equal number of MPBs are also arranged in a lin-
ear array, with the residue stream being forwarded through
them. Each MPB communicates with its associated PE to
make available the various model parameters. Model load-
ing is done via the shared parameter bus, controlled by an
external bus master.

The store-and-forward logic block receives cell values
from the final PE and initialises the first PE. This block also
initiates a search task and reports the score of the best path
through a model to the end user.

5.4. Implementation state

The HMMER engine is work in progress. At the time of
publication, the entire design except the store-and-forward
logic block has been coded in VHDL and simulated. While
the current implementation does not yet support multiple
passes, the MPB does support loading of multiple models
as described for the multi-pass functionality.

The design has been built post-place-and-route on a Xil-
inx Virtex-II 6000 FPGA with 33,792 slices and 144 18-
Kbit on-chip block RAM memory. The device supports a
68 PE HMMER engine running at 180 MHz, processing
4 protein residue streams in parallel. The implementation
uses 83% of the logic resources, and 72 block RAMs – 68
of these are used in the MPBs, and 4 for high-level buffer-
ing. The availability of logic resources is the critical factor
in the number of PEs supported.

Our current implementation supports a model of up to 68
positions in a single pass, and models of up to 544 positions
with a turn-around time of 5 clock cycles. Supporting larger
models require a more expensive reloading of the MPBs.
These numbers are however expected to scale linearly on
the latest generation of FPGAs.

6. Performance Analysis

The throughput of the HMMER systolic array is mea-
sured by the number of cell updates per second (CUPS). We
assume that the set of input protein sequences are packed
into multiple streams, and a residue is available each clock
cycle. We must account for the setup time spent loading
new models, and the model turn-around time when process-
ing large models. Throughput is calculated as:

Thw =
|S|

∑k
i=1 mi∑k

i=1

[
|S|�mi

n � + 25n�mi

n � + 5�mi

n �
] × f

The numerator is the total number of cells to be evaluated,
and is the product of the total size of the protein sequences
S, and the sum of all k models, each of size mi. The denom-
inator aggregates the number of clock cycles required by the
hardware to compute these cells using n PEs. The first term

calculates the number of clock cycles actually required by
the hardware to process the models. The final two terms
are the model load and turn-around times respectively. The
HMMER engine runs at f = 180 MHz. Using a compar-
ison of a sample of protein sequences from the Swiss-Prot
database and the PFAM models, we estimate throughput to
be 10, 647 MCUPS.

The throughput of the software system was empirically
measured. Note that we did not use stock HMMER, but
an optimised version presented in [16] which is 2× faster
than the original. On a single 2.8 GHz Pentium 4 worksta-
tion with 1 GB of RAM, the throughput of the software was
55 MCUPS. Assuming that the HMMER accelerator is not
software bound, this yields a total speedup of over 190×.

Since our HMMER accelerator utilises a combination of
a traditional CPU and an FPGA, the software must be able
to process results of the hardware fast enough so as not to be
a bottleneck. The load on the CPU depends on the cut-off
threshold e-value used in the FPGA. The software process-
ing times for various cut-off threshold e-values were previ-
ously presented in Table 2 of [10]. If the hardware takes
less time than the path generation in software, then the soft-
ware is a bottleneck. For an e-value of 0.001 or lower, the
software is not a bottleneck and the full 190× speedup can
be realised with one CPU. Otherwise, simply doubling or
quadrupling the number of processing cores will allow the
accelerator to sustain maximum throughput.

Another possible throughput limitation is the I/O band-
width available to feed the FPGA. To run at maximum
throughput, the HMMER accelerator must be able to ingest
data at 120 MB/s which is well below our system limit of
600 MB/s.

7. Conclusion

The rapid growth of computational biology data has
greatly increased the need to accelerate profile HMM
search. In this work we have described a hardware design
to accelerate the Viterbi algorithm, using a systolic array of
processing elements. We have exploited coarse-grained par-
allelism by pipelining our PEs to perform multiple searches
in parallel, a technique easily generalised to hardware ac-
celerators for other algorithms such as Smith-Waterman.
The model parameters present an additional challenge for
the computation, which we deal with effectively by storing
them on-chip. Our implementation is expected to run two
orders of magnitude faster than a general-purpose worksta-
tion. The architecture is also scalable to future FPGA tech-
nologies, allowing support for a greater number of PEs.

In the immediate future we intend to test the design on
our available FPGA card and integrate it with the HM-
MER frontend. We also intend to support the original Plan7
model in hardware, to detect multiple copies of a motif in

a protein. This will alleviate the software bottleneck de-
scribed in the previous section.

8. Acknowledgments

The authors would like to thank Rahul Maddimsetty,
Brandon Harris, and Eric Tyson for useful discussions dur-
ing the development.

References

[1] Growth of GenBank. http://www.ncbi.nlm.nih.
gov/Genbank/genbankstats.html.

[2] Timelogic DeCypherHMM solution, 2006.
[3] A. Bateman et al. The Pfam protein families database. Nu-

cleic Acids Research, 32:D138–141, 2004.
[4] R. Durbin et al. Biological Sequence Analysis. Cambridge

University Press, New York, 1998.
[5] S. Eddy. HMMER: Sequence analysis using profile hidden

Markov models, 2004. http://hmmer.janelia.org.
[6] D. R. Horn et al. ClawHMMER: A streaming HMMer-

search implementation. In Proc. of ACM/IEEE conference
on Supercomputing, 2005.

[7] P. Krishnamurthy et al. Biosequence similarity search on
the Mercury system. To appear in Journal on VLSI Signal
Processing, 2007.

[8] A. Krogh et al. Hidden Markov models in computational bi-
ology: Applications to protein modeling. Journal of Molec-
ular Biology, 235:1501–1531, 1994.

[9] E. Lindahl. Altivec HMMER, version 2. http:
//lindahl.sbc.su.se/software/altivec/
altivec-hmmer-version-2.html, 2005.

[10] R. Maddimsetty et al. Accelerator design for protein se-
quence HMM search. In Proc. of ICS06, June 2006.

[11] T. Oliver et al. Accelerating the Viterbi algorithm for
profile Hidden Markov Models using reconfigurable hard-
ware. Lecture Notes in Computer Science, Springer-Verlag,
3991:522–529, 2006.

[12] E. Portugaly and M. Ninio. HMMERHEAD accelerating
HMM searches on large databases. In Poster Abstracts from
RECOMB, pages 250–251, 2004.

[13] L. R. Rabiner. A tutorial on hidden Markov models and se-
lected applications in speech recognition. Proc. of the IEEE,
77:257–86, 1989.

[14] T. F. Smith and M. S. Waterman. Identification of com-
mon molecular subsequences. Journal of Molecular Biol-
ogy, 147:195–197, 1981.

[15] Y. Sun and J. Buhler. Designing patterns for profile HMM
search. In Proc. of ECCB06.

[16] B. Wun et al. Exploiting coarse-grained parallelism to ac-
celerate protein motif finding with a network processor. In
Proc. 14th Int’l Conf. on PACT, pages 173–184, 2005.

[17] Y. Yamaguchi et al. High speed homology search with FP-
GAs. In Pacific Symposium on Biocomputing, pages 271–
282, 2002.

