
Parallel Out-of-core Algorithm for Genome-Scale Enumeration of
Metabolic Systemic Pathways*

Nagiza F. Samatova
�

, Al Geist
�

, George Ostrouchov
�

, and Anatoli Melechko§
�

Computer Science and Mathematics Division, Oak Ridge National Laboratory* *,
P.O. Box 2008, Oak Ridge, TN 37831, { samatovan, gst, ost} @ornl.gov

§ Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN 37996

Abstract

Systemic pathways-oriented approaches to analysis of
metabolic networks are effective for small networks but
are computationally infeasible for genome scale
networks. Current computational approaches to this
analysis are based on the mathematical principles of
convex analysis. The enumeration of a complete set of
“ systemically independent” metabolic pathways is at the
core of these approaches and it is computationally the
most demanding component. An efficient parallel out-
of-core algorithm for generating a complete set of
systemically independent metabolic pathways, termed
“ extreme pathways” , is presented. These pathways
represent the edges of a high-dimensional convex cone
and can be used to derive any admissible steady-state
flux distribution (or phenotype) for a specified metabolic
genotype. The algorithm can be used for computing
“ elementary flux modes” that are different but closely
related to extreme pathways. The algorithm combines a
bitmap data representation, search space reduction, and
out-of-core implementation to improve CPU-time and
memory requirements by several orders of magnitude.
Augmented with a parallel implementation, it provides
extremely scalable performance. No previous parallel
and/or out-of-core algorithms for the enumeration of
systemically defined metabolic pathways are known.

1. Introduction

The elucidation of genome-scale metabolic
networks [5, 9, 13] necessitates the development of more
efficient and effective methods for the analysis of their
integrated properties and the comparison of these
properties amongst different organisms. Systemic
pathways oriented approaches [2, 7, 14-19] centered

 * This work has been supported by the MICS Division of the US
Department of Energy
** Oak Ridge National Laboratory is managed by UT-Battelle for the
LLC US DOE under Contract No. DE-AC05-00OR22725

around properties of metabolic networks at steady state
imposed by their stoichiometric structure have been
successfully applied to various metabolic systems in
defining their limitations and production capabilities [17,
19]. Various algorithms and mathematical tools have
been developed [10, 14, 19]. However, while efficient in
analyzing reactions systems of small size, the
computational complexity of these algorithms limits
their practical applicability to organism-scale metabolic
networks [14, 17], especially in the context of
comparative analysis of metabolic networks among
different organisms.

In recent years, two related systemic pathways
oriented approaches are advocated for defining and
comprehensively describing all metabolic routes
(phenotypes) that are both stoichiometrically and
thermodynamically feasible for a given metabolic
genotype. Both of them share a common underlying
mathematical framework capitalized on the principles of
convex analysis. These principles include closely related
concepts of “elementary flux modes” [10, 19] and
convex basis [8], or “extreme pathways” [14, 17] (for a
recent review, see [18]).

Both elementary modes and extreme pathways are
systemically independent flux vectors that lie in the null
space of the stoichiometric matrix. When non-negativity
constraints are imposed on flux vectors, this null space
takes the shape of a convex polyhedral cone, called
steady-state flux cone. An extreme pathway represents
an edge of this steady-state flux cone whereas an
elementary flux mode is a steady-state flux vector that
cannot be decomposed into two flux vectors that would
have additional zero components. Any vector within the
cone can be represented as a nonnegative linear
combination of extreme pathways (elementary modes).
The set of elementary modes (extreme pathways) is
unique. The extreme pathways (elementary modes) are
systemically independent because none of them can be
written as a nonnegative linear combination of the
others. For a more detailed explanation of their
similarities and dissimilarities refer to [10, 14].

An algorithm for constructing a convex basis (or a
complete set of extreme pathways) has been developed

[8; 14; 20]. An algorithm for computing both convex
basis and elementary modes has been implemented as
part of METATOOL [10]. For simplicity’s sake, we will
focus on the common procedure of enumerating these
pathways that is the core of both algorithms. It is
computationally the most expensive. Without loss of
generality, our discussion will be presented in the
context of extreme pathways in what follows.

For small networks, generating the set of extreme
pathways is simple. However, for genome-scale
networks, the calculation of extreme pathways poses a
significant computational challenge. The computational
time as well as the number of extreme pathways grows
exponentially as the size of the metabolic network grows
linearly. The problem of enumerating the extreme
pathways can be reduced in polynomial time to the
problem of enumerating all vertices of an n-dimensional
convex polyhedron that is known to belong to the class
of NP problems [3]. Currently, this bottleneck of
computational intractability has been addressed by either
considering the reduced reaction network (with the
enzyme subsets taken as combined reactions, or
monofunctional “super-enzymes” [6, 10, 12] or
decomposing the network into computationally feasible
subsystems to generate pathways in each subsystem that
may be pieced together [17].

In this paper, we present a parallel out-of-core
algorithm for the enumeration of metabolic systemic
pathways. The algorithm combines a bitmap data
representation, search space reduction, and out-of-core
implementation to improve CPU-time and memory
requirements by several orders of magnitude.
Augmented with a parallel implementation, it results in
extremely scalable performance. No previous parallel
and/or out-of-core algorithms for the enumeration of
systemically defined metabolic pathways are known.

2. Metabolic Extreme Pathways within the

Context of Convex Analysis

This section briefly describes the underlying
mathematical theory for the systemic definition of
metabolic extreme pathways presented by [14].

To study structural and functional properties of
metabolic networks, the metabolic system is often placed
into a steady-state:

0=⋅ vS (1)
where S is a nm× stoichiometric matrix of m
metabolites (rows) and n reactions (columns) and v is a
vector of reaction rates, called the flux vector. The
stoichiometric coefficient ijS corresponds to the number

of moles of metabolite i produced (or consumed) in
reaction j. The complete set of flux vectors satisfying the
homogeneous system of linear equations (1) lies in the

null space of S [4] spanned by basis vectors that can be
calculated by standard linear algebra methods, e.g. the
Gaussian elimination algorithm [4]. Note that the basis
vectors are not unique but their number equals the
dimensionality of the null space, which is)(Srankn − .

In many cases, only biochemically meaningful null space
vectors are of interest.

Thus, solutions to a system of Eq. (1) have
additional constraints imposed by principles of
thermodynamics and by systemic (input/output)
characteristics of the network. In particular, all reversible
internal reactions are split into forward and reverse
fluxes that are constrained to be non-negative. Exchange
fluxes (with respect to hypothetical boundaries of the
system under study) or pseudoreactions [1] are left
unconstrained or constrained to some lower and upper
limits depending on the ability of corresponding
metabolites to enter or exit the system. (For more details
see [14-15]. The constraints on internal (v) and exchange
(b) fluxes can be expressed mathematically as:

ii ∀≥ ,0v and jjjj ∀≤≤ βα b (2)

If exchange fluxes are unconstrained, then Eq. (1)
and (2) are reduced to a system of homogeneous linear
equations and inequalities:

0 ,0 ≥=⋅ vvS (3)
From convex analysis [11], all solutions to system (3) of
equations and inequalities form a convex polyhedral
cone, K. Every point within K can be represented by a
non-negative linear combination of the extreme rays ip :

} ,0 , | {
1

iwwR ii

k

i
i

n ∀≥=∈= �
=

pvvK (4)

where k denotes the number of extreme rays. In the
context of metabolic systems, these extreme rays are
called extreme pathways as each extreme ray
corresponds to a particular pathway in a reaction
network. The set of extreme pathways is conically or
systemically independent. This means that none of the
extreme pathways can be formed as a non-negative
linear combination of the other extreme pathways. Based
on Eq. (4) and systemic independence, this set of
extreme pathways is referred to as the conical basis of
the convex space (3). From a network function
perspective, this means that any attainable steady-state
flux vector (or phenotype) allowable by the constraints
placed on the metabolic system can be reached by
controlling (switching on/off) the activity levels of the
extreme pathways for a defined metabolic genotype.
Unlike a linear basis of the null space, the conical basis
is unique up to scalar multipliers. Moreover, the number
of extreme pathways is usually much greater than the
dimensionality of the cone.

 1: for each col=SelectColumn() {
 2: for each irow in Tcol {
 3: if (Scol[irow][col] == 0) Copy irow to Tcol+1
 4: else for each krow > irow {
 5: if (Scol[irow][col] * Scol[krow][col] < 0)
 6: for any jrow {
 7: if(wi·irow+wk·krow is independent

 on jrow in Icol) {
 8: Copy wi·irow+wk·krow into Tcol+1
 9: } // end-if
10: } // end-for-jrow
11: } // end-for-krow
12: } // end-for-irow
13: } // end-for-col

Figure 1. Pseudo-code of the serial in-core
EP algorithm.

3. The Extreme Pathways (EP) Algor ithm

This section presents the core of the serial version of
the algorithm for calculating the complete set of extreme
pathways for a reaction network [14]. The procedure is
based on the principles of finding extreme solutions to a
homogeneous system of equations and inequalities
developed in convex analysis [8] and further extended to
an inhomogeneous system [20].

Our description of EP algorithm mostly follows
[20]. The algorithm begins with the construction of an
initial tableau T(0) containing the transpose of an nm×
stoichiometric matrix S augmented on the left by an

nn× identity matrix I :

)(T(0) S IT = (5)
The consecutive tableaux T(1), T(2),…, T(m) are
constructed as follows. T(j+1) is obtained from T(j) by a
series of steps including:
1) Selecting a pivot column of the right-hand side of
T(j) (originating from the transposed stoichiometry
matrix). This is the column that will be zeroed out
during the jth iteration. The choice of a pivot column may
affect the performance of the algorithm. However, a
selection strategy based on sparse matrix computation
ideas is beyond the scope of this paper. For simplicity,
the)1(++ jn th column for the jth iteration is chosen.

2) Copying all rows containing a zero in the pivot
column to the next tableau, T(j+1).
3) Taking all possible positive linear combinations of
pairs of rows with an opposite sign pivot column
element so that the combination produces a zero in the
pivot column. This is somewhat like Gaussian
elimination restricted to positive linear combinations.

For example, given a pair of rows,)(j
ir and)(j

kr , of

opposite sign in the pivot column of T(j), the new row
)1(+jr is generated as:

)()(
1 ,

)()(
1 ,

)1(j
k

j
jni

j
i

j
jnk

j rrrrr ⋅+⋅= ++++
+ (6)

where)(
1 ,

j
jnk ++r and)(

1 ,
j

jni ++r are the)1(++ jn th elements

of the corresponding rows,)(j
kr and)(j

ir .

4) Transferring each row)1(+jr obtained in the
previous step to the next tableau, T(j+1), if the following
conical independence constraint is satisfied:

)()()()()()(j
l

j
k

j
i ZZZ rrr ⊄∩ for all kil ,≠ (7)

where the set)()(j
qZ r contains all the column indices, c,

for which the elements of row q of the left-hand side part
of T(j) (originating from the identity matrix) equal zero:

}0 ,:{)()(
 ,

)(=≤= j
cq

j
q nccZ rr (8)

Note that the number of rows may increase,
decrease, or remain the same with each iteration. The

number of rows in the final tableau, T(m), corresponds to
the number of extreme pathways. The left-hand side of
T(m) formed by the first n columns contains all the
extreme pathways for system (3). A pseudo-code for
this algorithm is given in Fig. 1.

Inspection of the pseudo-code in Fig. 1 shows that
there can be two parts in the optimization of the
performance of the EP algorithm: one in the outer for
loop (line 1) when the next pivot column is selected
(global optimization), and the other in the step of zeroing
out the selected pivot column (lines 2-12), when the
conical independence condition (7) is checked for each
pair of rows of opposite signs (local optimization). Our
experiments with different stoichiometric matrices show
that the overall computation time can change drastically
depending on the column order of the stoichiometric
matrix. Our future research will investigate heuristics for
permuting columns at each step. For the purposes of this
paper, we assume the columns are already permuted and
focus only on the local optimization. Since the
cumulative cost of checking for conical independence
(condition 7) is the most time consuming operation
(about 99% of the total execution time based on profiling
results obtained by a gprof UNIX utility), a speedup can
be achieved by minimizing the number of rows to be
checked per each combined pair of rows (lines 6-10) (see
“Search space reduction” section) as well as by
improving the efficiency of an individual check (line 7)
(see “Bitmap data representation” section). The next
section describes the details of the local optimization
part in the improvement of the EP algorithm’ s
performance as well as presents a parallel out-of-core
version of the locally optimized EP algorithm.

4. Parallel Out-of-core Computation Model

To improve the performance of the EP algorithm in
Fig. 1 we have developed a parallel out-of-core version
of this algorithm. Our strategy is to transform a large
problem into a set of small sub-problems and to perform
these sub-problems almost concurrently with reasonable
data transfers, latency, and synchronization so that the
cumulative computational cost is much less than the cost
of the aggregate problem. The key idea is based on:
1) The reduction of memory requirements via: a) using
a bitmap data representation scheme with a high data
compression rate; b) deploying an out-of-core strategy;
2) The reduction of computational time via: a)
performing efficient bitwise logical operations without
decompression overheads; b) minimizing search space to
check for conical independence by maintaining
descriptive statistics about data with cost effective
updates; c) storing all critical information in memory
thus minimizing I/O access; and d) maintaining almost
even load balance between processors;
3) The reduction of communication cost via: a) having
one-time synchronization per long-running iteration
followed by initialization of some minimal global
information; and b) partitioning the data to minimize
data transfer needs;

4.1. Bitmap data representation

The concepts of Row Feature and RF hash table are
at the core of our algorithm. Row Feature is a triple
summarizing the information about a row vector in the
left part of the tableau.
Definition 1. Given a row vector),...,,(21 nrrr=r , the

Row Feature (RF) vector of r is defined as a triple
))(),(),(()(rrrr LastFirstBRF = where

1))(rB is a non-negative integer number whose

binary (base 2) representation gives the non-zero
structure of r . More formally)(rB is defined as:

 }
, if r

, if r
)� (r

 and)� (rN: j{jB(r)

i

i
i

n

i
in

i

�
�
�

=
≠

=

⋅=∈= �
−

=
−

00

01

2
1

0 (9)

2))(rFirst is the index of the first non-zero

component of r defined as:
} allfor 0 and 0 :{)(jirrjFirst ij <=≠=r (10)

3))(rLast is the index of the last non-zero component

of r defined as:
} allfor 0 and 0 :{)(jirrjLast ij >=≠=r (11)

Theorem 1 (RF Additivity Theorem). Assume that
))(),(),(()(1111 rrrr LastFirstBRF = and =)(2rRF

))(),(),((222 rrr LastFirstB are the RF vectors of two

rows. Then the RF vector of the row that is formed by
combining the two rows as in Eq. (6), is:

)})(,)(max{)} ,(

,)(min{),(|)(()()(

212

12121

r rr

 rr rr r

LastLastFirst

FirstBBRFRF =+
 (12)

From the RF definition and the additivity theorem
we know, that the RF vectors need to be computed only
for the initial tableau, T(0). For the consecutive matrices
T(1), T(2),…, T(m), they are updated as rows are
combined. Thus, we do not need to store the entire
tableau, but only the RF vectors of its rows as summary.
This RF summary not only takes much less space
()(mnp + double precision numbers where p is the

current number of rows in the tableau vs. p3 integer
numbers) but it is much more efficient for checking the
conical independence condition (7) due to efficient
bitwise logical operations as shown below.
Definition 2. Given three row vectors 321 and , , rrr , their

characteristic function F is defined as a logical function:
)(&))(|)((!), ,(321321 rrrrrr BBBF = (13)

Theorem 2 (Conical Independence). For a pair of

rows,)(j
ir and)(j

kr , of the tableau T(j), the conical

independence constraint (7) holds if and only if the

characteristic function F of)(j
ir ,)(j

kr , and)(j
lr (see

(13)) is true for all kil , ≠ , i.e.:

kiltrueF

kilZZZ
j

l
j

k
j

i

j
l

j
k

j
i

, allfor),,(

 , allfor)()()(
)()()(

)()()(

≠≡

⇔≠⊄∩

rrr

rrr
 14)

4.2. Search Space Reduction

Definition 3. The RF hash table H of tableau T is
defined as:

})(and)(:{]][[lastLastfirstFirstilastfirstH ii === rr
(15)

Thus, the hash table H defines a partition of the rows of
T such that two rows are in the same partition if their RF
vectors have the same First() and Last() values. From
such a partition of tableau T it follows that for any pair
of rows, it is sufficient to check the conical
independence constraint (7) only for the subset of rows
defined by the First() and Last() values of their
combination (6). This is summarized by theorem 3.
Theorem 3 (Reduced Conical Independence). For a

pair of rows,)(j
ir and)(j

kr , of T(j), the conical

independence constraint (7) holds if and only if the

characteristic function F of)(j
ir ,)(j

kr , and)(j
lr is true

for ∀]][[qpHl ∈ ,)(1+≥ jFirstp r and)(1+≤ jLastq r .

4.3. Out-of-core Computation Model

The exponential (for the entire program run) and
quadratic (for a single iteration) space complexity of the
EP algorithm (“Complexity Analysis” section) results in
huge data structures that cannot fit into memory. This
necessitates “out-of-core” calculations where data are
stored on disk and brought into memory.

Our out-of-core programming model is based on
several key aspects. Due to space limitation, we limit
ourselves here to an enumeration of the issues and
illustration of the simplified pseudo-code in Fig. 2:
• Storing small (linear vs. non-linear) size critical
(most frequently accessed) information in memory.
Frequent checks for conical independence drive our
choice of in-core data structure. Based on the reduced
conical independence theorem, it is sufficient for
performing these checks to have the in-core data
structure that consists of: 1) the RF array A(j) of RF
vectors corresponding to the rows of the left-hand side of
the current tableau, T(j); and 2) the RF hash table H(j) of
T(j). Thus, only the summary information about the
tableau is stored in memory; the current and next
tableaux, T(j) and T(j+1), respectively, are stored on disk.
• Providing a flexible trade off between
computational cost and I/O access cost. We do not need
to store (hence, read and write) the right-side (S(j)) of the
tableau, T(j) (originating from the S matrix). We can
always compute it provided the left-side (I (j)) is known:

T)()(SIS ⋅= jj (16)
• Deploying a data-parallel programming paradigm
in partitioning data into in-core and out-of-core that will
naturally lead to the parallelization of the algorithm.
Every iteration, the rows of tableau T(j) are partitioned
into three parts with each part stored in a separate file:
the file j.zero stores all the “zero” rows of T(j) that have a
zero in the pivot column and the file j.pos (j.neg) stores
all the “positive” (“negative”) rows with a positive
(negative) entry in the pivot column. The partition is
done by the previous (j-1)th iteration: before a new row
of T(j) is stored on disk, the value in the j th pivot column
is checked and the row is saved into the appropriate file.
Such partitioning of the matrix has several advantages:
1) It reduces the computational complexity of finding

the next pair of rows (lines 2-5 in Fig. 1) from)(2pO to

)(pO where p is the number of rows in T(j));

2) It allows for restructuring the code in such a way
that the decision on what should be in-core and out-core
becomes very deterministic. In particular, the positive
and negative rows are processed by two nested loops
(lines 5-12 in Fig.2) with the internal loop (of higher I/O
access rate) over the smaller file. The in-core vs. out-
core decision is made based on the priority determined

by the number of accesses: entries of A(j) and H(j) (line
2), entries of the internal loop (line 6), and entries of the
external loop (line 5) in decreasing order. The out-of-
core entries of the matrix are brought in-core in big
blocks of size determined by the available memory. This
strategy allows us to fully utilize the entire in-core
memory;
3) It easily expands to the parallel implementation of
the out-of-core code (see “Parallel Computation Model”
section);

4.4. Parallel Computation Model

In this paper, we will assume an abstract machine
model in which a number of processors are
interconnected via a high-speed network. Each processor
is connected to a local disk of its own that will be used
as out-of-core scratch space.

Given the partitioning of data described in the
previous section, the parallel algorithm becomes as
follows. For every j th iteration, each processor initializes
a global RF array and a global RF hash table of the
matrix T(j). Initialization is done by merging all local RF
arrays stored by other processors on their scratch disks.
This data is transferred by the requesting processor using
the rcp UNIX utility. Uniform file naming convention
and pid-hostname (pid is a process id) mapping allow for
such transfers without requesting it from the owner
process. Processor-specific offset number for row
indices obtained from the master processor is used to
maintain a global indexing scheme in both the RF array
and the RF hash table. Each processor is processing its
own local data files (j.mypid.zero, j.mypid.pos,
j.mypid.neg) as well as remote negative (or positive
depending on global size) files (j.pid.neg) from all the
other processors. On completion of the j th iteration, a

 1: for each col {
 2: Initialize Acol and Hcol
 3: Copy each row from col.zero into col+1.zero,

 col+1.pos or col+1.neg file;
 4: Update Acol+1
 5: for each irow in col.pos {
 6: for each krow in col.neg {
 7: if (wi·irow+wk·krow is independent

 on any jrow in Acol) {
 8: Copy wi·irow+wk·krow into

col+1.zero, col+1.pos or col+1.neg
 9: Update Acol+1

10: } // end-if
11: } // end-for-krow
12: } // end-for-irow
13: } // end-for-col

Figure 2. Pseudo-code of the serial out-of-
core EP algorithm.

processor synchronizes with the master on whether to
continue with the next iteration (if all processors finished
this iteration). It also sends the master some information
required for local-global mapping of row indices.

Maintaining reasonable load balance is another issue
in the design of our parallel code. We expanded our
computational model above by making each processor
operate in a concurrent server-client mode using multi-
threading. As a client, a processor executes the parallel
out-of-core code described above. As a server, it accepts
requests from other clients that have finished their
execution and are ready to help. A server-thread makes a
decision on which of the data files are unprocessed,
sends the requester the name of the file, and updates the
list of locally processed files. The requester (“helper”)
gets information on which processor needs help from the
master. Thus, the master is responsible for assigning
helpers, maintaining global mapping information, and
interprocess synchronization.

5. Per formance Evaluation

While experiments showed differences among the
serial and parallel out-of-core algorithms in CPU-time
and memory up to several orders of magnitude, a
theoretical analysis is difficult. One major source of
difficulty is predicting the resulting number of extreme
pathways that is largely determined by the structure of
the stoichiometric matrix. This number can vary from

one to � �)()(Sranknnconst −⋅ . Another difficulty is

introduced by the iterative structure of the algorithm; it
is not only the structure of the stoichiometric matrix, but
the structure of all intermediate tableaux generated in the
solution process determine the complexity. Considering
these difficulties we give complexity estimates for a
given iteration expressed in terms of its parameters as a
first step in this direction.

5.1. Complexity Analysis

To allow a theoretical comparison of the serial and

out-of-core EP algorithms we sketch some space and
time complexity analyses not for the entire program but
for a given iteration. Let p(j) and q(j) denote the number of
rows and positive-negative pairs in the tableau T(j),
respectively. Referring to the pseudo-codes of the serial
(Fig. 1) and out-core (Fig. 2) algorithms, the following
space and time complexities can be provided:
• Space complexity. Since both T(j) and T(j+1) are
stored in memory, the space complexity of the serial
code is:

)()()(

)()(
)1()(

)1()()(

doublesizeofmnpp

SpaceSpaceSpace
jj

jjj

⋅+⋅+

=+=
+

+TT
 (17)

Substituting the upper bound for p(j+1), this results in the
following worst case space cost:

))((2)()(npOSpace jj ⋅= (18)
The out-of-core (OOC) algorithm needs to store the RF
array, A(j), and RF hash table, H(j), in memory for its
efficient execution. This results in the following space
requirement for b-bit hardware:

)()3()(

)2()()(

)(2)(

)()()(

* intsizeofpnintsizeofp

b

n
SpaceSpaceSpace

jj

jjj
OOC

⋅++⋅

⋅+�
�

�
�
�

�=+= HA
 (19)

In a big-O notation, Eq. (19) is equivalent to:

)()()(npOSpace jj
OOC ⋅= (20)

Thus, from Eq. (18) and (20) the out-of-core algorithm
has linear space complexity compared to quadratic space
complexity of the serial code for a given iteration.
• Time complexity. Note that processing of positive-
negative rows takes most of the execution time.
Computational time for processing zero rows is linear
and will be ignored in what follows. The upper bound
for the time complexity can be estimated as follows:

))(()(23)(2)()()(npOnOpqTime jjjj ⋅=⋅⋅= (21)

5.2. Empir ical Evaluation Results

To demonstrate the performance of our algorithm,
we provide results for a real metabolic subsystem of E.
coli with 66 metabolites and 118 reactions, of which 24
are reversible. Our results on several other real metabolic
subsystems show similar behavior. Fig. 3 shows the
analysis of the number of pathways and the number of
positive-negative row pairs for the first 16 iterations. Fig.
3.a. and 3.b. are plots of the actual number of pathways,
p(j), and the ratio of these numbers in two consecutive
iterations, p(j)/ p(j-1) (giving the base of exponent if
number of pathways is expressed as a power sequence),

respectively. The number of pathways grows
exponentially with the number of iterations (giving a
fluctuating base of exponent with an average value of 2).
Almost quadratic dependence of the number of positive-
negative row pairs (Fig. 3.c) on the number of rows in
the tableau (Fig. 3.a) is observed. The ratio of the
maximum possible versus actual number of positive-
negative row pairs for a given number of rows is plotted
in Fig. 3.d. Fig. 4 shows comparative results for overall
memory utilization of the in-core (Fig. 1) and modified
out-of-core (Fig. 2) algorithms. The memory cost for the
in-core algorithm grows exponentially with the number
of iterations (giving a fluctuating base of exponent with
an average value of 2). The base of exponent average
value for the growth of memory cost in the out-of-core
algorithm is 1.3 (Fig. 4.a). A sustained memory
improvement of one to two orders of magnitude with
each iteration is observed (Fig. 4.b).

0.0E+00

2.0E+04

4.0E+04

6.0E+04

8.0E+04

1.0E+05

1.2E+05

1 3 5 7 9 11 13 15 17

Iteration

N
u

m
b

er
 o

f
p

at
h

w
ay

s

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Iteration

B
as

e
o

f
ex

p
o

n
en

t

0.0E+00

1.0E+08

2.0E+08

3.0E+08

4.0E+08

5.0E+08

6.0E+08

7.0E+08

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Iteration

N
o

. o
f

p
o

s.
-n

eg
. p

ai
rs

0

5

10

15

20

25

30

11 12 13 14 15 16 17

Iteration

R
at

io
 o

f
m

ax
. p

o
ss

ib
le

 t
o

 a
ct

u
al

n

o
. o

f
p

o
s.

-n
eg

. p
ai

rs

a) b)

c) d)

Figure 3. Comparative results on the number of pathways and number of positive-negative row
pairs for a metabolic subsystem of E. coli with 66 metabolites and 118 reactions. a) The number of
pathways at each iteration. b) The ratio of the actual number of pathways in two consecutive
iterations. c) The number of positive-negative row pairs at each iteration. d) The ratio of maximum
possible to actual number of positive-negative row pairs.

0

50000

100000

150000

200000

250000

300000

1 3 5 7 9 11 13 15

Iteration

M
em

o
ry

 (
K

B
) In-core Out-of-core

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Iteration

R
at

io
 o

f
in

-c
o

re
 t

o
 o

u
t-

o
f-

co
re

a) b)

Figure 4. Comparative results for overall memory utilization of the in-core and modified out-of-
core algorithms. a) Memory cost for in-core (diamonds) and out-of-core (squares) algorithms. b)
The ratio of in-core to out-of-core memory costs.

Table 1 shows comparative results for the overall
execution time cost for the in-core algorithm (Fig. 1) and
parallel out-of-core algorithm on one, two, four and eight
processors. The comparison of the in-core algorithm and
the parallel algorithm on a single processor demonstrates
the improvement of two to three orders of magnitude.
The parallel algorithm scales up almost linearly with the
number of processors. Finally, the total execution of the
parallel algorithm on 20 SUN SPARC workstations
completes within 3 hours whereas the in-core algorithm
does not finish within 4 days.

Parallel out-of-core I teration Incore
p=1 p=2 p=4 p=8

33 1 0 1 0 1
34 7 1 0 1 0
35 56 3 3 2 2
36 5784 115 64 35 20
37 90 4 2 2 2
38 151 4 4 3 3
39 N/F 926 483 260 145
40 N/F 1 1 1 1
41 N/F 1 1 1 1
42 N/F 171 90 52 33
43 N/F 20 11 9 8
44 N/F 1237 704 370 194
45 N/F 1 1 1 1
46 N/F 596 273 179 98

Table 1. Comparative results for overall
execution time cost for the in-core algorithm
and parallel out-of-core algorithm on one, two,
four, and eight processors (N/F – Not finished).

Acknowledgments

The authors wish to acknowledge Professor Bernhard O.
Palsson and his “Genetics Circuit Research Group” at
University of California, San Diego, for bringing our attention
to the importance of the extreme pathways enumeration
problem and the need for more efficient algorithms to compute
them. We also thank Dr. Ed D'Azevedo of the Oak Ridge
National Laboratory for fruitful discussions.

References

[1] Clarke, B.L. (1981). Complete set of steady states for the

general stoichiometric dynamical system. J. Chem. Phys.
75: 4970-4979.

[2] Fell, D.A. (1990). Substrate cycles: theoretical aspects of
their role in metabolism. Comm. Theor. Biol. 6: 1-14.

[3] Garey, M.R. & Johnson D.S. (1979). Computers and
intractability: a guide to the theory of NP-completeness, W.
H. Freeman.

[4] Golub, G.H. & Van Loan, C.F. (1996). Matrix
Computations, The Johns Hopkins University Press.

[5] Karp, P. D., Ouzounis, C., et al. (1996). HinCyc: A
Knowledge Base of the Complete Genome and Metabolic
Pathways of H. influenzae. Proceedings of the ISMB-96
Conference: 9.

[6] Kholodenko, B.N., Shuster, S., Rohwer, J.M., Cascante, M.,
& Westerhoff, H.V. (1995). Composite control of cell
function: Metabolic pathways behaving as single control
units. FEBS Lett. 368: 1-4.

[7] Mavrovonouniotis, M.L., Stephanopolous, G., &
Stephanopolous, G. (1990). Computer-aided synthesis of
beiochemical pathways. Biotechnol. Bioeng., 36: 1119-32.

[8] Nozicka, F., Guddat, J., Hollatz, H., & Bank, B. (1974).
Theorie der linearen parametrischen optimierung.
Akademie-Verlag, Berlin.

[9] Overbeek, R., Larsen, N., et al. (2000). WIT: integrated
system for high-throughput genome sequence analysis and
metabolic reconstruction. Nucl. Acids Res. 28(1): 123-125.

[10] Pfeiffer, T., Sanchez-Valdenebro, I., Nuno, J.C., Montero,
F., & Shuster, S. (1999). METATOOL: for studying
metabolic networks. Bioinformatics 15(3): 251-257.

[11] Rockafellar, R. (1970) Convex Analysis. Princeton
University Press, Princeton, NJ.

[12] Rohwer, J.M., Shuster, S., & Westerhoff, H.V. (1996).
How to recognize monofunctional units in a metabolic
system. J. Theor. Biol. 179: 213-228.

[13] Selkov, E., Maltsev, N., Olsen, G.J., Overbeek, R., &
Whitman, W.B. (1997). A reconstruction of the
metabolism of Methanococcus jannaschii from sequence
data. Gene 197: GC11-GC26.

[14] Schilling, C. H., Letscher, D., and Palsson, B.O. (2000.a).
Theory for the Systemic Definition of Metabolic
Pathways and their use in Interpreting Metabolic Function
from a Pathway-Oriented Perspective. J. Theoret. Biol.
203: 229-248.

[15] Schilling, C. H., Edwards, J., Letscher, D., & Palsson,
B.O. (2000.b). Combining pathway analysis with flux
balance analysis for the comprehensive study of metabolic
systems. Biotechnology and Bioengineering 71(4): 286-
306.

[16] Schilling, C. H. & Palsson, B.O. (1998). The underlying
pathway structure of biochemical reaction networks. Proc.
Natl. Acad. Sci. U.S.A 95: 4193-4198.

[17] Schilling, C. H. & Palsson, B.O. (2000.c). Assessment of
the Metabolic Capabilities of Haemophilus influenzae Rd
through a Genome-scale Pathway Analysis. J. Theoret.
Biol. 203: 249-283.

[18] Schilling, C. H., Schuster, S., Palsson, B.O., & Heinrich,
R. (1999). Metabolic pathway analysis: basic concepts
and scientific applications in the post-genomic era.
Biotechnol. Prog. 15(3): 296-303.

[19] Schuster, S., Dandekar, T., & Fell, D.A. (1999). Detection
of elementary flux modes in biochemical networks: a
promising tool for pathway analysis and metabolic
engineering. Trends. Biotechnol. 17(2): 53-60.

[20] Schuster, R. & Schuster, S. (1993). Refined algorithm and
computer program for calculating all non-negative fluxes
admissible in steady states of biochemical reaction
systems with or without some flux rates fixed. Comput.
Appl. Biosci. 9: 79-85

