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Abstract—Parallel computing algorithms benefit from in-
creases in concurrency when the hardware capacity is being
under utilized. For likelihood-based molecular evolution in-
ferences this can be due to small problem sizes, or because
hardware capacity has increased beyond dataset sizes. A central
concept in this domain is a bifurcating tree, which represents
evolutionary relationships. The topology of the tree being
evaluated directly affects the degree of parallelism that can be
exploited by likelihood-based algorithms. For time-reversible
evolutionary models we can reroot an unbalanced tree in order
to make it more symmetric, without affecting the likelihood.
Based on the reduction in number of concurrent operation sets,
we define a best-case theoretical expectations, based on tree size
and topology, for speedup due to rerooting which approaches
2-fold as the number of tip nodes increases for pectinate trees,
and much higher values for some random topologies as the
number of tip nodes increases. Empirical results using the
NVIDIA CUDA implementation of the BEAGLE library confirm
the merit of this approach. For pectinate trees we observe
speedups of up to 1.93-fold due to rerooting and even larger
speedups for random trees for the core likelihood-evaluation
function in BEAGLE.

Keywords-Bayes methods; Biology computing; Evolution (bi-
ology); Phylogeny; Maximum likelihood estimation; Multicore
processing; Parallel programming

I. INTRODUCTION

The process of adapting existing computational methods

to parallel architectures benefits from a broad perspective

on concurrency, the simultaneous execution of indepen-

dent operations. Opportunities exist for increased parallel

performance where the number of concurrent operations

is less than the capacity of the available device(s) (e.g.,

achieved occupancy is less than theoretical occupancy for a

CUDA device). More forward-thinking perspectives include

developing and employing methods to increase concurrency

even when capacity of present devices is exceeded (e.g., oc-

cupancy is at theoretical limits or at levels practically achiev-

able) such that concurrency, and hence performance, will

increase via strong scaling for future devices with increased

capacity. Such perspectives are particularly beneficial in

the context of mixed problems sizes, where performance

improvements from increased concurrency may immediately

be realized for smaller problems sizes, which is the case

for computing of phylogenetic likelihoods in evolutionary

biology (Section II). Furthermore, advancing computational

technology characterized by increasing device capacity and

improving memory performance may shift the demarcation

between compute- and memory-bound properties for specific

problems, and thus provide further potential for realizing

performance gains via concurrent computation.

Initial work on the BEAGLE library for high-performance

statistical phylogenetic inference [1] focused on fine-grained

parallelism where each character (i.e., sequence position) in

a partial likelihood array can be computed autonomously,

and subsequently combined to obtain the likelihood of the

tree. In practice, the decomposition of the characters may

be to the individual level, or groups of characters, with the

decision often made with consideration of the processing

and memory transfer characteristics of the hardware be-

ing employed (e.g., number of cores available, or threads

efficiently supported). Because the largest proportion of

computation in statistical phylogenetics is concentrated at

the level of sequence position via the likelihood calculation

(Section II-A), parallelism at this level is a logical focus in

pursuit of improved performance.

More recently we have broadened our efforts to include

medium-grained parallelism, by seeking higher-level inde-

pendence where concurrent computation opportunities afford

further application of the fine-grained parallelism capa-

bilities of the BEAGLE library. We identified independent

likelihood estimates in analyses of partitioned datasets and

in proposed trees [2], and configured concurrent computation

of these likelihoods via CUDA and OpenCL frameworks [3].

In the work presented here we extend this medium-grained

parallelism to additional opportunities for concurrent com-

putation of independent partial likelihoods arrays in the

statistical phylogenetic setting, and characterize the potential

for increased performance.

The paper continues by providing some domain science

context (Section II), brief description of the BEAGLE library

(Section III), review of independent likelihood estimates in

analyses of partitioned datasets and in proposed trees (Sec-

tion IV), and describe in detail additional opportunities for

concurrent computation of independent partial likelihoods
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Figure 1. Likelihood subtree to which the core likelihood calculation
applies. Solid lines depict focus subtree branches, dotted lines contextual
branches.

arrays for rerooted trees (Section V).

II. EVOLUTIONARY BIOLOGY, THE DOMAIN SCIENCE

A major component of evolutionary biology research

involves inference of relationships of species, genes, or alle-

les. In the phylogenetics or gene genealogical setting these

entities are often referred to more generically as operational

taxonomic units (OTUs). Research in evolutionary biology

can generally be divided in either of two broad categories:

1) macroevolution, which involves the processes of speci-

ation and extinction where OTUs are typically species

or genes representing species; and

2) microevolution, which involves the processes affecting

changes in the genetic structure of populations where

OTUs are alleles of genes or other genetic data.

Phylogenetics, in the broad sense, is the study of evolu-

tionary relationships. Typically, modern phylogenetic anal-

yses involve obtaining DNA sequence data from a set of

organisms, and using model-based methods to infer a binary

tree. This tree represents the evolutionary history of the

organisms going back to their most recent common ancestor

and is, in essence, a subset of the overall tree of life.

Population genetics includes research objectives of esti-

mation of size, growth rate, migration, and other parameters

characterizing populations. Modern population genetics is

based on coalescent theory [4]–[6], which represents a

retrospective approach in that its conceptual framework is a

binary tree, a gene genealogy, representing the relationships

of alleles going back in time. Gene lineages sequentially

unite — coalesce — ultimately to a common ancestor. Well-

developed mathematical theory provides expectations for the

timing of these coalescent events, which can be used to

estimate population genetic parameters.

These evolutionary categories converge in that trees rep-

resenting ancestor-descendent relationships are central to

the conceptual and analytical framework for both macro-

and microevolution, which are embodied by phylogenetics

and population genetics respectively. Consequently they also

share a computational bottleneck, the calculation of the

likelihood values.

A. Likelihood Function

Statistical phylogenetics comprises maximum likelihood

estimation and Bayesian analysis, and is established as the

most effect methods for inferring both phylogenetic trees

and gene genealogies. Heuristic algorithms are employed

to search through the space of possibilities to find a puta-

tively optimal solution (maximum likelihood) or character-

ize posterior probability distributions (Bayesian analysis).

Computation in statistical phylogenetics is dominated by

calculation of the likelihood of trees [7]. For example, pro-

filing GARLI [8], a leading phylogenetic inference program,

demonstrates that for DNA models, computing likelihood

calculations requires in excess of 94% of the overall run

time. More complex models, such as those based on amino-

acid or codon models, are often even more computationally

intensive. Hence the focus on decreasing the time required

for calculation of the likelihood function as a means to

increase the performance of statistical inference-based phy-

logenetic and population genetic analyses.

A subtree comprising a parent node, z, two child nodes, x
and y, and connecting branches of length, t� and tm (Fig. 1)

is the focus of the core partial likelihood calculation. The

calculation is iterated for all such such subtrees within the

larger tree required for the analysis. The partial likelihood

function is as follows [7]:

L
(i)
k
(z) =

(∑
x

Pr(x|z, t�)L
(i)
�
(x)

)
×

(∑
y

Pr(y|z, tm)L(i)
m (y)

) (1)

This calculation is repeated for each character i in the data

(i.e., sequence site pattern), for each state z that a character

can assume, and for each internal node in the proposed tree.

The computational complexity of the likelihood calculation

for a given tree is O(p × s2 × n), where p is the number

of patterns in the sequence (typically on the order of 102 to

106), s is the number of states each character in the sequence

can assume (typically 4 for a nucleotide model, 20 for an

amino-acid model, or 61 for a codon model), and n is the

number of OTUs (e.g., species, alleles). Additionally the tree

search space is very large; the number of unrooted topologies

possible for n OTUs is given by the double factorial function

(2n − 5)!! [9]. Thus, to explore even a fraction of the

total search space, a very large number of topologies are

evaluated, and hence a very great number of likelihood

calculations have to be performed. This leads to analyses

that can take days, weeks or even months to run. Further

compounding the issue, rapid advances in the collection of

DNA sequence data have made the limitation for biological

understanding of these data an increasingly computational

problem.
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Figure 2. Upper: Example tree of eight OTUs (labeled a–h) with post-order
traversal and subtree calculations in series corresponding to node numbers,
with n− 1 = 7 subtree calculations. Lower: Same tree with reverse level-
order, or breadth-first, traversal. Concurrent subtree calculations possible
for independent nodes designated with corresponding node numbers and
enclosed by dotted lines, with �log2 n� = 3 sets.

III. THE BEAGLE LIBRARY AND APPLICATION

PROGRAMMING INTERFACE

The BEAGLE library and application programming inter-

face (API) [1] is a parallel computing platform for high-

performance calculation of phylogenetic likelihoods. BEA-

GLE comprises a collection of efficient implementations

using a shared code design employing CUDA and OpenCL

frameworks [3], and hardware-specific optimizations to ex-

ploit a wide-range of hardware parallelism including CPU

and Xeon Phi, vectorization intrinsics (e.g., SSE, AVX),

and GPUs. BEAGLE also defines a uniform API that fa-

cilitates its integration with host (calling) programs. It is

the first and most widely adopted library for phylogenetic

likelihood calculation, having been integrated into popular

phylogenetics software including BEAST [10], MrBayes [11],

and PhyML [12]. Consequently BEAGLE has been used

extensively for phylogenetic analyses.

IV. INDEPENDENT PARTIAL LIKELIHOOD OPERATIONS

Much of our previous effort on parallelization of the

phylogenetic likelihood function (Eq. II-A) has focused on

fine-grained concurrency by developing efficient algorithms

with atomization at the levels of positions and states, es-

sentially computing p × s (sequence patterns × character

states) as a 2-dimensional grid. Recently we have further

increased concurrency by exploiting the fact that many

analyses involve data subsets, so called partitioned analyses,

for which phylogenetic partial likelihoods can be calculated

independently. Similarly, we exploit the fact that many

subtrees (Fig. 1) are autonomous in that their associated

partial likelihoods can be calculated independently within

the larger tree of which they are constituent parts. We

describe each of these medium-grained concurrency exploits

briefly in the following two subsections.

A. Pattern Partition Concurrency

A popular approach to phylogenetic analyses is to par-

tition sequence data into subsets, often based on genes or

codon positions, and allowing independent model parameters

for each of these different subsets. The resulting model

flexibility improves overall model fit, and has proven to

be an effective means of obtaining improved results. The

independence of these data subsets provides an opportunity

for increased parallelization, as likelihood calculations for

each subset can be computed concurrently.

We have implemented pattern partition concurrency in two

approaches. The first is as a set of streams in CUDA or queues

in OpenCL, and the second through a multi-operation kernel.

For the later implementation we modified our earlier partial

likelihood kernel in CUDA to compute multiple likelihood

arrays in a single execution launch, and use pointer arith-

metic to allow different input and output arrays for different

execution blocks. Further details regarding pattern partition

concurrency and the resulting performance improvements

are provided elsewhere [2].

B. Independent Subtree Concurrency

The number of subtrees requiring calculation for any

full tree is n − 1, again, where n is the number of OTUs

(e.g., species, alleles), which is the number of tips (leaves)

on the tree. Most current phylogenetic algorithms typically

use a post-order traversal when calculating tree likelihood,

calculating each of the n − 1 subtrees in series (Fig. 2,

upper). But, again, many of these subtrees are autonomous

and likelihoods for each can be calculated concurrently.

However, to realize any potential concurrency related to

autonomous subtrees present in a given tree, operations need

to be sent to BEAGLE following a reverse level-order, or

breadth-first, traversal of the tree being evaluated. In the case

of a fully balanced tree the number of autonomous subtrees

is maximized, and reverse level-order traversal can be done

in sets of concurrent operations corresponding to the number

of levels in the tree, �log2 n� (Fig. 2, lower). This subtree

concurrency can be conceptualized as a 3-dimensional grid,

p×s×subtrees, and implemented as a single kernel launch,

or alternatively as a set of streams in CUDA or queues in

OpenCL [2]. The performance improvements resulting from

computing subtrees concurrently is substantial [2].
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Figure 3. Upper: Example pectinate tree of eight OTUs (labeled a–h)
with traversal and subtree calculations in series corresponding to node
numbers, with n − 1 = 7 subtree calculations. Lower: Rerooted version
of same tree to maximize opportunities for concurrent subtree calculations
designated and with corresponding node numbers enclosed by dotted lines,
with �n/2� = 4 sets.

V. REROOTED TREES AND INDEPENDENT PARTIAL

LIKELIHOOD OPERATIONS

A. Pectinate Trees

In the case of a fully pectinate tree no subtrees are

autonomous, or so it might initially appear (Fig. 3, top).

Note that for time-reversible evolutionary models, which are

the most common employed, the likelihood of the tree is

independent of the location of the root [7]. We can use this

property to our advantage by rerooting the tree to enable

additional concurrent operations.

For pectinate trees evaluated with a time-reversible evo-

lutionary model, the number of autonomous subtrees can

be maximized if the tree is rerooted so that �n/2�, or

alternatively, �n/2�, tips are on one side of the root. Such

rerooting and tree evaluation with a reverse level-order

traversal results in �n/2� sets of concurrent operations

(Fig. 3, bottom). Consequently for pectinate trees we have

a precise expectation for relative performance increase re-

sulting from optimal rerooting and concurrent computation

of independent subtrees, apart from the cost of rerooting

itself, possible inefficiencies, and stochastic variance. The

expectation is that as n ↑, (n − 1)/�n/2� → 2, i.e., the

performance gain for should be 2− ε fold, ε > 0.

B. Intermediate Trees (Neither Fully Balanced Nor Fully

Pectinate)

For any tree, rooted or unrooted, evaluated with a time-

reversible evolutionary model, the number of autonomous

subtrees can be maximized if the tree is rerooted so that

�n/2�, or alternatively, �n/2�, tips are on one side of

the root. Thus, more generally, any optimally rerooted tree

results in ≤ �n/2� sets of concurrent operations. Therefore,

with appropriate algorithmic capability and sufficient hard-

ware capacity the number of sets of subtree calculations can

be very substantially reduced from n− 1 for standard post-

order traversal to a value in the interval [�log2n�, �n/2�]
with post-order traversal and concurrent computation.

As in the case of pectinate trees, we can specify the

expectation for relative performance resulting from opti-

mal rerooting and concurrent computation of independent

subtrees, apart from the cost of rerooting itself, possi-

ble inefficiencies, and stochastic variance. This expectation

is that the performance gain should fall in the interval

[(n−1)/�n/2�, (n−1)/�log2n�], i.e., the performance gain

should be between 2 − ε fold, ε > 0, and (n − 1)/�log2n�
fold, depending on the balance-pectinate properties of the

tree and the initial rooting.

VI. METHODS

We have developed a set of benchmarks to assess perfor-

mance gains from increased concurrency due to rerooting.

These benchmarks were run on a top-of-the-line workstation

and use an extended version of the testing platform which

is part of the BEAGLE library source code.

A. Concurrent Partial Likelihood Computation in BEAGLE

The current development version of BEAGLE can con-

currently compute independent partial likelihood arrays on

parallel hardware devices. We leveraged this capability to

achieve performance increases through optimal rerooting.

BEAGLE employs a variety of methods to concurrently

compute partial likelihoods, depending on a combination

of parameters including problem size, hardware, and frame-

work [2] (herein described as an implementation class).

For this work, we focused on the NVIDIA CUDA imple-

mentation for problems with fewer than 103 alignment pat-

terns. Problems with few patterns have more scope to benefit

from increased concurrency and, generally, we have noticed

that the CUDA implementation to be the most efficient in

terms of framework overhead.

For this implementation class, BEAGLE concurrently com-

putes partial likelihoods using a multi-operation kernel,

which enables the computation of multiple likelihood arrays

in a single execution launch. This is done using pointer

arithmetic to allow different input and output arrays for

different execution blocks. For this to work BEAGLE requires
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Table I
SYSTEM SPECIFICATIONS.

System 1

CPU Intel Xeon E5-2697v4 (x2)

GPU NVIDIA Quadro GP100

Linux kernel 3.10.0

GCC version 6.2.0

CUDA release 8.0.61

partial likelihood subtree operations to be sent according to

a reverse level-order traversal of the proposed tree. BEAGLE

adds each consecutive operation to a set until it finds an

operation that is dependent on the result of a previous

operation in the set. The library then starts a new operation

set, repeating the same process. Once all operations are

processed in this manner, operation sets are successively

launched for concurrent computation using a multi-operation

partial likelihoods kernel [2].

B. System Specifications

We report benchmark results for the system configuration

shown in Table I. We focused on the NVIDIA CUDA platform

as it previously has shown least amount of overhead [3], thus

reducing the amount of noise for the empirical evaluation of

the gains from rerooting. Further, we utilized a top-of-the-

line Pascal generation GPU which uses a GP100 chip with

3,584 CUDA cores and HBM2 memory with 720 GB/s of total

bandwidth. This allowed us to push the hardware saturation

point for parallelism further into larger problem sizes.

C. Performance Metric

We have used the performance of the partial likelihoods

kernel in BEAGLE as the relevant metric throughout this

study, as rerooting increases concurrency of computation for

this function only. Using this metric allows us to best focus

on the specific performance effect of rerooting. Further, the

partial likelihoods kernel is the computational bottleneck for

phylogenetic analyses and performance improvements to this

function correspond directly to application run time gains for

full inferences [2], [3].

Specifically, we report a measure of throughput in terms of

the effective number of floating point operations per second

(GFLOPS) for computation of the partial likelihoods function

(see equation II-A). In contrast to a direct timing benchmark,

throughput allows us to more easily compare performance

across different problem sizes and to assess how efficiently

the hardware resource is being utilized.

D. Tree Topologies

To better assess performance gains due to rerooting

across a range of scenarios, we augmented synthetictest

(a testing program included in the BEAGLE repository, see

Section VI-F) to be able to generate additional tree topology

types. By default synthetictest generates trees that are fully

balanced, that is, trees that have the optimal topology type

for exploiting partial likelihood concurrency and thus that

do not benefit from rerooting.

We developed new topology-type options to enable the

generation of pectinate, and arbitrary or random topology

trees, in addition to the default balanced topology. These

additional options allow us to assess the effect of rerooting

on worst and average-case topologies for concurrent com-

putation.

For randomly generating a topology, we iteratively con-

struct trees one tip node at a time. We connect each new

tip to a randomly chosen sibling, which can be any of the

existing nodes, including internal ones. The new tip node

and the randomly chosen sibling node then gain a new parent

node, which becomes a child of the previous parent node of

the sibling. For pectinate trees we use the same procedure

but always use the current root as the sibling node as each

tip node is added.

E. Rerooting

We extended synthetictest to support rerooting of any tree

such that it is optimally balanced, and thus requires the

fewest number of parallel kernel launches for computing

its likelihood. We implemented rerooting as a one-time

procedure, performed before any calls to the BEAGLE library,

so that the effectiveness of this operation did not impact the

benchmarks in this study.

To perform an optimally balanced rerooting, we use

a naive algorithm that exhaustively searches all possible

rootings. For each branch of the original tree, we recursively

reconstruct a tree with a new root at this branch. Then,

for each of these tree rootings, we assess the number of

necessary kernel launches to compute its likelihood. This is

done using a reverse level-order traversal, and counting the

number of sets of independent partial likelihood operations.

We then choose a rooting that results in the fewest number

of concurrent operation sets.

F. Test Program and Scripts

We used the BEAGLE test program synthetictest and a set

of Python scripts to evaluate the performance effect of re-

rooting on the partial likelihoods function. The synthetictest

program can generate arbitrary datasets, evolutionary mod-

els, and tree topologies according to user-defined parameters

and uses the BEAGLE library to evaluate the overall tree like-

lihood. This test program is included with the library source

code, available at https://github.com/beagle-dev/beagle-lib.

The results shown in the next section can be reproduced

using synthetictest with a combination of the command line

settings described in Table II. The command line options

shown are divided in two categories, those which were used

across all benchmarks and those which were used according

to the specific tree type being evaluated.
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Table II
TEST PROGRAM PARAMETERS.

Command line option Description

Always used

--rsrc n selects the hardware resource

--taxa n sets the number of taxa or OTUs
in the randomly generated data
set

--sites n sets the number of site patterns
in the randomly generated data
set

--reps n sets the number of calculation
repetitions

--full-timing enables output of detailed tim-
ing information

--manualscale enables application-managed
floating-point rescaling

--rescale-frequency n sets the frequency of computa-
tion of new rescaling factors,
relative to the number of cal-
culation repetitions

Benchmark dependent

--pectinate sets tree topology type to pecti-
nate

--randomtree sets tree topology type to arbi-
trary

--reroot enables optimal rerooting of
tree

--seed n sets the random seed to be used
for generating arbitrary align-
ment data, evolutionary model
parameters, and tree topology

For this study, the --rsrc option was used to select the

GP100 GPU on System 1 (Table I) for all benchmarks. The

--taxa option was set according to the tree size being

benchmarked. The --sites option was set to 512 for all

problems; we used a relatively small alignment size to avoid

saturating the GPU when computing the partial likelihood at

a single node, thus allowing gains from concurrent compu-

tation of multiple nodes (see previous work [3] for a GPU

performance curve relative to number of sites). The --reps

option was set to 1, 000 to overcome a potential warm-up

period from the GPU and capture best-case performance.

The --full-timing option was enabled to capture both

compute throughput from the partial likelihood kernel and

the number of concurrent operation launches necessary to

compute the tree likelihood. The --manualscale option

was enabled to overcome underflow due to the use of single-

precision floating-point format for trees with large numbers

of taxa in this study (it was enabled for all benchmarks,

to allow direct comparison across problem sizes). The

--rescale-frequency option was set to 1, 000 so that

new rescaling factors were only computed once per run and

thus did not affect measurement of best-case performance.

Newly developed --pectinate and --randomtree

options were used to enable different tree topology types,

according to the benchmark. Balanced topology trees

were generated by omitting either of these options. The

--reroot option was used in combination with either of

the two non-balanced topology type options, to optimally

reroot the tree. The --seed option was used in conjunction

--randomtree option and set to different values (1 to

1, 000) to generate trees with different, arbitrary, topologies.

As an example, to evaluate the performance of a

randomly generated, optimally rooted tree with 64

OTUs, we would have used the following command:

./synthetictest --rsrc 1 --taxa 64

--sites 512 --reps 1000 --full-timing

--manualscale --rescale-frequency 1000

--randomtree --reroot --seed 1.

Python scripts were used to automate the process of

initiating multiple runs of the synthetictest program, each

with different command line parameters. The scripts were

also used to collect the program output from these runs and

process it into data tables.

VII. RESULTS

Here we describe our investigations of the performance

effect of the concurrency gains due to rerooting topologies.

We have used the synthetictest program to benchmark the

performance of the core likelihood function in the BEAGLE

library v3.0 (upcoming release) when evaluating pectinate

trees, perfectly balanced trees, random trees, rerooted pecti-

nate trees and rerooted random trees. System specifications

were as shown in Table I.

A. Rerooting Effect on Number of Concurrent Operation

Sets

Here we explore how optimal rerooting reduces the num-

ber of required concurrent operation sets (i.e., the number

of kernel launches for the GPU implementation in BEAGLE)

for computing the overall tree likelihood.

Figure 4 shows how, for a sample of 100 arbitrarily

generated trees each with 256 OTUs, the number of necessary

operation sets is consistently reduced by performing an

optimally balanced rerooting. For this sample of trees, we

observe that the number of operation sets is reduced by as

much as half for trees that were originally less balanced (i.e.,

required more operation sets). We also observe that in one

case, for a tree which required 26 operation sets, rerooting

did not offer any benefit as this tree was already optimally

balanced. Overall, it is clear that the rerooting procedure

can significantly reduce the required number of concurrent

operation sets, which can lead to performance gains if the

parallel hardware resource has unutilized capacity.

B. Rerooting Effect on Throughput Performance

We used the same data set of 100 trees from Section VII-A

to measure the effect of rerooting on throughput perfor-

mance of the partial likelihoods GPU kernel in BEAGLE.
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Figure 4. Plot showing the number of required GPU kernel launches of
the partial likelihood function with subtree concurrency for 100 randomly
generated trees with arbitrary rooting, and for the same trees with optimal
rerooting. Each tree had 256 OTUs. Dashed line represents the null
hypothesis of no difference in kernel launches resulting from rerooting.

Table III
PROPORTION OF THEORETICAL SPEEDUP REALIZED FOR CONCURRENT

SUBTREE CALCULATIONS FOR 64 OTUS AND 512 PATTERNS.

Theoretical NVIDIA Realized

Topology Type Expectation GP100 Speedup

balanced 10.5 3.95 0.38

pectinate 1.00 1.00 na

pectinate rerooted 1.97 1.55 0.79

random [1.85, 5.25] [1.56, 3.07] [0.84, 0.58]

random rerooted [3.15, 5.73] [2.22, 3.30] [0.70, 0.57]

Each sample in the data set had 512 unique site patterns.

This experiment allows us to analyze in more detail the

performance effect of rerooting on a fixed-size tree with

varying topology.

Figure 5 shows how throughput performance increases

with the inverse of the number of concurrent operation

sets, as we would expect due to better GPU utilization.

Further, since rerooting increases the number of concurrent

operations, the result is higher throughput. For this sample

of trees, we observe a mean performance improvement of

1.26-fold due to rerooting.

C. Theoretical Comparison

Here we compare the previously established theoretical

bounds to empirical results for speedups of the partial-
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Figure 5. Plot showing throughput for the partial likelihood kernel
with subtree concurrency for 100 randomly generated trees with arbitrary
rooting, and for the same trees with optimal rerooting for a problem with
512 site patterns and 256 OTUs. Benchmarks were performed using the
GP100 GPU on System 1. Note that the horizontal axis is decreasing from
left to right, this was done to facilitate the visualization of the increase in
performance with the decrease in number of operations.

likelihoods kernel relative to the sequential case when using

concurrent subtree operations. To perform the sequential

benchmarks, we modified the BEAGLE source code to dis-

able multi-operation kernel launches, so that each partial

likelihood array was computed in turn.

Theoretical speedup expectations for balanced and pecti-

nate tree topologies were previously defined in Section V.

For randomly generated tree topologies we determined the

theoretical speedup bounds for each specific tree in the

random sample being evaluated by counting the number

of operation sets. The theoretical bounds together with

empirical results allow us to further assess rerooting gains,

as we compare across a variety of tree topology types. These

comparisons also allow us to assess the effectiveness of the

GPU implementation in BEAGLE, and of the hardware and

software solution as a whole.

Table III compares empirical speedups to theoretical ex-

pectations across a variety of tree topology types, for a tree

with 64 OTUs and 512 unique site patterns. For the random

topology benchmarks we used samples of 100 arbitrarily

generated trees. We observe that, as expected, none of

the empirical results fall outside of the theoretical bounds.

The proportion of theoretical maximum speedup realized

ranges 0.38 (for a balanced topology) to 0.84 (for random
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Figure 6. Plot showing throughput for the partial likelihood kernel
with subtree concurrency for fully balanced trees (filled dots), for 1,000
random topology trees (distribution characterized by open box plot), and
for pectinate trees (open triangles) for a problem with 512 site patterns
and increasing number of OTUs. Throughput for rerooted trees are shown
in filled box plots (random topology trees) and filled triangles (pectinate
trees). Throughput and number of tips are on a log-scale. Benchmarks were
performed using the GP100 GPU on System 1.

topology), and thus much of the expected performance gains

due to rerooting are realized in the empirical results.

D. Overall Effect of Rerooting on Throughput Performance

Here we expand on the benchmarks performed for Sec-

tion VII-B by including balanced and pectinate tree topolo-

gies, using larger samples of 1,000 random trees each, and

using a range of tree sizes, from 16 to 4,096 OTUs. Figure 5

shows throughput performance with concurrent computation

of independent subtrees for a problem with 512 patterns

across a variety of tree sizes and topology types, with and

without rerooting. For reference, we note that the non-

rerooted pectinate case (open white triangle) is equivalent

to the performance for any tree topology when computing

partial likelihood arrays without subtree concurrency (i.e.,

the prevailing methodology).

We observe that rerooting pectinate trees consistently

results in significant increases in performance, with a best-

case speedup of 1.93-fold for a tree with 406 OTUs. Effective

performance towards the pectinate end of the tree symmetry

scale is highly relevant as phylogenetic inference programs

are optimized such that only a subtree representing the

modified portion of the overall tree is recomputed for each

topology change. These subtrees are often less symmetrical

than the full tree.

Further, we can note that randomly generated trees also

consistently benefit from rerooting, although to a lesser

extent than pectinate ones. Overall, we observe increasing

speedups with tree size for non-pectinate trees. We also note

that for larger trees the throughput distribution for a random

tree is skewed towards the fully balanced case, which is

attributable to larger random trees having relatively more

inherent concurrent computing opportunities on one hand,

and on the other hand hardware device saturation decreasing

performance for fully balanced trees relatively more strongly

with increased tree size.

VIII. DISCUSSION

For simplicity of study design, we have explored here

rerooting performance gains only in synthetic tests and have

not empirically assessed the applicability of our approach in

the course of a complete inference run. There are important

factors that need to be considered when analyzing the

relevance of the results presented here to the performance

of a full inference.

Firstly, we have considered likelihood calculations only

in the context of a full tree traversal. However, many

phylogenetic analysis programs only calculate those subtree

partial likelihoods as required for a topology change, which

in some cases is a small part of the full tree, as other

subtrees may not require recalculation. This elimination

of unnecessary computation is among the reasons for the

increased performance of modern statistical phylogenetics

programs. Hence it maybe fair to ask, does the concurrent

computation of autonomous subtrees (Section IV-B) results

in performance gains in practice with a modern phylogenet-

ics analysis program?

Additionally, our design separated the rerooting steps

from the concurrent computation of tree likelihoods, and

we did not consider the computational cost of the reroot-

ing operation itself. Our use of a naive exhaustive search

through all possible rootings to find the optimal rooting

(Section VI-E) was done for expedience, and a more efficient

algorithm could be employed. Regardless of the specific

algorithm, the desired outcome is that the benefit gained by

the increased concurrent computation on the rerooted tree is

greater than the cost of optimally rerooting the original tree.

The specific characteristic of this cost-benefit relationship is

also an important issue when considering the applicability

of our approach.

In this section we consider in detail the impact of these

factors on how well our results might translate to real-world

gains. We conclude that we can expect the benefits of the

rerooting approach presented here to largely apply in the

context of a phylogenetic analysis.

A. Applicability Considerations

In this study we have measured the effect of balanced

rerooting on the performance of the partial likelihood func-
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tion in BEAGLE. Although focusing on this metric allows us

to directly investigate the throughput impact of rerooting,

ultimately our objective is to allow phylogenetic analysis

to complete in less time. We considered an application-

side implementation of rerooting to be beyond the scope

of this initial study and thus do not present empirical results

of application-level performance. Nonetheless the results

presented here together with our previous research indicate

that, at least for large trees with few site patterns, balanced

rerooting would result in clear performance gains at the

application level.

In order to reach this conclusion, we considered the

typical characteristic of the following factors related to the

performance of phylogenetic inferences: 1) the proportion

of time spent computing partial likelihoods; 2) the topology

of the tree being updated in a given iteration; 3) the relative

cost and necessary frequency of the rerooting operation.

In regards to factor 1, the time spent computing partial

likelihoods, our experience has been that this function is

where the vast majority of the run time is spent. We have

performed profiling using BEAST [10], MrBayes [11], and

GARLI [8] and have observed that, for nucleotide-model

analyses, this proportion is typically in excess of 0.9 of

the overall run time. Further, in previous studies where

we have benchmarked throughput for the partial likelihoods

function in BEAGLE, we have observed that improvements

to the performance of this function directly correspond to

application-level gains [2], [3].

Although it is clear that computing partial likelihoods

is the primary bottleneck for typical phylogenetic infer-

ence analyses, it is also important to consider factor 2,

the topology of the tree or subtree being updated at each

iteration of the search algorithm of the inference program.

For iterations which involve a topology change, modern

inference programs only recompute the partial likelihoods

for a small subset of the overall tree. In contrast, for an

otherwise underutilized GPU, the potential rerooting gains

described in this study increase as tree size increases, as

larger trees allow for more nodes to be computed in parallel.

This fact might appear to limit the applicability of the

approach described here, however there are additional factors

to consider. For a given inference algorithm, search iterations

that change a non-topology parameter will often require re-

computation of the entire tree. For these iterations, the results

shown here will directly correspond to the expected gains.

Further, recent developments in Bayesian phylogenetic infer-

ence use an adaptive Markov Chain Monte Carlo (MCMC)

approach to allow for multiple continuous parameters to be

updated in a single iteration, in order to increase the effective

sample size [13]. One consequence relevant here is that, for

programs using this adaptive MCMC approach, every non-

topology move requires updating the entire tree. Although

this technique is currently only used for rooted trees with

BEAST, it is not incompatible with unrooted trees.

Still further in regard to factor 2, our own empirical testing

with MrBayes has shown that the general approach of ex-

ploiting partial likelihood concurrency of independent nodes

on a proposed tree results in appreciable application-level

speedups [2], even if the calling program only recomputes

a small subtree on topology changes. Specifically, for a

unpartitioned data set with 500 taxa and 759 unique patterns,

we observed an overall speedup of 1.41× on an NVIDIA

Quadro P5000 GPU by enabling concurrent computation of

partial likelihoods on independent nodes. These benchmarks

were performed with a random starting tree and we expect

that applying the balanced rerooting described here to the

starting topology would have resulted in further performance

gains.

Finally, we consider factor 3, the relative cost and required

frequency of the rerooting operation. For this study, we did

not explore the computational cost or performance impact of

the rerooting operation itself. Most importantly we believe

that it is sufficient to reroot the starting tree in order to

achieve appreciable performance gains. This is because, in

aggregate, we can expect topology moves to be randomly

distributed on either side of a balanced rooting. Given that

typical phylogenetic inferences take many hours or days

to complete, the cost of finding a balanced rooting and

applying it to the starting tree will be trivial in comparison.

Nonetheless, we also consider it likely that further balanced

rerootings, later in the search process, might result in further

performance gains, and this remains an issue to be studied.

IX. CONCLUSION

Parallel computing algorithms for calculating tree like-

lihoods, such as those employed by the BEAGLE library,

benefit from balanced topologies. These topologies allow

for greater concurrency and thus better utilization of the

multi-core hardware. Non-balanced trees can be rerooted

to make them more symmetric, thus reducing the number

of concurrent operation sets required for further likelihood

evaluations.

Empirical results demonstrate that rerooting can lead to

significant increases in performance for the core likelihood

function in BEAGLE, with speedups on a modern GPU

approaching 2-fold for pectinate trees with more than 102

OTUs and even larger performance gains for some random

tree topologies.

We expect that, for similarly sized problems, the perfor-

mance gains observed here can be largely realized by phylo-

genetic inference applications which use BEAGLE once they

incorporate rerooting using a run-time efficient algorithm.
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