
Improving reaction kernel performance in Lattice Microbes: particle-wise
propensities and run-time generated code

Michael J. Hallock∗, Zaida Luthey-Schulten†‡§
∗School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
†Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois
‡Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois

§Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois

Abstract—The reaction kernel for MPD-RDME, the GPU-
accelerated reaction-diffusion master equation solver found in
Lattice Microbes uses a large number of kinetic parameters
to describe a biochemical network. Many of these parameters
are required to compute the system’s total reaction propensity,
which is used to stochastically evaluate whether a reaction
event takes place. In this paper, we examine two techniques for
accelerating performance by modifying the total propensity cal-
culation. The first technique is to use a particle-based approach
to compute propensities from discrete particles and particle
pairs. We find this technique results in a dramatic improvement
in performance for a complex model, approximately 60 times
faster. The second technique uses run-time generated source
code to automatically create executable code tailored for the
biological model being simulated. The removal of all memory
reads for constant parameters increases performance for less
complex models.

I. INTRODUCTION

Reaction-diffusion processes are common in biology, and

simulation of these processes is a computationally expensive

task. As simulations of biological processes in spatially-

inhomogeneous (such as the crowded cellular cytoplasm)

environments become more widely important to the field

of Systems Biology, the need arises for high-performance

solvers for the reaction-diffusion master equation. A wide

array of tools are currently available to researchers to

perform this task: Smoldyn [1], Mcell [2], ReaDDY [3],

and MesoRD [4], to name a few. MPD-RDME, the GPU-

accelerated reaction-diffusion master equation solver found

in Lattice Microbes [5] offers the ability to perform simu-

lations of biologically relevant size and time scales, using

one or more GPUs [6]. This algorithm is the focus of this

work, and modifications to the reaction kernel to increase

performance will be explored.

A model of a biochemical process requires many pa-

rameters to describe all the chemical species present in a

simulation and the set of reaction rules that governs the

interaction between species. Each reaction defines a set of

species that a reaction requires (reactants) to be present

in order to occur and a set of species that represents the

products of the reaction. These reactions can come in one

of three elementary types that follow a specific chemical

rate law. A first order reaction is one that depends on the

concentration of one type of chemical species, a second
order reaction that depends on the concentration of two

species, and a zeroth order that depends only on time.

Each reaction has a single rate parameter that controls how

frequently that reaction can occur. Given a reaction and the

quantity of the chemical species present, one can compute

the propensity function (ar) that represents the probability

of that reaction occurring over some interval of time Δt.
In the MPD-RDME algorithm, we treat our simulation

volume as a regular rectilinear lattice of voxels (referred

to as a lattice site) each containing a finite number of

particles, representing a chemical species. The algorithm

uses operator splitting to calculate the reaction and diffusion

events in the simulation separately. The algorithm combines

the multiparticle (MP) method for diffusion developed by

Chopard et al. [7] with Gillespie’s stochastic simulator

algorithm [8] for reactions within lattice sites. This approach

is similar to the Gillespie multi-particle (GMP) method first

introduced by Rodrguez et al. [9]

The lattice site is considered to be well-stirred such

that we do not track the exact position of a particle and

consider that there is equal chance to interact with any other

particles in the same site. Particles probabilistically diffuse

into neighboring sites based on diffusion rate parameters,

and is performed via the diffusion operator [10]. Each site

is assigned a “site type” that represents something about

the physical environment that site is representing. Typical

site types are extracellular space, cytoplasm, membrane,

nucleoid, etc. Diffusion rates between different site types

can be defined, and reactions are assigned to occur only

certain site types. This allows one to constrain reactions to

only occur in a certain environment.

The reaction operator, shown in Algorithm 1 for a single

lattice site, can be divided into four sections. The first part

is accumulating the total propensity (atot) for a reaction to

occur, the second is to determine if a reaction will occur

during this timestep given the propensity, third to determine

which reaction will occur, if more than one reaction could

possibly occur, and lastly to update the particles in the site

to reflect the reaction event occurring.

2016 IEEE International Parallel and Distributed Processing Symposium Workshops

/16 $31.00 © 2016 IEEE

DOI 10.1109/IPDPSW.2016.118

428

MPD-RDME supports zero, one, or two reactants produc-

ing any number of products. Each reaction is defined via a

number of parameters that are fixed throughout the lifetime

of the simulation. Each reaction r in the set of reactions R
define the reactants (rr1 and rr2), the products (rp1...pN),

the propensity constant derived from the rate, representing

the probability of this reaction occurring during a timestep

(rprop), the site types the reaction occurs in (rν), and the

reaction order (rorder) that represents the rate law used to

describe this reaction.
In memory, we store four integer vectors of length

Nreactions to store the first reactant, second reactant, the

reaction order, and the reaction propensity for each reac-

tion. The reaction location (RL) is a Nreactions×Nsitetypes

matrix of 1-byte values to indicate where reactions can take

place. The stoichiometric matrix (S) is a Nreactions×Nspecies

matrix. It contains a row for every reaction and the value in

the columns are the change in quantity of the corresponding

chemical species as a result of that reaction. Species that

are consumed in the reaction are negative values, and those

that are produced are positive values. All other species have

a zero value indicating no change in their respective counts

occur. As all these parameters are fixed for the lifetime of

a simulation, we store these four vectors and the S and RL

matrices in GPU constant memory.
GPU constant memory is advantageous because all

threads in a half-warp can simultaneously receive a value

from constant memory if all threads are accessing the same

element at the same time. Work on the GPU is divided such

that each thread is processing a single lattice site. All threads

in the warp compute the propensity for one reaction at the

same time, thus all accesses to constant memory across the

entire warp are to the same element and will occur without

serialization. This makes the algorithm very amenable for

GPU computing due to predictable memory accesses across

a warp and there is minimal divergence, until the decision

if a reaction occurs for a lattice site is reached.

for r ∈ R do
atot = atot + ar(xν)

end
n1 = uniformRand()
if n1 ≤ ∫ τ

0
atote

−atottdt then
n2 = uniformRand()
for r ∈ R do

if ar−1(xν) < n2·atot ≤ ar(xν) then
perform reaction r in subvolume xν

end
end

end
Algorithm 1: The reaction operator in MPD-RDME[5].

Shown for a single lattice site ν in the lattice.

GPU constant memory is limited to a fixed size of 64 kB

if siteTypeν ! = rν then
return 0

end
count1 = 0
count2 = 0
for p ∈ (xν) do

if p = rr1 then
increment count1

end
if p = rr2 then

increment count2
end

end
if rorder = Zeroth then

return rprop
else if rorder = First then

return rprop ∗ count1
else if rorder = Second then

return rprop ∗ count1 ∗ count2
end

Algorithm 2: Procedure ar for computing the propensity

of a given reaction r

of data. The current number of different chemical species

that can be defined for an MPD-RDME simulation is 255.

If one wishes to use the maximum number of species,

then the size of the S matrix is 255 times the number of

reactions. Sixteen bytes are needed for each reaction across

the reactant, order, and propensity vectors. For RL, one

byte per reaction is needed per site type. Assuming the

minimum of a single site type, each reaction requires 272

bytes. This could allow up to 290 different reactions to be

defined for a simulation if constant memory was devoted to

reactions, however in practice we also store diffusion-related

parameters in constant memory and typically restrict S and

RL to 16 kB and 10 kB, respectively.
Our simulation of ribosome biogenesis [11] involved 884

reactions. In order to overcome the size restriction of GPU

constant memory, the S and RL matrices were moved to

GPU global memory. The remaining four vectors (first

reactant, second reactant, order, propensity) remained in

constant memory. This scheme could support up to 4, 096
reactions as sixteen bytes of GPU constant memory are

required per reaction. To go beyond that, we could continue

to move all parameters into GPU global memory, where

then the total number of reactions will be limited only by

available free memory.

Every thread processing a lattice site must compute the

total propensity (atot) as the first step of algorithm 1. The

procedure for this is shown in algorithm 2. Typically, very

few lattice sites have a reaction occurring in them during a

timestep. There may be no reactions defined for a given site

type, or the lattice site is empty or contains only non-reacting

429

particles. Therefore, computing the propensity quickly is

performance critical, and the placement of parameters in the

GPU memory hierarchy may have performance side-effects.

In this paper, we will evaluate two alternate approaches to

computing the propensity for a lattice site. The first approach

is to reformulate the algorithm to sum propensities based

present chemical species in a lattice site, rather than on a

reaction-by-reaction basis, which trades a larger number of

uniform memory accesses for a smaller number of non-

uniform loads. The second approach is to use use just-

in-time compilation as a means of turning the constant

parameters into immediate loads, embedding them directly

into code to be compiled at run-time.

A. Test Models

Three representative models are used to test the different

reaction kernels. These models represent a range of com-

plexities. The first model is a simple bimolecular reaction

model, to serve as a test of a model with little complexity.

The second is the E. coli lac genetic switch, as described

in the Lattice Microbes Instruction Guide [12]. The third is

a model of E. coli ribosomal biogenesis [11], which is the

most complex model. The relevant statistics of each model

can be found in Table I.

The bimolecular model is a 2 μm×2 μm×2 μm box that is

one homogeneous site type. The Lac genetic switch model

is a full-sized typical E. coli cell of 1 μm × 1 μm × 2 μm
with a membrane, cytoplasm, and extracellular site types.

The ribosome biogenesis model is 1 μm × 1 μm × 4 μm,

representing the doubled-cell-size present in an E. coli
undergoing cell division. It contains a nucleoid region, cy-

toplasm, membrane, and extracellular site types. All models

use a periodic boundary condition at the lattice edges.

The performance results for these three models will be

measured by comparing the average wall-time of the original

reaction kernel to the wall-time of the alternate kernels

described below. The GPU used for these tests is a single

NVIDIA TITAN-X, a high-end consumer-grade GPU.

B. S and RL in GPU Global Memory

In order to simulate models with a large number of

reactions, we first needed to overcome the small amount

of GPU constant memory made available to applications.

We achieve this by relocating the stoichiometric (S) and

reaction-location (RL) matrices to GPU global memory. The

change is straightforward; memory is dynamically allocated

for these data structures in GPU global memory and the their

addresses are passed as arguments to the kernel, as opposed

to accessing them via GPU constant memory. On hardware

that supports it, the read-only data cache load intrinsic

__ldg [13] is used to fetch values from these matrices.

This alternative way of accessing memory is helpful for

non-coalesced reads as the texture cache is used, without

the complexity of actually binding these data structures as

textures.

This version of the code will be used for comparisons

of performance, otherwise there is no basis for comparison

for the ribosome biogenesis model. For the Bimolecular

system, there is no difference in performance regarding

the placement of the S and RL matrices. For the Lac

switch, there is a degradation of performance of roughly

7%, changing the average wall-time for the reaction kernel

to run from .246 ms to .264 ms.

II. PARTICLE-WISE PROPENSITY SUMMATION

The first approach to accelerating the kernel is to consider

a different algorithm for computing a lattice site’s total

reaction propensity atot entirely. Instead of computing the

total propensity as a sum of all the individual reaction

propensities, we can consider instead summing the propen-

sity of all possible interactions of the particles in a given

lattice site. For example, consider a model with a first-

order reaction for A to B with propensity of occurring in

a timestep equal to p1, and a second order reaction for A

and C forming D with a propensity of p2. If in a lattice

site, we had three A particles and two C particles, the total

propensity is the sum of the two reaction’s propensities

according to their rate laws: 3∗p1+3∗2∗p2. Alternatively,
we can consider individually the propensity of each particle

in a lattice site and all combinations of two particles and

sum those. Each A particle contributes p1, since there is

a first-order reaction defined for A; each C individually

contributes nothing. For second-order reactions, all particle

pairs are examined. Combinatorially there are six AC pairs

that each have a propensity p2; the AA and CC pairs have

zero reaction propensity. In total, it is the same propensity

as it is when computed on a reaction-by-reaction basis.

To compute the total propensity for a lattice site, we will

look up values from three pre-computed data structures: A

vector for the zeroth-order propensities for each site type

(A0), an array for the propensity of a single particle of

a species for each site type(A1), and a 2-D array for the

propensity from a pair of particles for each site type (A2).

If multiple reactions are defined that map to the same indices

in these structures, the propensities are added together.

Let A0
ν denote the zeroth-order propensity for a lattice site

of type ν, A1
i,ν denote the propensity of particle of type i in

site ν, and A2
i,j,ν signifies the i+j particle pair propensity in

site ν. Note that A2 is symmetric, that is, A2
i,j,ν = A2

j,i,ν , and

diagonal entries specify propensities for second-order self

dimerizing reactions. The procedure for computing the total

propensity for a given lattice site is shown in Algorithm 3.

A particle-based propensity summation benefits from the

fact that the number of particles that can be in a lattice site

is a fixed quantity. Commonly, it is eight particles to a site.

For eight particles per site, algorithm 3 reads at most 37

memory elements. These 37 references are data dependent,

430

Table I
BENCHMARK MODEL SYSTEMS

Model Physical Size Lattice Grid Size Species Site Types Reactions Initial Particles
Bimolecular 2 μm× 2 μm× 2 μm 128× 128× 128 2 1 2 40, 000
Lac Switch 1 μm× 1 μm× 2 μm 64× 64× 128 12 3 24 28, 936

Ribosome Biogenesis 1 μm× 1 μm× 4 μm 32× 32× 128 251 4 884 37, 318

atot = A0
ν

c = |xν |
for i = 0 to c do

let pi = type of the ith particle in xν

atot = atot +A1
pi,ν

for j = i+ 1 to c do
let pj = type of the jth particle in xν

atot = atot +A2
pi,pj ,ν

end
end

Algorithm 3: Procedure for computing the propensity of

a given lattice site

Table II
AVERAGE WALL TIME PER TIMESTEP FOR THE REACTION KERNEL

USING THE ORIGINAL ALGORITHM AND THE PARTICLE-WISE

PROPENSITY TABLES. RUN ON AN NVIDIA TITAN-X GPU.

System S/RL in Global Mem Particle-wise
Bimolecular 0.273 ms 0.415 ms
Lac switch 0.264 ms 0.097 ms

Riobsome biogenesis 3.297 ms 0.051 ms

and are essentially random with respect to elements that

other threads are reading, resulting in a lot of non-coalesced

memory accesses. Recent GPU hardware includes on-chip

caches for memory to boost performance for random-access

patterns in kernels. Using the read-only data cache path is

desirable here as well as it was in reading the RL and S

matrices in the original version.

The remainder of the reaction operator kernel is un-

changed from the original. A random number is generated to

determine if a reaction will occur given the computed total

propensity. Then, the list of reactions is linearly scanned to

find which reaction occurs. Finally, the S matrix is used to

update the particles in the lattice site.

The comparison of the reaction kernel wall-time is shown

in Table II. We observe an astounding improvement in

performance for the ribosome biogenesis model, over sixty-

fold faster than the original. This can be attributed to a few

factors. One, the number of memory accesses is considerably

lower, as the number of values needed to compute the

propensity is independent of the number of reactions. This

model also has the smallest lattice of the three systems,

which means it requires the smallest number of threads,

as one GPU thread computes reactions for exactly one

lattice site. The lac switch model improved about 2.75 times,

indicating that even modestly complex models can greatly

benefit from this approach. However, the bimolecular system

ran 1.5 times slower. With only two reactions, the original

reaction-oriented approach was preferable.

III. RUN-TIME CODE GENERATION

Starting in CUDA 7.0, the NVIDIA GPU driver can

compile CUDA C++ code at runtime. By generating and

compiling code at run-time, we have the opportunity to

know exactly what reactions are going to be simulated in

the model and can emit code that is specific for a set of

reactions. In effect, we have the ability to directly embed

all of the constant parameters as immediate values in to the

source code, instead of fetching them from memory from a

data structure. Using the original source code as a template,

we can replace sections of the code that read from memory

with the actual values that would be stored there. Since we

have the specific set of reactions that make up R, we can

manually unroll the r ∈ R loops in algorithm 1. We can

emit a series of statements that compute the propensity for

a reaction like what is shown in algorithm 2. The value of

rr1, rr2, and rprop are all known for each reaction and the

value is substituted in the emitted code in place of a variable

name. Since rorder is known, the entire if statement can

be replaced with the appropriate propensity function for the

reaction.

The same code can be generated for both of the loops

over all reactions. However, in the second loop, we need to

update the lattice site to reflect the outcome of the reaction.

When the reaction to occur is determined, variables are set to

the indices of all of the non-zero values of the stoichiometric

matrix. We can determine ahead of time what the maximum

number of these variables will be needed are and emit

appropriate code to handle all of them. As all the values

that were stored in constant memory are now directly in the

source code, there are no longer any memory restrictions that

limit the number of reactions we can simulate at one time,

except for the CUDA kernel maximum instruction count.

After generating program code directly from the input

model, we can compile the specialized kernel using the

nvRTC library. It receives the program source as a string

and will return a handle to the resultant binary that can then

be executed using the CUDA driver API.

This expectation for this approach is providing constants

embedded in code will outperform reading from GPU con-

stant memory. This can be demonstrated with a simple

benchmark of four kernels, where each thread iteratively

accesses all each element of an array and produces a sum

431

�

�

��

��

��

��

��

��

��

��

� ���� ���� ��	� ��
�

�
��
���
�
	�

�

�

�� ������

������ ����
�
��������� ���� �����

�������� ����
�
 ����!���

Figure 1. A kernel with immediate values compiled at run-time out-
performs kernels utilizing constant memory or global memory when all
threads are simultaneously accessing the same element of an array. For
access patterns where each thread reads each element in order, utilizing
global memory’s read-only data cache outperforms using constant memory.

of the result. We will assume for this test a situation where

shared memory is otherwise occupied and is unavailable for

temporary storage of these arrays. The first kernel reads

directly from GPU global memory. The second kernel also

uses GPU global memory, but uses the __ldg intrinsic

to read through the GPU’s read-only data cache. The third

kernel reads the array elements from constant memory, and

the fourth kernel is generated and compiled at run-time to

produce the same sequence of arithmetic operations as the

other kernels. The first three kernels employ a loop to iterate

over the array. To make the comparison more equitable, extra

instructions are added to the generated kernel to simulate a

loop: incrementing an integer variable as a loop counter and

checking the value for terminating the loop. The execution

times for these kernels across a range of array lengths can

be found in figure 1. GPU global memory performs worse

than GPU constant memory, as expected. The difference

is most dramatic when accessing a small number of con-

stants. By using the read-only data cache, performance is

comparable to using constant memory for small arrays, and

outperforms constant memory when reading more than 4 kB
(1024 single-precision floating point elements). The best

performing kernel is the generated kernel with immediate

loads. This asserts that the GPU hardware is well suited to

dispatch instructions quickly, and embedding constants as

immediate values is viable for improving performance over

Table III
AVERAGE WALL TIME PER STEP FOR THE REACTION KERNEL USING THE

ORIGINAL ALGORITHM AND RUN-TIME COMPILED CODE ON AN

NVIDIA TITAN-X GPU.

System S/RL in Global Mem Run-time Compiled
Bimolecular 0.273 ms 0.213 ms
Lac switch 0.264 ms 0.079 ms

Riobsome biogenesis 3.297 ms 5.395 ms

reading constants from anywhere else in the GPU memory

hierarchy.

In Table III, the original, compile-time kernel is com-

pared against the run-time generated kernel. The bimolecular

switch performance improves with a 1.28 times speedup,

which is in contrast to running slower for the particle-

wise version. The lac switch improves by 3.3 times, which

is greater than the speedup for the particle-wise version.

However, the ribosome biogenesis model is now 1.6 times

slower, which is remarkably different.

An examination of what went wrong with run-time gen-

eration for the ribosome biogenesis model can be found

by generating kernels with a subset of the reactions and

measuring performance and other metrics. A plot of kernel

performance from one to 500 reactions is seen in figure 2. In

the lower panel of the figure, the time to execute the kernel

(circles) initially shows little variation as reaction count

increases. Around 225 reactions, the run time rises sharply.

This corresponds directly with the per-thread register count,

which hits the maximum value of 255 (lower panel of

figure 2, squares). The upper panel of figure 2 shows local

memory transaction counts. Local memory, which is GPU

global memory that is visible only to a single thread, and

is utilized by the compiler for register spills. That is, when

the compiler wishes to store intermediate data and there are

no registers available, local memory is used to temporarily

store information instead. An increase in writing to local

memory is coincident with the increase in kernel run time,

and is the source of the poor performance.

Before nvRTC was available, we experimented with gen-

erating code and including it at run-time to produce a model-

specific binary for the ribosome biogenesis project. Using

CUDA 5.5 and CUDA 6.5, we did experience better perfor-

mance over the original kernel, which motivated the effort to

utilize nvRTC. We believe that generating code dynamically

for a model can be beneficial for even large models, but

performance is highly dependent on the compiler version.

IV. CONCLUSION

For both the particle-wise propensity summation and

the run-time generated code approaches, the average wall-

time for the original reaction kernel was compared against

the wall-time for the modified version. Three test models

that exhibit a range of complexity were used to evaluate

the effectiveness of each approach. The run-time compiled

432

���
���
���
���
���
���
���
���
��	
��

�
��
��
�
�	
�
��
��

��
�

��
��
��

� ����� ����	
 ����

����� ����	

��	�

�
���
�

���
�

���
�

���

� �� ��� ��� ��� ��� ��� ��� ��� ��� ���

���

��
��
��
���
���
���
���

�
��
��
��
��
�	

�
�

�

�
��
	�
��
��
��
�
��
��
��

�����	 �� ��������

��	��� 	������
����
��	
 �
��

Figure 2. Analysis of reaction kernel runtime, register consumption, and local memory traffic as reaction count grows. Kernel runtime (lower panel,
circles) performance suffers once the per-thread register count (lower panel, squares) reaches the maximum of 255. The compiler utilizes register spilling
once available registers are exhausted, resulting in a dramatic increase in local memory traffic (upper panel), which hurts performance.

kernel was best for the bimolecular and lac genetic switch

models, which would suggest that models with low number

of species and reactions are amenable to acceleration via

this method. The particle-wise approach is strongly favored

for the ribosome biogenesis model, where the high number

of reactions are limiting performance.

Run-time code generation is a useful optimization when

the compiler is able to keep register utilization down. As

the excessive register spilling is the result of attempted opti-

mizations by the compiler, there is hope that a future version

of the compiler will behave differently and generate machine

code in a manner that makes just-in-time compilation a

viable technique for any sized model.

Looking forward, generating GPU code at run-time opens

up a new set of features, beyond just improving performance.

Similar to OpenMM’s custom forces [14], a user could

define a propensity calculation that does not have the same

format as the rate laws currently supported in MPD-RDME.

The two methods for acceleration shown here could also be

used in tandem to use a particle-wise method for quickly

computing zeroth, first, and second order reactions, and

generated code for other types.

V. ACKNOWLEDGEMENTS

We would like to thank the NIH Center for Macromolec-

ular Modeling and Bioinformatics (NIH-9P41GM104601),

the National Science Foundation (Center for the Physics of

Living Cells, grant PHY-1430124) and MCB-1244570, for

their partial support of this work.

REFERENCES

[1] S. S. Andrews, N. J. Addy, R. Brent, and A. P. Arkin,
“Detailed simulations of cell biology with Smoldyn 21,” PLoS
Comput. Biol., vol. 6, no. 3, p. e1000705, 2010.

[2] J. Stiles, D. van Helden, T. B. Jr., E. Salpeter, and M. Salt-
peter, “Miniature endplate current rise times < 100 μs from
improved dual recordings can be modeled with passive acetyl-
choline diffusion from a synaptic vesicle,” PNAS, vol. 93,
no. 12, pp. 5747–5752, 1996.

[3] J. Schöneberg and F. Noé, “ReaDDy - A Software for
Particle-Based Reaction-Diffusion Dynamics in Crowded
Cellular Environments,” PLoS ONE, vol. 8, no. 9, p.
e74261, 09 2013. [Online]. Available: http://dx.doi.org/10.
1371%2Fjournal.pone.0074261

[4] J. Hattne, D. Fange, and J. Elf, “Stochastic reaction-diffusion
simulation with MesoRD,” Bioinform., vol. 12, no. 21, pp.
2923–2924, 2005.

[5] E. Roberts, J. E. Stone, and Z. Luthey-Schulten, “Lattice
microbes: High-performance stochastic simulation method for
the reaction-diffusion master equation,” Journal of Computa-
tional Chemistry, vol. 34, pp. 245–255, 2013.

[6] M. J. Hallock, J. E. Stone, E. Roberts, C. Fry, and Z. Luthey-
Schulten, “Simulations of reaction diffusion processes over
biologically-relevant size and time scales using multi-gpu
workstations,” Parallel Comput., vol. 40, pp. 86–99, 2014.

[7] B. Chopard and M. Droz, Cellular Automata Modeling Of
Physical Systems. Cambridge, UK: Cambridge University
Press, 1998.

[8] D. T. Gillespie, “Stochastic simulation of chemical kinetics,”
Annu. Rev. Phys. Chem., vol. 58, pp. 35–55, 2007.

433

[9] J. V. Rodrı́guez, J. A. Kaandorp, M. Dobrzyński,
and J. G. Blom, “Spatial stochastic modelling of the
phosphoenolpyruvate-dependent phosphotransferase (PTS)
pathway in Escherichia coli,” Bioinformatics, vol. 22, no. 15,
pp. 1895–901, 2006.

[10] E. Roberts, J. E. Stone, L. Sepulveda, W. W. Hwu, and
Z. Luthey-Schulten, “Long time-scale simulations of in vivo
diffusion using GPU hardware,” in The Eighth IEEE In-
ternational Workshop on High-Performance Computational
Biology, May 2009.

[11] T. Earnest, J. Lai, K. Chen, M. Hallock, J. R. Williamson,
and Z. Luthey-Schulten, “Towards a whole-cell model of
ribosome biogenesis: Kinetic modeling of ssu assembly,”
Biophys. J., 2015.

[12] J. R. Peterson, M. J. Hallock, E. Roberts, J. A. Cole,
P. Labhsetwar, J. E. Stone, and Z. Luthey-Schulten.
(2014) Lattice microbes problem solving environment
instruction guide. [Online]. Available: http://www.scs.illinois.
edu/schulten/lm/download/lm22/InstructionGuide.pdf

[13] NVIDIA Corporation. (2015) Tuning CUDA Applications
for Kepler. [Online]. Available: http://docs.nvidia.com/cuda/
pdf/Kepler Tuning Guide.pdf

[14] P. Eastman, M. S. Friedrichs, J. D. Chodera, R. J. Radmer,
C. M. Bruns, J. P. Ku, K. A. Beauchamp, T. J. Lane,
L.-P. Wang, D. Shukla, T. Tye, M. Houston, T. Stich,
C. Klein, M. R. Shirts, and V. S. Pande, “OpenMM
4: A Reusable, Extensible, Hardware Independent Library
for High Performance Molecular Simulation,” Journal of
Chemical Theory and Computation, vol. 9, no. 1, pp.
461–469, 2013, pMID: 23316124. [Online]. Available:
http://dx.doi.org/10.1021/ct300857j

434

