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Abstract—When studying membrane-bound protein recep-
tors, it is necessary to move beyond the current state-of-the-
art simulations that only consider small membrane patches
and implicit solvent. Limits of traditional computer platforms
negatively impact the model’s level of realism and the com-
putational scales achievable. On the other hand, multi-core
platforms such as GPUs offer the possibility to span length
scales in membrane simulations much larger and with higher
resolutions than before.

To this end, this paper presents the design and implementa-
tion of an advanced GPU algorithm for Molecular Dynamics
(MD) simulations of large membrane regions in the NVT,
NVE, and NPT ensembles using explicit solvent and Particle
Mesh Ewald (PME) method for treating the conditionally-
convergent electrostatic component of the classical force field.
A key component of our algorithm is the redesign of the
traditional PME method to better fit on the multithreading
GPU architecture. This has been considered a fundamentally
hard problem in the molecular dynamics community working
on massively multithreaded architecture. Our algorithm is
integrated in the code FENZI (yun dong de FEN ZI in
Mandarin or moving molecules in English). The paper analyzes
both the performance and accuracy of large-scale GPU-enabled
simulations of membranes using FENZI, showing how our code
can enable multi-nanosecond MD simulations per day, even
when using PME.

Keywords-Biomolecular Systems Simulation; Molecular Dy-
namics; DMPC Membranes; Performance; Accuracy; Ewald
Summation; Particle Mesh Ewald.

I. INTRODUCTION

Roughly one-third of the human genome is composed
of membrane-bound proteins that are only now becoming
structurally resolved due to heroic experimental efforts. Fur-
thermore, pharmaceuticals target membrane-bound protein
receptors (such as G-protein coupled receptors, GPCR’s),
thus emphasizing the importance of such systems to human
health and understanding of dysfunction. Computing and
communication bottlenecks limit membrane simulations to
the simulation of small regions (or patches) of physio-
logical membranes using implicit solvent representations.
Heterogeneity of membranes spans length scales much larger
than included in these smaller model systems. Thus when
studying membrane-bound protein receptors, it is necessary
to move beyond the current state-of-the-art simulations that

only consider small patches and implicit solvent. While the
biological models are mature for this step, still limits of
traditional computer platforms negatively impact the model’s
level of realism and the computational scales achievable.
With the advent of multi-core platforms such as GPUs,
scientists have now new computing tools to overcome these
barriers. At the same time the migration of the biological
models to the new platforms include new challenges, i.e.,
algorithm redesign and implementation to meet the new
platform configurations.

To this end, in this paper we present the design and imple-
mentation of an efficient algorithm for Molecular Dynamics
(MD) simulations for GPUs. The algorithm is integrated in
the code FENZI (yun dong de FEN ZI in Mandarin or mov-

ing molecules in English) that enables the fast simulation of
membrane regions in the NVT (i.e., constant atom number,
constant volume, and constant temperature) NVE (i.e., con-
stant atom number, constant volume, and constant energy),
and NPT (i.e., constant atom number, constant pressure, and
constant temperature) ensembles with explicit solvent. A key
contribution of this paper is the presentation of an efficient
GPU algorithm for the Ewald summation for treating the
conditionally-convergent electrostatic component of the clas-
sical force field and the Particle Mesh Ewald (PME) method
to compute the corresponding reciprocal space terms. While
adding accuracy to the simulation results, the use of the
PME method also adds an additional layer of complexity
to the efficient implementation of FENZI on GPUs, since
requiring to deal with charge location and spread as well
as Fast Fourier Transform (FFT) calculations on a multi-
threading platform. We address this challenge in FENZI by
rethinking the way changes are spread and handled from a
charge-centric representation (as it is traditionally done in
CPU algorithms) to a lattice-centric representation.

We use FENZI to analyze the performance and accu-
racy of large-scale, GPU-enabled computations of extended
phospholipid bilayer membranes (DMPC), and show how
our code can enable multi-nanosecond MD simulations per
day, even when using PME for large membranes, with
273,936 atoms in explicit solvent. We use CHARMM as
the reference code to validate the FENZI accuracy and
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performance by comparing results of FENZI versus results
of the same DMPC simulations with CHARMM on multi-
core systems. Even though the motivation of this work was
the study of large membrane regions, FENZI is a full-fledged
general purpose MD package based on canonical force fields
and PME for GPU enabled simulation of a broad class
of molecular systems. Thus, for the sake of comparison
with other existing MD codes for GPU including PME,
we measure FENZI performance when running the DHFR
benchmark.

The rest of the paper is organized as follows: Section II
presents the modeling and implementation of our MD code,
including the PME algorithm for GPUs; Section III shows
the performance and accuracy of the code from the sci-
entists’ and computer scientists’ prospectives; Section IV
discusses relevant related work; and Section V concludes
the paper and lists future work.

II. MODELING AND IMPLEMENTATION

A. MD Modeling

FENZI (yun dong de FEN ZI in Mandarin or moving

MOLECULES in English) enables GPU-based MD simu-
lations in constant energy (also called NVE) or constant
temperature (also called NVT) ensembles using a modified
version of the CHARMM force field in terms of force field
functional forms and measurement units [1]. The entire MD
simulations (i.e., intra-molecular and long range potentials)
are computed on GPU.

The intra-molecular potential, which includes bonds, an-
gles including the Urey-Bradley summation, and dihedral, is
as follows:

Vintra =
∑

bonds

Kb (r − r0)
2 +

∑

angles

Ka (θ − θ0)
2 +

∑

Urey-Bradley

KUB (S − S0)
2 +

∑

dihedrals

Kφ (1 + cos(nφ − δ)) +

∑

impropers

Kω (ω − ω0)
2

where Kb,Ka,KUB ,Kφ,Kω are the bond, angle, Urey-
Bradley, dihedral and improper force constants, and
r0, θ0, S0, δ , ω0 are their corresponding equilibrium dis-
tances.

Non-bonded Lennard-Jones interactions are modeled us-
ing a standard 6-12 dispersion-repulsion potential:

VLJ =
pairs
∑

i,j

(

4εij

[

(

σij

rij

)12

−
(

σij

rij

)6
])

where εij and σij are the potential well depth and the van
der Waals radius, respectively, used in the Lennard-Jones
potential.

Long range electrostatic interactions can be computed
either by using the reaction force field (RF) or the Ewald
summation method. In this work we employ Ewald sum-
mation for electrostatic interactions and the PME method
to compute the corresponding reciprocal space terms. In the
Ewald summation method the electrostatic interactions are
divided into the direct space energy (Edir), the reciprocal
space energy (Erec), and the self energy (Ecorr) contribu-
tions to the total energy, depending on the distance of the
interaction [2]. The three contributions are:

Edir =
N−1
∑

i=1

N
∑

j>i

qiqjerfc(βrij)

rij

Erec =
1

2πV

∑

#m"=0

exp(−π2 )m2/β2)

)m2
S()m)S(−)m)

Ecorr = −
1

2

∑

(i,j)∈Excl

qiqjerf(β|ri − rj |)
|ri − rj |

−
β√
π

∑

i=1

Nq2
i

where β is the Ewald parameters and )m = (m1,m2,m3) are
reciprocal space lattice vectors, V is the volume of the unit
cell in the reciprocal space, and S()m) is the lattice structure
factor given by:

S()m) =
∑

j

qj exp()m)r j)

The solvent is treated explicitly. Water bond, angle, and
charge parameters are transferred directly from the SPC/Fw
model of Wu et al. [3].

B. Code Implementation on GPU

We use CUDA for our code implementation. Bond-,
angle-, and dihedral interactions are each handled by a uni-
fied kernel that evaluates the potentials by iterating through
the list of all atoms bonded to or involved in an angle with
an atom i and accumulates the appropriate forces. Unlike
non-bonded lists, the bond-, angle-, and dihedral lists never
require updating, so they are constructed once on the CPU
at the start of the simulation and then copied to the GPU.

Non-bonded interactions (i.e., Lennard-Jones and direct
space electrostatic terms) are handled by two kernels,
NBBuild and NonBondForce.

In NBBuild, FENZI uses the cell based approach for
building the nonbond neighbor list. The entire domain of
atoms is decomposed into regular cubic cells of edge length
equal to rcut. The list of all the neighboring atoms within
the cutoff rcut is build so that only atoms in the neighboring
cells are searched. The neighbor list is constructed using the
Verlet list approach [4], in which a list is constructed for each
atom containing all atoms within a cutoff rlist > rcut and
not in the exclusion. During the construction of the neighbor
list, the exclusion list is rapidly searched by constructing
a bitmask of exclusion atoms [5] for each particle, which
enables bitwise operations. The nonbond neighbor list only
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needs to be updated when an atom has moved beyond a
user defined buffer size. While building the neighbor list
for each atom, only the atoms within the current cell and 26
neighboring cells in 3-dimensional space need to be searched
for atoms within the cutoff distance. The cells themselves are
updated efficiently by carefully keeping track of movement
atoms within the cells and employing atomic intrinsics where
possible.

In NonBondForce, each thread iterates through the
list of neighbors for a single atom i and accumulates the
interactions between i and all its neighbor list entries. The
texture cache, which speeds up reading from global memory
locations that are not contiguous, is used for reading the
coordinates of the neighbor atoms. Switched force forms
are used for the Lennard-Jones potential to ensure that both
energies and forces go smoothly to zero at the cutoff rcut.

C. Smooth Particle Mesh Ewald

The multithreaded GPU architecture requires us to re-
design the Smooth Particle Mesh Ewald (PME) algorithm,
used to compute the corresponding reciprocal space terms in
the Ewald summation. More in particular, we need to rethink
the way charges are spread, handled, and updated during
the MD simulation. This problem has been considered fun-
damentally hard to be ported onto massively multithreaded
platforms [6] due to the atomic nature of computations
involved. Here we propose to redesign the PME computation
by moving away from a charge-centric representation (as it
is traditionally done in CPU algorithms) to a lattice-centric
representation for GPUs. This enables us to keep track of
the movement of charges to different lattice points efficiently
and optimally.

The Smooth Particle Mesh Ewald (PME) component of
the Ewald summation method (Erec) requires us to deal
with location of charges. The entire procedure involves: (1)
spreading the charges within a neighboring volume of 4x4x4
cells for each charge in order to obtain a 3-dimensional
charge matrix, (2) computing the inverse 3D FFT of the
matrix, (3) multiplying the charge matrix by pre-computed
structure constants, (4) computing the forward FFT of the
product, and (5) summing the entries of the matrix to obtain
energy and forces [2]. The charge spreading is performed
in the ChargeSpread kernel and the list updating is done
in the LatticeUpdate kernel. The FFT computations,
i.e., inverse and forward FFTs, are performed using the
CUDA FFT library. The kernel CUFFTExec performs both
the FFTs. The multiplication of the charge matrix by pre-
computed structure constants is performed by the kernel
BCMultiply. Last but not least, the summation of the
entries of the matrix to obtain energy and forces is performed
by the kernel PMEForce.

Of these five steps, the charge spreading is one of the
most compute intensive. In [7], where another example of
MD code with PME for GPUs is presented, this step is











Figure 1. Example of influence region of three charges. The combined
effect of the multiple charges impacts the volume under intersection of
neighborhoods.

implemented by a three-step process which involves placing
the charges on lattice points with utmost one charge per point
(with extra charges considered separately), accumulating the
impact of charges for each points, and finally accumulating
the effects of the extra charges. Our implementation differs
from the implementation in [7] since we accumulate impact
of charges based on a local list of charges for each lattice
point. Our charge spreading on GPU is performed by main-
taining a local neighbor list for each lattice point, followed
by an efficient update of list caused due to the movement of
particles. In general, the charge contained in each atom is
spread within a neighborhood of 4x4x4 lattice points around
the particle. The spreading of charges is done with the help
of the cardinal B-spline according to the summation:

Q(kx, ky, kz) =
N

∑

i=1

∑

n1,n2,n3

qiM4(uxi − kx − n1Kx)

× M4(uyi − ky − n1Ky)

× M4(uzi − kz − n1Kz)

where kx, ky, kz index the 3-D charge matrix of size,
Kx,Ky,Kz and uxi, uyi, uzi are the relative x, y, z co-
ordinates of the ith particle w.r.t. the charge matrix. The
cardinal B-spline M4 is continuously differentiable and has
a compact support. As shown in Figure 1, each charge is
spread around a neighborhood of 4x4x4 lattice points and
multiple charges can contribute to the total charge at each
point.

When a charge moves due to dynamics of the system, as
shown in Figure 2 where a charge moves from Point 2 to
Point 2’, we can identify three regions of the lattice: (1) a
region from which the charge is removed from the neighbor
lists (light gray region in Figure 2), (2) a region whose
neighbor lists gain the charge (dark grey region in Figure 2),
and (3) a region whose neighbor lists are not impacted
(white region in Figure 2). The solid arrow indicates the
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







Figure 2. Example of charge update for which only the affected lattice
points are updated.

charge movement; dash arrows indicate mapping between
lattice points. With reference to the mapping, the lattice
points gaining the charge impact are initially not aware of
the charge movement and thus need to search through the
global list of charges for the information when an update
takes place. This search is time demanding. At the same
time, we observe that the movement of a charge produces
an equal number of lists gaining the charge and lists losing
the charge. The latter lists are associated to lattice points that
are aware of the destination points in a one-to-one mapping
schema showed in Figure 2. We can benefit from this one-to-
one mapping to reduce the time for the update of the lists by
having the threads of the points losing the charge updating
the lists of the points gaining the charge. This will prevent
the lattice points gaining the charge impact to explore the
whole global list of charges. In case multiple charges from
different lattice points move into the neighborhood of the
same lattice point, then the neighbor list of that point is
updated by multiple threads. In Figure 3 the local neighbor
list of a point point is updated by two different threads due to
the movement of two different charges (Charges 2 and 1).
Since this update requires the addition of two charges by
different threads to the same neighbor list, this is performed
with the help of thread safe integer atomic intrinsics.

To minimize the number of floating point calculations,
we pre-compute several functions (i.e., B-Spline values, the
structure constants, and the value of error function(erfc)) and
store them in the constant memory.

III. PERFORMANCE AND ACCURACY

A. Benchmark and Set-up

To demonstrate both FENZI scalability and performance
across multiple scales of system sizes, we considered a com-
monly used membrane system, the lipid bilayer membrane
(DMPC), with three different sizes, one four times larger
than the previous, as shown in Figure 4:













Figure 3. When a single cell is affected due to displacement of multiple
charges, it is updated with the help of integer atomic intrinsics.

• Small membrane (DMPC 1x1): 46.8 X 46.8 X 76.0 Å,
17,004 atoms (i.e., 14,096 bonds, 19,108 angles, and
22,536 dihedrals)

• Medium membrane (DMPC 2x2): 93.6 X 93.6 X 76.0
Å, 68,484 atoms (i.e., 56,696 bonds, 76,588 angles, and
90,144 dihedrals)

• Large membrane (DMPC (4x4): 187.2Å X 187.2Å X
76.0Å, 273,936 atoms (i.e., 226,784 bonds, 306,352
angles, 360,576 dihedrals)

In the small membrane (DMPC 1x1) we deal with 2,836
explicit water molecules; in the medium membrane we deal
with 11,500 explicit water molecules; in the large membrane
we deal with 46,863 explicit water molecules. Normally

Lipid bilayer membranes are an important class of bio-
logical components, and fundamental study of their struc-
ture, dynamics, and interactions with peptides, proteins, and
medicinally-relevant small molecules is important. Current
state-of-the-art simulations employ traditional supercomput-
ers and study regions of the size of the small DMPC, because
of time and resource constrains.

We ran the same DMPC simulations (with the same input
files - i.e., coordinates, topology, and input parameters) on
a cluster node using CHARMM [1] as a reference for as-
sessing both FENZI accuracy and performance. CHARMM
simulations were run on 1, 2, 4, and 8 cores of an Intel
Xeon with speed 2.6GHz and 8GB of memory. We did not
scale CHARMM beyond 8 cores of a single node because
the cluster used was not provided with InfiniBand and
thus the performance was very poor across nodes. For our
GPU simulations, we used both a GTX 480 GPU (Fermi)
with 480 cores and 1.5 GB memory and a C2050 GPU
(Fermi) with 448 cores and 3 GB memory. The performance
values presented are the average values computed over three
repeated simulations. The standard deviation is not reported
because it is close to zero.
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Figure 4. The three DMPC membranes considered in this paper - each membrane is four times larger than the previous membrane.

B. Performance

When addressing performance, scientists want to know
how much simulated time (e.g., in nanoseconds or microsec-
onds) can be performed in one day. Flops and MIPS have
little meaning for the scientists. Thus, in this paper we
measure FENZI performance and compare it against other
codes in terms of nanoseconds per day.

First of all, we compared FENZI performance versus
CHARMM performance, since CHARMM is the code we
normally use for our membrane studies. For our comparison,
we ran 10,000 steps of a constant energy MD simulation
(NVE) with the smaller membrane (DMPC 1x1) using a
rcutoff of 8Å with a buffer cutoff rlist for the list updates
of 9.5Å. Each step was 1 fs long. For the GPU platform, we
considered both a GTX 480 and a C2050. Figure 5 shows
the number of nanoseconds per day for the double-precision
parallel CHARMM code optimized for 1, 2, 4, and 8 CPU
cores versus the number of nanoseconds per day of FENZI
on one single GPU. CHARMM uses MPI for distributing
the membrane domain across cores and was optimized for
the specific node. The figure shows how the speedup of
one single-precision GPU is up to 10X faster than a 8-core,
double-precision CPU node.

To study the scalability of our code, we compared its
performance in terms of ns/day for the three lipid bilayer
membranes (DMPC) systems with different sizes. Each
DMPC membrane is four times larger than the previous.
FENZI simulations were performed on the GTX 480 and
C2050 GPU. Figure 6 shows how FENZI enables multi-
nanosecond MD simulations per day with the considered
membranes. More in particular, for the small membrane and
the faster GTX 480 GPU, our MD code running on GPUs
achieves simulation rates of up to 22.86 million MD steps
with 3.78 ms per step (22.86 nanoseconds per day with a
MD step size of 1 fs), up to 6.79 million MD steps per day

1 2 4 8 GTX 480 C2050
0
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10

15

20

25

n
se

c/
d
a
y

0.4 0.7 1.4 1.9

22.8

(#cores on cluster node)
CHARMM

17.7

(single GPU)
FENZI

Figure 5. Comparison of performance in terms of ns/day for CHARMM
on 1, 2, 4, and 8 CPU cores versus FENZI on GTX 480 (Fermi chip).

with 12.7 ms per step (6.79 nanoseconds per day with a
MD step size of 1 fs) for the medium membrane, and up
to 1.63 million MD steps per day with 52.71 ms per step
(1.63 nanoseconds per day with a MD step size of 1 fs)
for the large membrane. The performance on C2050 GPUs
is slightly slower but still very competitive compared with
traditional and more expensive supercomputers.

Overall, FENZI allows us to simulate larger membranes,
larger than simple regions, over a longer simulated time
interval in a significantly shorter turnaround time. Work in
progress includes the study of the membrane properties -
i.e., structural (densities, electron density profiles), order pa-
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Figure 6. Simulations of three lipid bilayer membranes (DMPC) with
three different sizes, each four times larger than the previous.

rameters (SCD) and electrostatic properties (dipole potential,
water dipole moments), as well as orientational properties of
water - over a time scale of tens of hundreds nanoseconds,
to assess whether properties observed in small membranes
with simulations on traditional CPU clusters are still true as
the membranes significantly grow in size.

C. Accuracy

Clearly, even the fastest MD code has little value if the
results it produces are not accurate. To ensure that our
simulation results are accurate, we first ran the same 100
ps MD simulation for the smaller membrane system in
equilibrium with different time step size - i.e., 0.1 fs, 0.20
fs, 0.5 fs, 1 fs, and 2 fs - and single precision. We plot the
fluctuations in the total energy as a function of the time step
size in Figure 7. According to Allen and Tildesley [4], a
plot of the energy fluctuations versus time step size should
follow an approximately logarithmic trend. In Figure 7
we observe that, for large time step size (larger than 0.5
fs), the fluctuations in total energy of MD simulations are
proportional to the time step size. On the other hand, we
observe a different behavior for step size less than 0.5
fs. This is consistent with results previously presented and
discussed in [8].

Next, we ran simulations with the smaller membrane
(DMPC 1x1) system in equilibrium on CPU using the
double-precision CHARMM code and on GPU using our
single precision code. The simulations are performed in
constant temperature. As pointed out in [9], energy drift can
be observed in long constant energy simulations and the drift
can be easily overcome by maintaining constant temperature
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Figure 7. Plot of the total energy fluctuations of DMPC 1x1 as a function
of time step size for different time step size - i.e., 0.1 fs, 0.20 fs, 0.5 fs, 1
fs, and 2 fs and single precision.

(e.g., using velocity reassignment which effectively changes
the energy state of the system at specified intervals, thereby
eliminating the drift for production simulations)

Figure 8 plots the temperature (a function of kinetic
energy), bond energies (i.e., bond-, angle, Urey-Bradley-,
improper-, and dihedral energies), and non-bond energies
(i.e., VDW, electrostatic, and PME) over a 3 ns simulation
time for the small membrane. The several quantities (i.e.,
temperature and energy) fluctuate, as expected, around the
same average value for both the double precision CPU sim-
ulation and single precision GPU simulation. We observed
that FENZI initial energy (step 0) matches the CHARMM
initial energy. During the initial phase of the simulation,
before the system reaches the equilibrium, we also observed
some energy drifting due to the different thermostats used
by the two codes (i.e., CHARMM uses Langevin thermostat
while FENZI uses velocity reassignment). Eventually the
two simulations converge, indicating that FENZI does in fact
produce results consistent with CHARMM and the use of
double precision is not needed on GPUs for this type of
simulations. A detailed analysis of the energy profiles from
the science point of view is work in progress.

IV. RELATED WORK

Other scientists have been targeting the design and im-
plementation of MD codes including the PME computation
entirely on GPUs. One of the most relevant published work
is ACEMD [7]. As outlined in Section II-C, FENZI is
different from ACEMD in terms of how it deals with the
charges and charge spreading for PME. Since a profiling of
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Figure 8. Comparison of the temperature and energy profiles for 3 ns of NVT MD simulation with 1fs step size for CHARMM on single core, 64 bits
and FENZI on GTX 480, 32 bits.

the individual kernels for ACEMD is not feasible (the code is
not open-source) and this information is not available (data
in [7] is not readable for comparison), we cannot quantify
the impact of our kernel performing the charge spreading
versus the equivalent ACEMD kernel. As also outlined
in [10], ACEMD has been designed and optimized for single
GPUs and small molecular systems. ACEMD has been
parallelized by distributing the kernels across three GPUs
in a task-based parallelism. This approach can limit the
size of a molecular system that can be ultimately simulated
with ACEMD to approximately 100K atoms, due to global
memory limitations. On the contrary, while designing FENZI
as described in Section II, we have been using data structures
and algorithms that can be easily parallelized in a data
parallelism way. We are currently working on a parallel
version of FENZI that uses domain decomposition to assure
scalability of the simulation for very large molecular systems
supported by multiple GPUs.

Walker and co-workers are also currently working on a
version of AMBER for GPUs including PME. Preliminary
performance results for the DHFR (23K atoms) and ApoA1
(92K atoms) benchmarks are presented in their webpage [11]

but a manuscript reporting their algorithm is still work in
progress.

GROMACS [6] also supports Particle-Mesh-Ewald
(PME). As FENZI, GROMACS uses the mathematical mod-
els in [2] for the implementation of the PME method,
however we were not able to find a manuscript presenting
the algorithmic implementation of its PME code on GPU.

To compare FENZI performance with other codes per-
forming PME entirely on GPU (i.e., ACEMD and AMBER),
we ran the MD simulation of a well-known benchmark such
as the DHFR system (23K atoms with 16,569 bonds, 11,584
angles, and 6,701 dihedrals) using initial parameters that
are similar, when possible, to the parameters used by the
other codes in their webpages, i.e., 8 Å nonbond cutoff,
a buffer cutoff of 9.5 Å, 10,000 MD steps in an NVE
ensemble, and with both 1 fs and 2 fs time step. Figure 9
shows the performance of DHFR MD simulations with
FENZI on GTX 480 and C2050 (Fermi chip). Performance
results on ACEMD and AMBER are presented in [12] and
in [11] respectively. While comparing these results with our
results, we observe that FENZI gives better performance
than AMBER (i.e., according to [11], AMBER reaches
21.11 ns/day on a C2050 with a MD step of 2 fs) and
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similar performance as ACEMD (i.e., from our testing of
ACEMD on GTX 480, the code reaches 37.24 ns/day with
a MD step of 2 fs). Note that our MD algorithm is different
than the ACEMD algorithm. As outlined above, we deal
with the PME charge spreading in a significantly different
way that ACEMD. Moreover, the nonbond interactions in
FENZI still use exclusion and non-bond lists as in codes
such as CHARMM, while ACEMD does no longer refer
to these data structures in [7]. GROMACS performance
in [13] indicates values below 20 ns/day for the DHFR
system on a C2050 GPU, however the webpage does not
include important information such as cutoff values and
other parameter settings. Thus we cannot fairly compare
these values with FENZI performance.

Coarse-grained MD simulations of large membranes for
long time intervals (of the order of 100 ns) are also presented
in [14]. The coarse-grained nature of these simulations re-
sults in significant loss of information and a lower resolution
than our code. Up to a few microseconds of MD simulations
of small membrane can be reached on special purpose archi-
tectures such as Anton [15]. Such performance is feasible on
Anton because of multi-step integration, less frequent long
distance force calculations, fixed precision calculations, and
small FFT grid size (32x32x32). At the same time these
factors lead to loss of resolution and accuracy. Moreover, the
size of the hardware defines the size of molecular systems
being simulated. The size of the molecular system has a
significant impact on Anton’s performance: the simulation
of larger systems can lead to a loss in performance. The
application specific nature of the architecture does not allow
for flexibility in terms of FFT grid size, choice of crystal

lattice (cubic dimensions), and spline functions. This level
of flexibility is possible on general purpose GPUs.

Last but not least, we do not compare FENZI with the
GPU-based NAMD [16] since the current version of NAMD
for GPUs does not perform PME on GPUs, thus using
different algorithm for the electrostatic interactions.

V. CONCLUSION

In this paper we presented the design and implementation
of FENZI, a MD code for the simulation of large mem-
brane regions in both NVT and NVE ensembles. A key
contribution of the paper is the PME algorithm that we re-
designed from a charge-centric to a lattice-of-points-centric
prospective to better fit the multithreading GPU architecture.
FENZI enables multi-nanosecond MD simulations per day,
even when using PME for large membranes. FENZI achieves
simulation rates of up to 22.8 nanoseconds per day with a
MD step size of 1 fs for a small DMPC membrane of 17,004
atoms, up to 6.7 nanoseconds per day with a MD step size
of 1 fs for a medium DMPC membrane of 68,484 atoms,
and up to 1.6 nanoseconds per day with a MD step size
of 1 fs for a large DMPC membrane of 273,936 atoms; all
membranes were in explicit solvent. Because of our general
design and implementation approach, FENZI is full-fledged
general purpose MD package based on canonical force fields
and PME for GPU enabled simulation of a broad class of
molecular systems.

Work in progress includes the analysis of properties such
as structural (densities, electron density profiles), order pa-
rameters (SCD) and electrostatic properties (dipole potential,
water dipole moments), as well as orientational properties of
water over a time scale of tens of hundreds nanoseconds. Our
final goal is to assess whether properties observed in small
membranes with simulations on traditional CPU clusters
are still true as the membranes significantly grow in size.
By speeding up the MD simulation of large membranes,
FENZI allows us to answer this question accurately in a
short turnaround time.
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