
Long time-scale simulations of in vivo diffusion using GPU hardware

Elijah Roberts1, John E. Stone2, Leonardo Sepúlveda1, Wen-Mei W. Hwu3 and Zaida Luthey-Schulten4

1Center for Biophysics and
Computational Biology

University of Illinois
Urbana, IL, USA

{erobert3,lsepulv2}@illinois.edu

2Beckman Institute
University of Illinois

Urbana, IL, USA
johns@ks.uiuc.edu

3Department of Electrical and
Computer Engineering
University of Illinois

Urbana, IL, USA
w-hwu@illinois.edu

4Department of Chemistry
University of Illinois, Urbana, IL, USA

zan@illinois.edu

Abstract

To address the problem of performing long time simula-
tions of biochemical pathways under in vivo cellular condi-
tions, we have developed a lattice-based, reaction-diffusion
model that uses the graphics processing unit (GPU) as a
computational co-processor. The method has been specifi-
cally designed from the beginning to take advantage of the
GPU’s capacity to perform massively parallel calculations
by not only executing a core set of mathematical calcula-
tions, but also running much of the underlying algorith-
mic logic on the GPU. In this study we present our three-
dimensional model for in vivo diffusion that exploits the cal-
culation capabilities of the GPU. The implementation of the
diffusion operator on the GPU is subject to architectural
constraints, and we discuss its structure and the trade-offs
made to accommodate the GPU hardware.

1. Background and Significance

The cell is a crowded space [5, 18] with proteins, nu-
cleic acids, and other macromolecules constantly in con-
tact with and colliding into each other. In the midst of
this chaotic and turbulent scene, extensive and intricate net-
works of biochemical reactions operate, in many cases, by
random Brownian diffusion of one molecular species to its
reaction counterpart. Often the concentration of one or both

This work was supported by grants from the Department of En-
ergy (DE-FG02-05ER-64144) and National Science Foundation (EF-
0526747,MCB-0844670,PHY-0822613). Computational resources were
provided by the CUDA Center of Excellence, UIUC.

of the reactants is as low as a few molecules per cell, result-
ing in stochastic dynamics that depend upon a molecule’s
initial position. Additionally, the cell is not a homogeneous
mixture of macromolecules, some are localized to specific
sub-volumes within the cell and their localization has a dra-
matic effect on biochemical networks in which they partic-
ipate. Computational models of cellular biochemical net-
works that are spatially resolved can therefore be useful
when testing hypotheses developed from single molecule
experimental results of a network’s activity, looking for un-
expected, emergent behavior in a network’s temporal and
spatial dynamics, and comparatively investigating the pa-
rameter space explored during a network’s evolution.

One technique that can yield data on the in vivo position-
ing of macromolecules is cryoelectron tomography, which
has been used to localize ribosomes in intact cells with ∼5
nm resolution [10]. It is anticipated that by combining re-
sults from these types of studies the global distribution of
large macromolecules within the cell can be reasonably ap-
proximated for various parts of the cell cycle.

A key issue in modeling whole-cell biochemical net-
works is accounting for the cellular environment. Inside
a cell, approximately 20-30% of the volume is occupied by
macromolecules, the diffusion coefficients of which are re-
duced 3 to 15 fold relative to their in vitro values [8, 4].
Additionally, diffusive behavior that does not obey the stan-
dard relation between mean square displacement (MSD)
and time has been observed in living cells. Specifically,
anomalous subdiffusion has been seen in both experimen-
tal [16, 1, 6] and theoretical studies [3, 13, 12], although its
exact extent (and origin) inside living cells is still debated.

We have derived a new cellular automata (CA) [14, 17, 2]

based method that utilizes the graphics processing unit
(GPU) to perform long time-scale simulations of whole-
cell reaction-diffusion models under in vivo conditions. CA
methods have long been used in statistical physics and com-
putational chemistry and ours is a derivative of a multipar-
ticle model [7]. Being a lattice model, computational com-
plexity scales with the number of lattice sites (independent
of the number of particles located on the lattice) and so can
reach long time-scales under crowded conditions.

CA models are characterized by three properties: space
and time are discrete, physical quantities are described by
a finite set of values, and the time evolution of the system
is governed by a rule using only local information. These
properties make them theoretically well-suited toward GPU
implementation, since calculations use integer math (no de-
pendency on GPU floating point precision) and the entire
lattice can be updated in parallel using only small amounts
of local memory. Additionally, CA models are highly par-
allelizable, most of the code can run on the GPU.

In this work we present the techniques and strategies that
enabled simulations of in vivo diffusion on GPU hardware.
We first introduce the multiparticle model and the adapta-
tions made to it to permit efficient GPU simulation. We then
discuss the implementation details of the method and the
programmatic trade-offs made to accommodate GPU archi-
tectural limitations. Finally, we present analyses of free and
obstructed diffusion simulations along with timing results
from whole-cell in vivo diffusion simulations. Performance
analyses are presented and compared for two GPU models,
a G80-based FX5600 and a GT200-based GTX280.

2 Methods

2.1 Multiparticle diffusion model

In the multiparticle diffusion model of Karapiperis and
Blankleider [7], particles follow independent random walks
between lattice sites in a stochastic manner and are charac-
terized by permitting multiple particles per lattice site. We
have modified the model to support efficient implementa-
tion on a GPU. The model is constructed on a cubic lattice
(L) with uniform spacing in the x, y, and z dimensions with
distance λ. Lattice sites are located on the lattice at posi-
tions ~r = aλî + bλĵ + cλk̂, where a, b, and c are integers.
Particles of various species (α) are positioned at the lattice
sites according to some initial condition at time t = 0 and
then move on the lattice from site to site according to the
rules of the model. Time is also discrete in the model and
particle movement occurs instantaneously at time steps sep-
arated by time τ .

At time t, a site at position ~r on the lattice is described
by its occupancy, Nα(~r, t), giving the number of particles
of species α located at the site. A diffusion operator (D)

updates a lattice site at a time step by moving particles to
and from the site according to a model of their diffusive
behavior. The state of a lattice site after a single time step is
therefore given by

Nα(~r, t+ τ) = DNα(~r, t). (1)

Normal Brownian diffusion can be phenomenologically
modeled as a series of independent random choices for
the movement of particles in a system. In previous mod-
els [7, 2], particles could move only in a single dimension
during a time step, i.e., a particle moved ±λî, ±λĵ, or
±λk̂. However, implementing such a model requires access
to the entire three-dimensional neighborhood surrounding
each lattice site during a time step. As will be shown later
(Section 2.2), this requirement severely limits the compu-
tational performance of the model on a GPU. We instead
model diffusion as three independent random choices (one
for each dimension) during a single time step. Decompos-
ing the problem in such a manner reduces the size of the
neighborhood that must be searched to perform the diffu-
sion calculation, while maintaining the exact diffusion so-
lution under appropriate conditions.

At each time step in our multiparticle diffusion model,
for each dimension, a particle has a probability of mov-
ing one lattice site in the negative direction, a probability
of staying at the current lattice site, and a probability of
moving one lattice site in the positive direction. For the x,
y, and z dimensions, these probabilities are (p−1, p0, p1),
(q−1, q0, q1), and (s−1, s0, s1), respectively. Since a par-
ticle must make a single choice in each dimension, p−1 +
p0 + p1 = q−1 + q0 + q1 = s−1 + s0 + s1 = 1.

The diffusion operator applied to a lattice site calculates
the random movement choices for each nearby particle and
then updates the occupancy of the site to be the sum of all
particles that remain at the site and those that enter from
neighboring sites,

DNα(~r, t) =
1∑

a=−1

1∑
b=−1

1∑
c=−1

p−aq−bs−cNα(~r + ~dr, t),

(2)
where ~dr = aλî + bλĵ + cλk̂. The time evolution of the
entire lattice is realized by the simultaneous application of
the diffusion operator on each lattice site. If there is no net
probability of moving in any dimension (p−1 = p1, q−1 =
q1, s−1 = s1) then there is no advection and, also assuming
isotropy (p−1 = q−1 = s−1, p0 = q0 = s0, p1 = q1 = s1),
the model obeys the standard diffusion equation [2],

∂

∂t
Nα(~r, t) = D∇2Nα(~r, t),

where the diffusion coefficient for particles of species α is
given by D = λ2

2τ (1− p0).

2.2 Multiparticle GPU implementation

In-memory lattice representation. The lattice is the cen-
tral construct of the multiparticle model. Particles are lo-
cated at uniformly spaced sites on the lattice and move from
site to site according to the rules of the model. The simplest
memory representation of the lattice consists of an array of
memory locations, each of which stores the state of a site.

During a simulation, the lattice is kept in GPU global
(device) memory. Lattice sites are arranged contiguously in
a single block of memory and the size of each site is a sin-
gle 32-bit word, in order to make optimal use of GPU mem-
ory bandwidth. The sites are ordered within the memory
block according to the lattice index (Lindex = x + y·xn +
z·xn·yn), as shown in Figure 1 (a)

The state of a lattice site is given by the list of parti-
cles present at the site and the type of the site; it must be
fully described by a single 32-bit word. To fit all of the re-

x0 x1 xn...x5x4x3x2

z0

z1

zn

...

y0y1

yn

...

(a)

(b)

(d)

(c)

Lindex = x+(y·xn)+(z·xn·yn)

n0 n1 site
b0-13 b14-27 b28-31

n0 n1 n2 n3 site
b0-6 b14-20 b28-31b7-13 b21-27

site
b28-31b21-23b18-20b15-17b12-14b9-11b6-8b3-5b0-2

n0 n1 n2 n3 n4 n5 n6 n7

32 bits

Figure 1. (a) The layout of a three-
dimensional lattice of size xn×yn×zn in
memory. (b-d) The bit layout of a lattice
site with a maximum of two, four, and eight
particles per site, respectively. For each
particle (ni), the bits of the lattice site (bi−j)
that are used to store the particle’s chemical
species are shown along with the bits used
to store the site type.

quired information about a site into the available space, the
32-bit word is packed with fields of various bit lengths, Fig-
ure 1 (b-d). Four bits are allocated to the site type, which
enables the differentiation of up to sixteen different types
of lattice sites. The remaining 28 bits are divided equally
into fields storing the chemical identities of the particles at
the site. Because all of the particle fields must fit into 28
bits, the number of different chemical species that can be
discerned decreases as the maximum number of particles
that can be present at a site (nmax) increases, according to
α = 2b28/nmaxc − 1. The value of zero is reserved to indi-
cate no particle present. Three lattice implementations with
a maximum of two, four, or eight particles per site are im-
plemented. They allow the use of 16383, 127, or 7 unique
chemical species, respectively.
Processing strategy. The time evolution of the lattice under
the multiparticle diffusion model is given by the diffusion
operator as shown in Equations (1) and (2). The diffusion
kernel1 implements the operator by reading a lattice from
global memory, calculating the position of each particle at
the next time step according to the diffusion model, and then
writing the new lattice back into global memory. Its general
structure is as follows (see Table 1 for a timing profile):

1. Load a block of lattice sites from a lattice in global
memory into shared memory.

2. Generate a random value for each particle’s movement.

3. Choose whether each particle should move to a neigh-
boring site or remain in place according to the prob-
abilities associated with the particle and site types.
Store the choice for each particle in shared memory.

4. Make a list of the particles for each site that were se-
lected to either move into the site from a neighboring
site or to remain at the current site.

5. Store the list of particles at each site into a new lattice
in global memory.

Since the algorithm runs in parallel on the GPU, the orig-
inal lattice can not be modified until after the entire calcu-
lation has been completed. As such, the algorithm requires
two separate copies of the lattice in global memory. The
maximum amount of memory that can be used by a lattice
is limited to one-half of the total free GPU memory.
Shared memory constraints. The first step of the diffu-
sion algorithm loads a block of the lattice into shared (on-
chip) memory. From shared memory, the lattice sites can

1Code destined to be executed on the GPU is organized into execu-
tion units called kernels. A kernel is compiled from C source code by the
Compute Unified Device Architecture (CUDA) compiler into set of device
specific instructions. When invoked, a kernel is downloaded to the GPU
and executed in parallel using a large number of threads. Threads are or-
ganized into thread blocks, in which each thread in a block has access to a
common shared memory space.

Table 1. Multiparticle diffusion kernel calculation profile for a 256×256×256 lattice simulation

Calculation FX5600 GTX280
Time % Performance† Time % Performance† Speedup
(ms) (ms)

Load lattice block 5.2 20 13 GB/s 2.2 16 30 GB/s 2.4X
Random number generation‡ 7.0 27 48 GOPS 3.8 28 88 GOPS 1.8X
Particle movement decision 7.7 29 109 GOPS 4.4 33 191 GOPS 1.8X
Particle propagation 3.6 13 94 GOPS 1.6 12 209 GOPS 2.2X
Store lattice block 2.9 11 23 GB/s 1.5 11 44 GB/s 1.9X
Total 26.4 100 13.5 100 1.9X
†Bandwidth rates were calculated as four bytes times the number of lattice sites being transferred divided by the runtime. Operation
rates were calculated as the number of logical operations per site times the number of lattice sites divided by the runtime.
‡Operation count was calculated using 64-bit operations, but current hardware implements 64-bit operations using 32-bit instruct-
ions. Performance calculated using the 32-bit instruction count (88) yields 210 GIPS and 387 GIPS, respectively.

(a)

(b)

0 5 10 15 20 25
10

−3

10
−2

10
−1

10
0

10
1

10
2

Block Size (sites/side)

KB
 S

ha
re

d
M

em
or

y

Shared Memory Usage

0 5 10 15 20 25 30
10

0

10
1

10
2

Block Size (sites/side)

O
ve

rh
ea

d
M

ul
tip

lie
r

Apron Calculation Overhead

3D
1D

16 KB

128

128

All sites 3D
Apron sites 3D
All sites 1D
Apron sites 1D

30

Figure 2. (a) Shared memory usage for the
diffusion operator as a function of the size
of the block being processed. The memory
used for (blue) all sites and (red) apron sites
are shown for comparison. (b) The calcula-
tion overhead due to the apron sites.

be processed by a thread block (one thread per lattice site)
without the latency and bandwidth limitations associated
with global memory. Significantly, not only are the lattice
sites being processed loaded into shared memory, but also
an apron of sites surrounding them. These additional sites
are required because particles may enter a lattice site from
any of its nearest neighbors. Even though an apron site will
not be stored into the final lattice by the thread block, the
movement of its particles must still be calculated so that it
can be determined which of the particles (if any) move into
a lattice site that is being processed by the thread block.

When a small three-dimensional block of lattice sites is
being processed the apron sites account for a large frac-
tion of the total sites. The amount of shared memory re-
quired to process a cubic block of lattice sites of dimen-
sions B×B×B is 4·(B + 2)3 bytes with the memory used
for the apron sites being 4·((B+2)3−B3) = O(B2) bytes
(Figure 2 (a)). The total available shared memory on cur-
rent generation GPUs is 16 KB per multiprocessor (minus
a small amount of overhead). The largest block that can
be loaded has thirteen lattice sites per side (4·(13 + 2)3 =
13500). In order for the GPU to efficiently process thread
blocks, though, the actual amount of shared memory ded-
icated to a single thread block must only be a fraction of
the total. For a block size of eight sites, the shared mem-
ory required is 3.9 KB (still a somewhat high allocation), of
which roughly half is needed for apron sites.

However, shared memory usage is not the only over-
head associated with the apron sites. Since apron sites are
only processed by a thread block to find the particles mov-
ing from them, the sites must also be processed again to
determine the particles moving to them (when the site is
processed as part of another block). The diffusion operator
must be calculated twice for these sites. Figure 2 (b) shows
the increase in the number of diffusion calculations required
as a result of the apron calculations. The number of calcu-
lations that must be performed for a block size of eight sites

per side is twice the total number of lattice sites. Half of all
the diffusion calculations would be redundant calculations
required for the apron sites.

The combined effect of the shared memory and cal-
culation efficiency requirements, makes calculating the
diffusion operator computationally expensive for a three-
dimensional block of lattice sites. Smaller blocks are less
efficient to calculate (large surface area to volume ratio),
but larger blocks cannot be processed because of shared
memory limitations. One technique to alleviate this con-
tradictory condition is to remove the square dependence
of the number of apron sites on the block size. In Sec-
tion 2.1, it was shown that the three-dimensional diffusion
model can be equivalently expressed as a decomposition
into each dimension independently. Implementing the dif-
fusion operator as three successive diffusion calculations,
one in each dimension, dramatically decreases the number
of apron sites that must be loaded and redundantly calcu-
lated. Lattice sites are processed in a one-dimensional block
of length B. The shared memory necessary to process a
block is 4·(B + 2) and the memory used by the apron sites
is 4·((B + 2) − B) = 8 bytes (constant regardless of the
block size). For a one-dimensional block size of 32 lattice
sites and larger there is only minimal overhead associated
with the apron sites (a 6% increase in shared memory usage
and required calculations).
Random number generation. A large fraction (∼25%) of
the calculation time required for the multiparticle diffusion
model is spent generating random numbers. For a time step,
each particle requires three random numbers (one for each
dimension) to realize its movement according to the site
transition probabilities. To generate the random values, we
use a combination of 64-bit random generators, as described
in Press et al. [11]. Specifically, we use a linear congruen-
tial generator, followed by a 64-bit xorshift, and finally a
pass through a multiplicative linear congruential generator.

Random number generation is constrained by the re-
quirement that particles that fall into apron sites must have
their diffusive motion calculated multiple times, each time
returning the same result. To enforce the constraint the
random value generated for each particle is a random hash
based on a 128-bit value containing the site index, particle
index, and time step. The combination guarantees a unique
but reproducible random value for each particle at each site
for each timestep. Additionally, a seed value must be spec-
ified to make each simulation a unique realization of the
model, which is also incorporated into the calculation.

Any correlations produced by the random number gener-
ator would cause the simulation results to deviate from the
true distribution of the underlying model. We have checked
the generator for such using the “BigCrush” test suite from
the TestU01 random number testing library [9]. The method
passed all tests.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.0015

0.0375

0.4082

nmax = 2 part.
nmax = 4 part.
nmax = 8 part.

10
−10

10
−5

10
0

10
5

10
−2

Lattice Occupancy (particles/site)

E(
n>

n m
ax

)

Expected Number of Site Overflows
(256x256x256 lattice)

0 2 4 6 8 10 12 14 16 18 20

10
−6

10
−3

10
0

Lattice Spacing (nm)

C
on

ce
nt

ra
tio

n
(M

)

Maximum Particle Concentration
(256x256x256 lattice)

nmax = 2 part.
nmax = 4 part.
nmax = 8 part.

(a)

(b)

Figure 3. (a) The expected number of site
overflows as a function of the lattice occu-
pancy. Shown are the values for a lattice
with a maximum of (blue) two, (red) four,
and (green) eight particles per site (nmax).
Also shown (black dotted) is the threshold
of one overflow in one hundred configura-
tions. (b) The maximum particle concentra-
tion (expected number of site overflows less
than one in a hundred) as a function of the
lattice spacing.

Site overflow. In the multiparticle model an unlimited num-
ber of particles can theoretically be located at a lattice site.
In the implementation, though, there are a limited number
of bits available for storing particles at each lattice site.
Three separate kernels are implemented allowing a maxi-
mum of 2, 4, or 8 particles at each site. If, during an cal-
culation, more than this number of particles are moved to
a site the kernel must gracefully handle the overflow; par-
ticles cannot be lost. To avoid losing particles we use an
overflow list, a list (stored in global memory) of all the sites
that overflowed during a diffusion calculation. If the kernel
detects that a lattice site has more particles than the maxi-

mum allowable, it stores the index of the lattice site in the
overflow list along with the chemical identities of the extra
particles. After each diffusion kernel execution, the extra
particles from every site in the overflow list are randomly
placed back into the lattice at a nearby site of the same type
(done in CPU code). The overflow list prevents particle loss,
but using it incurs a computational cost. To achieve optimal
performance, simulation parameters should be chosen such
that sites rarely overflow. The overflow list then becomes
an exception mechanism to handle low frequency events.

In order to choose the appropriate parameters to avoid
excessive sites overflows during a simulation, one must first
know the chance of a site overflow occurring for the lattice
configuration. As an estimation of this probability during a
simulation, consider the process of adding N particles to an
empty lattice L with Ls total sites. Assuming that all sites
are equally probable, the probability of placing a particle at
any given site is 1

Ls
. The probability of a site containing

n particles after all N have been added (p(n)) is therefore
the probability of placing n particles into the site during
N independent choices. This probability is given by the
binomial distribution,

p(n) =
(
N

n

)(
1
Ls

)n(
1− 1

Ls

)N−n
. (3)

Multiplying the probability for a single site by the total
number of sites we get the expected number of lattice sites
having exactly n particles, E(n) = Lsp(n). Finally, the
expected number of lattice sites that will overflow, i.e., ex-
ceed the maximum number of particles that can be stored in
a site (nmax), is

E(n > nmax) = Ls

(
1−

nmax∑
i=0

p(i)

)
. (4)

From Equations (3) and (4) it can be seen that the ex-
pected number of sites that will overflow depends on both
the number of particles on the lattice and the lattice size.
Although, for two lattices of different sizes the probability
of a site overflowing is approximately equal if their occu-
pancy (mean number of particles per site) is the same, there
are more sites in a larger lattice that can overflow so the
expected number of overflows is larger.

For a simulation to run as efficiently as possible, the
number of particles on the lattice must be such that site
overflows happens infrequently, perhaps once in every one
hundred time steps. Approximating each timestep as an in-
dependent lattice configuration, the maximum number of
particle per site and the lattice occupancy should be cho-
sen such that the expected number of site overflows is
≤ 0.01. Figure 3 (a) shows the expected number of site
overflows as a function of the lattice occupancy. For a
256×256×256 lattice, the maximum allowable occupancy

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

0

10
20

30

40

50

60

70

80
90

100

D
 (n

m
2 /
μ

s)

Log Time (s)

Obstructed Diffusion

100.00
 50.00

20.00
10.00

5.00
2.00

1.00
Obstacle Size

Figure 4. Observed diffusion coefficient (D)
of particles with an in vitro D of 100 nm2/µs
diffusing on a lattice populated with obsta-
cles of radius from 100 nm to 1 nm (top curve
to bottom curve) occupying 30% of the lattice
sites by volume.

is 0.0015, 0.038, and 0.41 particles per site for nmax = 2, 4,
and 8, respectively. In general, it is also useful to interpret
the lattice occupancy as a concentration. The concentra-
tions corresponding to the maximum occupancy (such that
E(n > nmax) ≤ 0.01) are shown in Figure 3 (b) as a func-
tion of lattice spacing. For a 256×256×256 lattice with 1
nm spacing, the maximum particle concentration is around
2 mM for nmax = 2, 60 mM for nmax = 4, and 650 mM
for nmax = 8. At smaller lattice spacing, care must also be
taken so that the maximum concentration does not exceed
what is physically realistic.

While the techniques described above minimize the
overhead of overflow handling, they do not eliminate it.
Control must still be returned to the calling program on the
CPU after each kernel execution to check for overflow ex-
ceptions, incurring a ∼1 ms overhead for each kernel in-
vocation. It may be possible to improve performance by
implementing an entirely GPU based exception mechanism
following the global GPU barrier technique introduced in
[15]. In general, exception handling techniques are still an
under-developed area of GPU programming.

3 Simulation results

Analysis of free and obstructed diffusion simulations. To
validate the GPU implementation of the multiparticle
model, we first assessed its characteristics when simulating
freely diffusing particles on a periodic lattice. Under such
conditions, the particle distributions should agree with the
continuum model presented earlier. For a particle undergo-

ing Brownian diffusion, the relationship between its mean
square displacement (MSD) and the amount of time it has
been freely diffusing is given by the well-known relation, in
three dimensions, < r2 >= 6Dt.

We performed 10 ms simulations of 16,380 particles
with nine different diffusion coefficients (200, 100, 50, 25,
10, 5, 1, 0.1, and 0.01 nm2/µs) freely diffusing on a pe-
riodic 128×128×128 lattice. The lattice’s natural diffusion
coefficient was the same in each simulation (200 nm2/µs; 2
nm spacing, 10 ns time step) and only the transition proba-
bilities varied (p−1 = p1 = 0.5, 0.25, 0.125, 0.0625, 0.025,
0.0125, 2.5·10−3, 2.5·10−4, 2.5·10−5). The calculated and
expected values for MSD and D agree over the entire course
of each simulation.

To test our model’s ability to reproduce anomalous sub-
diffusion in crowded environments, we constructed a pe-
riodic lattice with obstructions modeled as clusters of re-
flective lattice sites. Clusters were determined by mapping
a sphere with the diameter of the obstruction onto the lat-
tice and setting each site located within the sphere as re-
flective. Particles diffusing on the lattice have zero proba-
bility to transition to a reflective lattice site, and must dif-
fuse around the obstacles. In this approximation lattice ob-
structions are stationary, a reasonable assumption for larger
obstacles but which is less realistic as the diameter of an
obstacle approaches the lattice spacing.

Simulations with obstacle sizes ranging in radius from
100 nm to 1 nm were simulated at three different obstructed
volume fractions (10%, 20%, and 30% by volume). Anal-
ysis of the simulations shows that the multiparticle lat-
tice model does exhibit anomalous subdiffusion in crowded
systems (Figure 4). Like other computational models of
crowded diffusion, it shows normal Brownian diffusion at
short times, a cross-over period during which diffusion is
anomalously subdiffusive, and finally a return to normal
diffusion at long times. As the size of the obstruction in-
creases, the crossover begins later in the simulation; larger
obstacles will have greater mean spacing at a give volume
fraction than smaller obstacles. For an obstructed volume of
30%, the crossover time with obstacles 10 nm in radius is in
the microsecond range. This result is particularly relevant
as 10 nm is approximately the radius of a ribosome, one of
the most abundant large (compared to a protein) particles in
the cell, occupying 8-10% by volume.
In vivo modeling. The in vivo cytoplasm is more complex
than can be modeled by obstacles of a single size. Ridg-
way et al. [12] used the available proteomic data to de-
scribe the cytoplasmic environment of an E. coli cell in
terms of the populations of different size classes of par-
ticles. We used the same particle classes and populations
to construct a lattice model of a stationary in vivo environ-
ment. Figure 5 shows the lattice representations of the
particle classes along with illustrations of a periodic vol-

10.4 nm

5.2 nm

4.3 nm
4.1 nm
4.0 nm
3.8 nm
3.5 nm
3.4 nm
3.0 nm
2.7 nm
2.3 nm
1.7 nm

5 nm

1 nm

2 μm

256 nm

(a) (b)

(c)

Figure 5. (a) Lattice representations of in
vivo obstaclesith the indicated radius. (b)
256 nm×256 nm×256 nm lattice model of an
in vivo environment (30% obstructed volume).
(c) Model of an E. coli cell (2 µm in length, 0.8
µm in diameter) using the same in vivo envi-
ronment.

ume used for analyzing diffusion under the model and a
full-size E. coli cell. We simulated diffusion of particles
with various diffusion coefficients in the in vivo environ-
ment to test the effects of the stationary obstruction and lat-
tice approximations. The in vivo diffusion of proteins is
reduced by approximately 20% in the simulations (smaller
decreases were observed for particles with lower diffusion
coefficients). This is somewhat less than the 30% reduction
seen in the Brownian dynamics models, where obstructions
are mobile. However, we see the same crossover time scale,
during which diffusion is anomalous (10−6 s).

Despite the approximations involved, the lattice model
appears to capture the intrinsic nature of the effect of in vivo
crowding on diffusion. Unlike Brownian dynamics mod-
els, where performance scales with the number of particles,
the multiparticle diffusion model described here is invariant
toward the number of obstacles. Its performance depends
only on the total number of lattice sites. Using a single

GPU, in vivo simulations can extends well into the seconds
time range (see Table 2).

4 Conclusions

Lattice-based cellular automata (CA) models are very
amenable to GPU implementation. They require only lo-
cal state and can be calculated in parallel over the entire
lattice. We have presented what we believe to be the first
example of a physical CA model designed specifically to
run on the GPU, taking advantage of its unique performance
characteristics. Development of the multiparticle diffusion
model described in this work revealed certain general strate-
gies that may be applicable toward GPU implementation of
other CA or lattice models. While we achieved a reasonable
fraction of the total theoretical performance possible (∼20-
30%), we anticipate detailed analysis of bottlenecks and
fine-tuning of the code will permit further speedup. Perfor-
mance between two GPU models (FX5600 and GTX280)
appears to indicate that the model will scale in speed across
generations of GPU evolution. The computational poten-
tial of the GPU to perform long-time simulations of in vivo
reaction-diffusion models has only begun to be utilized. Fu-
ture work will allow simulations to span multiple GPUs on
a single host and to utilize clusters of networked GPU com-
pute nodes to achieve even larger simulation efficiencies.
GPUs should be able to provide the computational power to,
in the near future, simulate entire E. coli cells at mesoscopic
resolutions for time scales on the order of a cell cycle.

Although the current study focused on GPUs from
NVIDIA using the CUDA API, other existing and future
many-core processors (such as Intel’s Larrabee) are ex-
pected to share similar performance characteristics and
architectural limitations. The OpenCL API, currently in
the standardization process under the Khronos Group, may
play a central role in bringing about a unifying framework
allowing widespread use of GPUs for scientific computing.

Table 2. Performance of in vivo simulations

Lattice Time Calc Sim
Size Spac Step Perf Perf Spd

(nm) (µs) (106 sites/s) (s/GPU·day)
FX5600/ FX5600/
GTX280 GTX280

642×128 20 8.00 219/533 290/700 2.4X
642×128 16 5.12 212/522 180/440 2.4X
1282×256 10 2.00 310/781 13/32 2.5X
1282×256 9 1.62 307/747 10/25 2.5X
1282×256 8 1.28 302/776 8.0/20 2.5X
2562×512 7 0.94 349/648 0.85/1.6 1.8X
2562×512 6 0.72 348/647 0.65/1.2 1.8X
2562×512 5 0.50 347/645 0.45/0.83 1.8X
2562×512 4 0.32 346/642 0.29/0.52 1.8X

References

[1] D. Banks and C. Fradin. Anomalous diffusion of proteins
due to molecular crowding. Biophys. J., 89(5):2960–2971,
2005.

[2] B. Chopard and M. Droz. Cellular automata modeling of
physical systems. Cambridge University Press, Cambridge,
UK, 1998.

[3] J. Dix, E. Hom, and A. Verkman. Fluorescence correlation
spectroscopy simulations of photophysical phenomena and
molecular interactions: a molecular dynamics/Monte Carlo
approach. J. Phys. Chem. B, 110(4):1896, 2006.

[4] J. Dix and A. Verkman. Crowding effects on diffusion in
solutions and cells. Ann. Rev. Biophys., 37:247–263, 2008.

[5] R. J. Ellis. Macromolecular crowding: obvious but underap-
preciated. Trends Biochem. Sci., 26(10):597–604, Oct 2001.

[6] I. Golding and E. Cox. Physical nature of bacterial cyto-
plasm. Phys. Rev. Lett., 96(9):98102, 2006.

[7] T. Karapiperis and B. Blankleider. Cellular automaton
model of reaction-transport processes. Physica D, 78(1-
2):30–64, 1994.

[8] M. Konopka, I. Shkel, S. Cayley, M. Record, and J. Weis-
shaar. Crowding and confinement effects on protein diffu-
sion in vivo. J. Bacteriol., 188(17):6115–6123, 2006.

[9] P. L’Ecuyer and R. Simard. TestU01: A C library for em-
pirical testing of random number generators. ACM Trans.
Math. Software, 33(4):22, 2007.

[10] J. Ortiz, F. Förster, J. Kürner, A. Linaroudis, and
W. Baumeister. Mapping 70S ribosomes in intact cells by
cryoelectron tomography and pattern recognition. J. Struct.
Biol., 156(2):334–341, 2006.

[11] W. Press. Numerical recipes: the art of scientific computing.
Cambridge University Press, 2007.

[12] D. Ridgway, G. Broderick, A. Lopez-Campistrous,
M. Ru’aini, P. Winter, M. Hamilton, P. Boulanger, A. Ko-
valenko, and M. Ellison. Coarse-grained molecular
simulation of diffusion and reaction kinetics in a crowded
virtual cytoplasm. Biophys. J., 17(5):493–498, 2008.

[13] M. Saxton. A biological interpretation of transient anoma-
lous subdiffusion. I. Qualitative model. Biophys. J.,
92(4):1178, 2007.

[14] T. Toffoli and N. Margolus. Cellular automata machines: a
new environment for modeling. The MIT Press, Cambridge,
MA, 1987.

[15] V. Volkov and J. Demmel. Benchmarking GPUs to tune
dense linear algebra. In Proceedings of the 2008 ACM/IEEE
conference on Supercomputing. IEEE Press Piscataway, NJ,
USA, 2008.

[16] M. Weiss, M. Elsner, F. Kartberg, and T. Nilsson. Anoma-
lous subdiffusion is a measure for cytoplasmic crowding in
living cells. Biophys. J., 87(5):3518–3524, 2004.

[17] S. Wolfram. Cellular automata and complexity: collected
papers. Westview Press, Boulder, CO, 1994.

[18] H. Zhou, G. Rivas, and A. Minton. Macromolecular crowd-
ing and confinement: biochemical, biophysical, and poten-
tial physiological consequences. Ann. Rev. Biophys., 37(1),
2008.

