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Abstract 

This paper describes a parallel implementation of our 
recently developed algorithm for phylogenetic analysis on 
the IBM BlueGene/L cluster [15]. This algorithm 
constructs evolutionary trees for a given set of DNA or 
protein sequences based on the topological information of 
every possible quartet trees. Our experimental results 
showed that it has several advantages over many popular 
algorithms. By distributing the quartet weights evenly 
across the processing nodes and making effective use of a 
fast collective network on the IBM BlueGene/L cluster, we 
are able to achieve a close to linear speedup even when 
the number of processors involved in the computation is 
large. 

1. Introduction 

The quartet-based method is one of the very important 
approaches for reconstruction of a large evolutionary tree 
from a set of smaller trees. It constructs a tree for a given 
number of molecular sequences based on the topological 
properties of each subset of four molecular sequences. The 
main advantage of this method is that there is a one-to-one 
correspondence between a tree topology and a set of four-
sequence or quartet trees. If we can correctly identify the 
tree topology of each individual subset of four sequences, 
we are able to reconstruct the entire evolutionary tree for a 
given problem in polynomial time. In practice, however, 
there exist situations that the correctly resolved quartet 
trees are very difficult to obtain by using currently existing 
methods [1,18]. Therefore, the main concern in designing a 
good and practical quartet-based algorithm is how to 
tolerate errors in the quartet trees when reconstructing the 
entire tree topology. Different methods have been 
introduced in the literature to deal with the problem of 

quartet errors, for example, those in [3,4,5,6,7, 
8,9,10,11,13,14,16,19,20,22]. 

Recently, we developed a new quartet-based algorithm 
for reconstruction of evolutionary trees [25]. In this 
algorithm trees are recursively constructed using a quartet 
weight matrix which contains collective topological 
information from all possible quartets. Our experimental 
results show that this algorithm outperforms many existing 
methods for phylogenetic analysis.  

One major disadvantage associated with most quartet-

based algorithms is that they require )( 4nΟ  computational 

steps to complete where n is a given number of molecular 
sequences in the analysis. This is simply because they need 

to generate )( 4nΟ  quartet trees in order to obtain a 

reasonably good result. When the problem size n is large, 
we also need a large-size memory to store these trees 
during the computation. For example, a well-know parallel 
program package for a quartet-based algorithm, TreePuzzle 
[20], is only able to handle problems of size smaller than 
or equal to 250 regardless of the number of processors 
involved in the computation. The current trend is to design 
fast algorithms for phylogenetic analysis, e.g. those 
described in [12,24]. However, it should be noted that most 
of these algorithms use NP-hard reconstruction criteria 
(mostly maximum likelihood). Theoretical studies [21] and 
our recent experimental results [26] show that even if we 
are able to find a truly globally optimal tree under the 
maximum likelihood criterion, this tree may not 
necessarily be the correct phylogenetic tree! Because of its 
excellent theoretical properties, the quartet-based method 
should never be overlooked. High-performance computing 
machines can be adopted to handle higher computational 
and memory requirements for quartet-based algorithms. In 
this paper we show that, by evenly distributing the quartets 
across the processing nodes and making effective use of a 
fast collective network on the IBM BlueGene/L cluster 
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[15], our quartet-based algorithm is able to achieve a close 
to linear speedup even when the number of processors 
involved in the computation is large. 

The paper is organized as follows: our quartet-based 
algorithm is briefly described in Section 2. Its parallel 
implementation is discussed in Section 3. In Section 4 we 
present some experimental results obtained on a 128 node 
(256 CPUs) IBM BlueGene/L cluster. Conclusions are 
given in Section 5.

2. The Sequential Algorithm 

In this section we briefly describe our quartet-based 
algorithm. A more detailed description can be found in 
[25,26].  
Our quartet-based algorithm for phylogenetic analysis 
consists of two major stages. In stage one we calculate 
quartet weights for every possible quartet trees from a 
given number of sequences. In stage two we first generate 
a global quartet weight matrix to gather the quartet 
topological information from the quartet weights 
calculated in stage one and then reconstruct a full size tree 
using this quartet weight matrix. We can use any existing 
method for phylogenetic analysis to calculate the weights 
of quartet trees [17]. In the following we only discuss the 
computations in stage two. We first discuss how a quartet 
weight matrix is generated from a set of quartets defined 
by a given tree topology and give an efficient algorithm for 
reconstruction of the tree topology from the generated 
quartet weight matrix. This one-to-one mapping between a 
given tree topology and its associated quartet weight 
matrix forms the basis of our quartet-based algorithm for 
phylogenetic analysis. We next discuss the tree 
reconstruction algorithm and show how to deal with the 
problem of inaccurate quartet weight matrices. 

2.1. Basic concept  

A quartet, or a set of four sequences is associated with 
three possible fully resolved trees, as shown in Figure 1. In 
the figure )|( ztxy  indicates how the sequences, 

represented by leaf nodes, are divided into two pairs by 
cutting the middle edge (so-called bi-partitioning), and 
thus shows the neighbourhood relations of the quartet in 
terms of topology. One way to measure which of the three 
possible trees is more likely to be the true tree is to use 
Bayes weights [17], or quartet weights in this paper. The 
quartet weights for three possible trees of a quartet is 
obtained by first calculating the likelihood value for each 
tree and then transforming these likelihood values into 

posterior probabilities, or quartet weights 
i

w  for i = 1, 2, 

and 3, by applying Bayes’ theorem assuming a uniform 
prior for all three possible trees.  

Figure 1. Three possible fully resolved trees for a quartet 
{a, b, c, d}. 

Let ),|( wklij  denote a possible quartet tree with a 

quartet weight w. Our global quartet weight matrix is 
generated by adding each w to entries ij, ji, kl and lk, using 
a complete set of quartets from a given number of 
sequences. This matrix is symmetric and its size is ,nn ×
where n is the total number of sequences and each row or 
column corresponds to one particular sequence. (Note this 
quartet weight matrix is called score matrix in [11] and it 
was generated using discrete weights (or scores) from a 
distance matrix.) 

Given a tree topology of n leaves, we can uniquely 

determine a set of ⎟⎟⎠

⎞
⎜⎜⎝

⎛
4

n
 quartet trees which are consistent 

with the original tree, i.e., each quartet tree separates the 
four leaves into two pairs in the same way as the original 
tree through bi-partitioning. For each quartet there can 
only be one fully resolved tree in the set of these quartet 
trees and it is described as ).0.1,|( cdab  For a given tree 

topology a global quartet weight matrix is also uniquely 
determined. This is because our matrix is generated using 
the quartet weights of the associated quartet trees. 

We can also reconstruct the tree topology from its 

generated quartet matrix by using an efficient )( 2nΟ
algorithm, as shown in Figure 2. This algorithm is derived 
using the dynamic programming technique [25]. In the 
figure each row in quartet weight matrix corresponds to a 

particular leaf node and is associated with a variable .im

One node in each sub-tree (or a row in the quartet weight 
matrix) is chosen as the representative node for the sub-

tree which is also associated with a variable .in  Initially 

every leaf node is considered as a sub-tree. Therefore, each 
row in the matrix will be associated with two variables 

which are set to 0=im  and .1=in

Each pair of sub-trees is associated with a confidence 

value .ijc  To calculate the confidence value, we first 

assume that two sub-trees are connected together in the 
original tree and calculate the total number of quartets with  



Figure 2. A recursive algorithm for tree reconstruction 
from its generated quartet matrix. 

a concerned form )0.1,|( cdab  where a is a leaf node from 

one sub-tree and b from the other, but c and d are leaf 
nodes not in either of these two sub-trees. The confidence 
value is then obtained by dividing the actual number 
accumulated directly from the quartet sets and stored in the 
matrix by this calculated value. If two sub-trees are truly 
connected together in the original tree, the corresponding 
confidence value for each pair of leaf nodes, one from each 
sub-tree must be equal to one. In the algorithm we use one 

additional variable ig  for representative node i to store 

index j when .1=ijc  In each step we first try to find two 

sub-trees to merge by checking the variable ig  and then 

update the variables im  and in  in accordance with the 

merge; Next sijc  are re-calculated and sig  updated for the 

next merge step. The process continues until all sequences 
are merged into a single tree. 

2.2. Tree construction from inaccurate global 

weight matrices 

In the previous subsection we discussed an algorithm 
for reconstructing the original tree from its generated 
global weight matrix. The same algorithm may be used to 
construct an evolutionary tree for a given set of n
sequences if all the associated quartets are fully and 
correctly resolved. Unfortunately, this is only an ideal case 
and in reality it is very hard for us to have all the quartets 
fully and correctly resolved. Therefore, the global weight 
matrix generated from a set of quartet weights is inaccurate 

and the algorithm for tree topology reconstruction 
discussed above cannot be used without modification. To 
deal with inaccurate weight matrices we make three major 
changes to the original algorithm. 

Average confidence value ijc : Since the entry values 

of the global weight matrix are no longer ideal, different 
node pairs, one from each of the two sub-trees, may 
produce different confidence values. A simple way to 
alleviate this problem is to calculate the confidence values 
for every leaf node pairs, to average them and then to use 

this averaged value as the confidence value ijc  for each 

pair of sub-trees.  
Since the entry values of the weight matrix are 

inaccurate, we may not obtain 1=ijc  for a pair of sub-

trees during the computation. In addition to the three 

variables, namely, ,ig im  and ,in  associated with each 

sub-tree, we need a new variable ic to record the highest 

average confidence value for sub-tree i with another sub-
tree j for i<j. At each step we compare the stored values in 

ic  and choose to merge the two sub-trees which have the 

highest average confidence value.  

Quartet weight correction: After two sub-trees are 
merged, we take an additional step to restore the associated 
entries in the matrix to their “true” values, i.e., change the 
quartet weights based on the currently reconstructed sub-
trees and update the weight matrix accordingly. In 
particular, after each merge we need to correct the weights 
of all those quartets containing four nodes {i, j, p, q} to 
(ij|pq, 1.0) where i is a leaf node in one merged sub-tree, j
is a leaf node in the other merged sub-tree and p and q the 
leaf nodes from the rest. If the weights are not corrected, 
the distributed errors may significantly affect the correct 
decision making in the following merge steps.  

With the above two modifications we can have an 
algorithm which is able to deal with inaccurate quartet 
weights, as shown in Figure 3. 

At each merge step the three major contributors to the 

total computational cost are: (1) the updating of im  values, 

(2) calculation of average confidence values for each sub-
tree to find the highest one, and (3) the quartet weight 

correction. The total costs for updating im  values and for 

calculating average confidence values are )( 2nΟ  and 

),( 3nΟ  respectively. However, each quartet weight is 

corrected once and only once during the entire 
computation. The total number of quartets for a given set 

of n sequences is ⎟⎟⎠

⎞
⎜⎜⎝

⎛
4

n
 and obviously the total cost for 

quartet correction is ).( 4nΟ  Therefore, the total 



computational cost for this algorithm will be ).( 4nΟ  It 

should also be noted that this cost is much less than the 
cost for computing quartet weights using the maximum 

likelihood which requires )( 4snΟ operations where s is the 

length of the sequences, usually a few hundreds to a few 
thousands.  

Figure 3. An algorithm for tree construction from 
inaccurate quartet weight matrices. 

Multiple tree reconstruction: Since the matrix is not 
accurate, it may not always be the right decision to merge 
the two sub-trees that have the highest confidence value. 

After the highest confidence value ijc  is obtained, we then 

check whether there is another sub-tree k which has a 
reasonably high confidence value associated with one of 
the two sub-trees i and j, that is, we check whether 

,)(or ijkiik ccc α≥  or ijkjjk ccc α≥)(or  where α  is a 

threshold which is smaller than, but close to one. (If there 
are several sub-trees which satisfy this condition, in our 
current version we simply choose the one with the highest 
confidence value among them.) At each of these critical 
points we can have three different super quartet trees with 
four sub-trees i, j, k, and the rest as its four super nodes at 
different places. The problem is which one will be the 
correct one leading us to find the correct tree topology. In 
the current version of our algorithm we keep all three 

different patterns. Therefore, we will reconstruct multiple 
trees and hope that the correct tree will be included in 
these generated trees. However, we need a control on the 
number of trees to be reconstructed. Otherwise, we may 

end up with about n3  different trees if every merge step is 

a critical point. We use a parameter s to limit the total 
number of trees. Each time a critical point is encountered, 
two extra trees are generated until s such stages are 
encountered for each tree. Therefore, the maximum 

number of trees to be generated will be limited to .3s

We used the benchmarks consisting of 48,000 synthetic 
data sets of DNA sequences developed by the LIRMM 
Methods and Algorithms in Bioinformatics research group 
[23] to test our quartet-based algorithm. The results show 
that our algorithm performs much better than many 
existing methods [25,26], i.e., the probability for the 
correct tree to be among a small number of generated trees 
is very high and the probability of obtaining the correct 
tree is also high if we choose a tree from those generated 
trees under the maximum likelihood criterion. 

3. The Parallel Algorithm 

In our quartet-based algorithm we need to calculate a 

number of )( 4nΟ  quartet weights for all possible quartet 

trees in the first stage and all these weights need to be 
stored in the memory and used in the second stage. As 
discussed in the previous section, each quartet is associated 
with three weights for three possible resolved trees. For a 

given set of n sequences, the memory will be 83
4

××⎟⎟⎠

⎞
⎜⎜⎝

⎛n

bytes in size, assuming a double variable is used for each 
quartet weight. For example, we need 1.55GB to store all 
the quartet weights when .200=n  Therefore, the 

algorithm is both compute and memory intensive. A 
parallel program package of the tree-puzzle, a well-known 
method based on quartet weights, can only handle 
problems of size up to 250 regardless of how many 
processors used in the computation because it requires a 
whole set of quartet weights stored on every processor for 
the construction of intermediate trees in the puzzling stage. 
Our quartet-based algorithm does not have such a 
requirement. In the following we describe a parallel 
implementation of our algorithm which is able to tackle 
problems of much larger sizes. In our implementation the 
master-worker paradigm is adopted. Workflow graphs for 
the master and workers are depicted in Figures 4 and 5, 
respectively. 



Figure 4. Master workflow graph. 

Initially, the n sequences are broadcast to all the worker 
processors from the master for quartet weight generation in 
stage one. The generation of quartet weights in parallel is a 
good application of a well-known parallel method for 
combination enumeration [2]. The computation can be 
done embarrassingly in parallel. In our implementation 
each sequence is first given a number from 1 to n. This set 
of natural numbers is then divided into p  subsets of equal 

size (or very close if not exactly equal) when there are p

processors involved in the computation. Since there is a 

simple one-to-one mapping between a complete set of ⎟⎟⎠

⎞
⎜⎜⎝

⎛
4

n

quartets and a set of natural numbers, with just two integer 
numbers, one indicating the first quartet and the other 
indicating the last quartet, each processor knows exactly 
which subset of quartets it needs to generate. After the 
quartet generation the subset of quartet weights is kept on 
each processor and used for computation in the second 
stage. 

In stage two a global quartet weight matrix is first 
constructed by accumulating the weights of all possible 
quartet trees to the corresponding entries in the matrix. To 
construct this matrix each processor first builds a local 
weight matrix (since the quartet weights are evenly 
distributed among processors) and then the master 
processor collects the local weight matrices from the 
worker processors. Taking the advantage of a fast 
collective network on the IBM BlueGene/L, this type of 
collective communication can be done very efficiently. 

Figure 5. Worker workflow graph.

After the quartet weight matrix is built, the construction 
of phylogenetic trees can start using the procedure 
described in Figure 3. It should be noted that this 
procedure for tree reconstruction takes much less time to 
complete than the quartet weight generation in stage one. 
As we discussed in the previous section, it only takes 

)( 3nΟ  time to complete when the quartet weight 

correction is not concerned. We thus decide to let the 
master processor do the tree reconstruction and worker 
processors help for quartet weight correction (or quartet 
weight matrix correction) each time after the master has 
merged two sub-trees. 

Since multiple trees may be constructed during the 
computation, in our program only quartet weight matrix, 
but not the original quartet weights, is modified. Since 
quartet weights are stored across the processors, the master 
processor broadcasts the merge information to worker 
processors each time after two sub-trees are merge. Each 
worker processor first updates the partially merged tree 
structure in accordance with the structure on the master 
processor and next constructs a local weight correction 
matrix.  (It is necessary to keep a local copy of the state of 
sub-trees on each worker processor so that they know 
which quartet weights are to be corrected after each merge 
step and the communication cost can be minimized.) The 
master processor then collect all the local weight 
correction matrices and update its global quartet weight 
matrix accordingly. It takes 2−n  steps to merge all n

sequences in our algorithm. Therefore, the total 
communication cost for tree reconstruction is the costs for 

2−n  broadcast messages for merge information from the 

master to all worker processors plus the costs for 2−n

collective messages for collection of weight correction 
matrices from the workers to the master processor. 

For multiple tree construction we use a stack on the 
master processor to keep track of the possible tree merges 



(critical points) waiting to be evaluated. To minimize 
communication costs the worker processors also maintain 
the same stack. Therefore, additional information will also 
be broadcast to the worker processors when a critical point 
is encountered. This message can be combined together 
with the message for merge information to further reduce 
the communication overhead. 

4. Experimental Results 

We tested our parallel program on a 128 node IBM 
BlueGene/L cluster. The IBM BlueGene/L is a new-
generation massively-parallel computing system designed 
for research and development in computational science 
[15]. It is an extremely high compute-density system with 
relatively modest power and cooling requirements. Each 
BlueGene/L node consists of two 700MHz CPUs and 512 
MB memory (256MB per CPU).  The Blue Gene/L has 
implemented multiple network architectures to allow 
efficient communication between processors. A 3D torus 
network is used for node communication with neighbors. 
During program run some communication calls are more 
global than others, like all to one, one to all, and all to all. 
For these Blue Gene/L provides another network: the 
collective network. This collective network connects all 
the compute nodes in the shape of a tree and any node can 
be the tree root (originating point). The Blue Gene/L uses 
this network to implement MPI collective communication 
calls. Our algorithm makes effective use of this collective 
network for communication to achieve good performance. 
The barrier (global interrupt) network is the third dedicated 
hardware network the Blue Gene/L provides for efficient 
MPI communication.  

The BlueGene/L operates in two primary modes, co-
processor and virtual-node. The co-processor mode 
dedicates one CPU per node for computation and the other 
CPU for communication. This mode is particularly suited 
for communication bound computations. The virtual node 
mode allows the two CPUs in each node to act as an 
independent node effectively doubling the number of 
available processors for computation at the cost of 
communication speed. Due to the collective nature of 
communication in our parallel algorithm and length of 
computation time, the virtual node mode not only doubled 
the number of available processors, it also provided a 
linear speed up when compared to co-processor mode and 
hence was used for our experiments.  

In our experiments, computation time, memory usage 
and communication costs of the algorithm were measured 
for different number of DNA sequences and across 
different number of CPUs. Synthetic DNA sequence data 
of length 4000 was used and the size of input was varied 
between 50 and 400 sequences. Some experimental results 
are presented in the following figures. 
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Figure 6 shows the performance in terms of speedup 
(versus 32 CPUs) for two different problem sizes. When 
the problem size is small, i.e., ,50=n  the total 

computational cost is not high in comparison with the 
communication. The performance is then sub-optimal 
when a large number of processors are involved in the 
computation. This indicates that there is no need to use a 
large number of processors to tackle small size problems. 
When the number of input sequences is large, e.g., 

,150=n  the overall speedup approaches linear as the 

computational time for quartet generation begins to 
dominate. Figure 7 shows the percentages of the total 
computation time used for the quartet generation in stage 
one and the tree construction in stage two. It can be seen 
that the total computation and communication cost for the 
second stage is only a very small fraction of the total 
computational cost for a large number of long sequences. 
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As the number of sequences increases, we need a large 
memory to store the quartet weights. On a 128 node IBM 
BlueGene/L cluster each node has a local memory of size 
512MB and the size of memory collectively is thus over 
65.5GB. For a problem of size 400 the memory 
requirement is about 25.2 GB. Since the quartet weights 
are evenly distributed across the processors, we are able to 
easily tackle the problem of size 400 or even larger on the 
128 node cluster. Figure 8 shows the computation times (in 
seconds) for problems of sizes from 50 to 400 using all 
256 CPUs on the cluster. 

Our algorithm is able to make effective use of the fast 
collective communication network provided by the IBM 
BlueGene/L cluster. We found in our experiments that for 
a given problem the communication time remained nearly 
constant as the number of processors increased.  For 
example, the total runtime for 250 sequences running on 
256 CPUs for a single tree construction is about 1.3 hours, 
but the total communication time is only 12 seconds, 
which is about the same as that when using a smaller 
number of CPUs. 

5. Conclusions 

In this paper we described a parallel implementation of 
an effective quartet-based algorithm we developed recently 
on the IBM BlueGene/L cluster. The algorithm is both 
compute and memory intensive and needs parallelization. 
By distributing the quartet weights evenly across the 
processing nodes and making effective use of a fast 
collective network on the IBM BlueGene/L cluster, we are 
able to tackle problems of much larger size and our 
experimental results show that a close to linear speedup is 
achievable even when the number of processors involved 
in the computation is large. This demonstrates that our 
parallel algorithm is very efficient and shows that the IBM 

BlueGene/L cluster is an excellent and powerful machine 
for scientific computing. 
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