
Parallel Implementation of a Quartet-Based Algorithm for Phylogenetic

Analysis

B. B. Zhou1, D. Chu1, M. Tarawneh1, P. Wang1, C. Wang1,
A. Y. Zomaya1, and R. P. Brent2

1School of Information Technologies 2Mathematical Science Institute
University of Sydney Australian National University
NSW 2006, Australia Canberra, ACT 0200, Australia

 bbz@it.usyd.edu.au rpb@rpbrent.co.uk

Abstract

This paper describes a parallel implementation of our
recently developed algorithm for phylogenetic analysis on
the IBM BlueGene/L cluster [15]. This algorithm
constructs evolutionary trees for a given set of DNA or
protein sequences based on the topological information of
every possible quartet trees. Our experimental results
showed that it has several advantages over many popular
algorithms. By distributing the quartet weights evenly
across the processing nodes and making effective use of a
fast collective network on the IBM BlueGene/L cluster, we
are able to achieve a close to linear speedup even when
the number of processors involved in the computation is
large.

1. Introduction

The quartet-based method is one of the very important
approaches for reconstruction of a large evolutionary tree
from a set of smaller trees. It constructs a tree for a given
number of molecular sequences based on the topological
properties of each subset of four molecular sequences. The
main advantage of this method is that there is a one-to-one
correspondence between a tree topology and a set of four-
sequence or quartet trees. If we can correctly identify the
tree topology of each individual subset of four sequences,
we are able to reconstruct the entire evolutionary tree for a
given problem in polynomial time. In practice, however,
there exist situations that the correctly resolved quartet
trees are very difficult to obtain by using currently existing
methods [1,18]. Therefore, the main concern in designing a
good and practical quartet-based algorithm is how to
tolerate errors in the quartet trees when reconstructing the
entire tree topology. Different methods have been
introduced in the literature to deal with the problem of

quartet errors, for example, those in [3,4,5,6,7,
8,9,10,11,13,14,16,19,20,22].

Recently, we developed a new quartet-based algorithm
for reconstruction of evolutionary trees [25]. In this
algorithm trees are recursively constructed using a quartet
weight matrix which contains collective topological
information from all possible quartets. Our experimental
results show that this algorithm outperforms many existing
methods for phylogenetic analysis.

One major disadvantage associated with most quartet-

based algorithms is that they require)(4nΟ computational

steps to complete where n is a given number of molecular
sequences in the analysis. This is simply because they need

to generate)(4nΟ quartet trees in order to obtain a

reasonably good result. When the problem size n is large,
we also need a large-size memory to store these trees
during the computation. For example, a well-know parallel
program package for a quartet-based algorithm, TreePuzzle
[20], is only able to handle problems of size smaller than
or equal to 250 regardless of the number of processors
involved in the computation. The current trend is to design
fast algorithms for phylogenetic analysis, e.g. those
described in [12,24]. However, it should be noted that most
of these algorithms use NP-hard reconstruction criteria
(mostly maximum likelihood). Theoretical studies [21] and
our recent experimental results [26] show that even if we
are able to find a truly globally optimal tree under the
maximum likelihood criterion, this tree may not
necessarily be the correct phylogenetic tree! Because of its
excellent theoretical properties, the quartet-based method
should never be overlooked. High-performance computing
machines can be adopted to handle higher computational
and memory requirements for quartet-based algorithms. In
this paper we show that, by evenly distributing the quartets
across the processing nodes and making effective use of a
fast collective network on the IBM BlueGene/L cluster

1-4244-0054-6/06/$20.00 ©2006 IEEE

[15], our quartet-based algorithm is able to achieve a close
to linear speedup even when the number of processors
involved in the computation is large.

The paper is organized as follows: our quartet-based
algorithm is briefly described in Section 2. Its parallel
implementation is discussed in Section 3. In Section 4 we
present some experimental results obtained on a 128 node
(256 CPUs) IBM BlueGene/L cluster. Conclusions are
given in Section 5.

2. The Sequential Algorithm

In this section we briefly describe our quartet-based
algorithm. A more detailed description can be found in
[25,26].
Our quartet-based algorithm for phylogenetic analysis
consists of two major stages. In stage one we calculate
quartet weights for every possible quartet trees from a
given number of sequences. In stage two we first generate
a global quartet weight matrix to gather the quartet
topological information from the quartet weights
calculated in stage one and then reconstruct a full size tree
using this quartet weight matrix. We can use any existing
method for phylogenetic analysis to calculate the weights
of quartet trees [17]. In the following we only discuss the
computations in stage two. We first discuss how a quartet
weight matrix is generated from a set of quartets defined
by a given tree topology and give an efficient algorithm for
reconstruction of the tree topology from the generated
quartet weight matrix. This one-to-one mapping between a
given tree topology and its associated quartet weight
matrix forms the basis of our quartet-based algorithm for
phylogenetic analysis. We next discuss the tree
reconstruction algorithm and show how to deal with the
problem of inaccurate quartet weight matrices.

2.1. Basic concept

A quartet, or a set of four sequences is associated with
three possible fully resolved trees, as shown in Figure 1. In
the figure)|(ztxy indicates how the sequences,

represented by leaf nodes, are divided into two pairs by
cutting the middle edge (so-called bi-partitioning), and
thus shows the neighbourhood relations of the quartet in
terms of topology. One way to measure which of the three
possible trees is more likely to be the true tree is to use
Bayes weights [17], or quartet weights in this paper. The
quartet weights for three possible trees of a quartet is
obtained by first calculating the likelihood value for each
tree and then transforming these likelihood values into

posterior probabilities, or quartet weights
i

w for i = 1, 2,

and 3, by applying Bayes’ theorem assuming a uniform
prior for all three possible trees.

Figure 1. Three possible fully resolved trees for a quartet
{a, b, c, d}.

Let),|(wklij denote a possible quartet tree with a

quartet weight w. Our global quartet weight matrix is
generated by adding each w to entries ij, ji, kl and lk, using
a complete set of quartets from a given number of
sequences. This matrix is symmetric and its size is ,nn ×
where n is the total number of sequences and each row or
column corresponds to one particular sequence. (Note this
quartet weight matrix is called score matrix in [11] and it
was generated using discrete weights (or scores) from a
distance matrix.)

Given a tree topology of n leaves, we can uniquely

determine a set of ⎟⎟⎠

⎞
⎜⎜⎝

⎛
4

n
 quartet trees which are consistent

with the original tree, i.e., each quartet tree separates the
four leaves into two pairs in the same way as the original
tree through bi-partitioning. For each quartet there can
only be one fully resolved tree in the set of these quartet
trees and it is described as).0.1,|(cdab For a given tree

topology a global quartet weight matrix is also uniquely
determined. This is because our matrix is generated using
the quartet weights of the associated quartet trees.

We can also reconstruct the tree topology from its

generated quartet matrix by using an efficient)(2nΟ
algorithm, as shown in Figure 2. This algorithm is derived
using the dynamic programming technique [25]. In the
figure each row in quartet weight matrix corresponds to a

particular leaf node and is associated with a variable .im

One node in each sub-tree (or a row in the quartet weight
matrix) is chosen as the representative node for the sub-

tree which is also associated with a variable .in Initially

every leaf node is considered as a sub-tree. Therefore, each
row in the matrix will be associated with two variables

which are set to 0=im and .1=in

Each pair of sub-trees is associated with a confidence

value .ijc To calculate the confidence value, we first

assume that two sub-trees are connected together in the
original tree and calculate the total number of quartets with

Figure 2. A recursive algorithm for tree reconstruction
from its generated quartet matrix.

a concerned form)0.1,|(cdab where a is a leaf node from

one sub-tree and b from the other, but c and d are leaf
nodes not in either of these two sub-trees. The confidence
value is then obtained by dividing the actual number
accumulated directly from the quartet sets and stored in the
matrix by this calculated value. If two sub-trees are truly
connected together in the original tree, the corresponding
confidence value for each pair of leaf nodes, one from each
sub-tree must be equal to one. In the algorithm we use one

additional variable ig for representative node i to store

index j when .1=ijc In each step we first try to find two

sub-trees to merge by checking the variable ig and then

update the variables im and in in accordance with the

merge; Next sijc are re-calculated and sig updated for the

next merge step. The process continues until all sequences
are merged into a single tree.

2.2. Tree construction from inaccurate global

weight matrices

In the previous subsection we discussed an algorithm
for reconstructing the original tree from its generated
global weight matrix. The same algorithm may be used to
construct an evolutionary tree for a given set of n
sequences if all the associated quartets are fully and
correctly resolved. Unfortunately, this is only an ideal case
and in reality it is very hard for us to have all the quartets
fully and correctly resolved. Therefore, the global weight
matrix generated from a set of quartet weights is inaccurate

and the algorithm for tree topology reconstruction
discussed above cannot be used without modification. To
deal with inaccurate weight matrices we make three major
changes to the original algorithm.

Average confidence value ijc : Since the entry values

of the global weight matrix are no longer ideal, different
node pairs, one from each of the two sub-trees, may
produce different confidence values. A simple way to
alleviate this problem is to calculate the confidence values
for every leaf node pairs, to average them and then to use

this averaged value as the confidence value ijc for each

pair of sub-trees.
Since the entry values of the weight matrix are

inaccurate, we may not obtain 1=ijc for a pair of sub-

trees during the computation. In addition to the three

variables, namely, ,ig im and ,in associated with each

sub-tree, we need a new variable ic to record the highest

average confidence value for sub-tree i with another sub-
tree j for i<j. At each step we compare the stored values in

ic and choose to merge the two sub-trees which have the

highest average confidence value.

Quartet weight correction: After two sub-trees are
merged, we take an additional step to restore the associated
entries in the matrix to their “true” values, i.e., change the
quartet weights based on the currently reconstructed sub-
trees and update the weight matrix accordingly. In
particular, after each merge we need to correct the weights
of all those quartets containing four nodes {i, j, p, q} to
(ij|pq, 1.0) where i is a leaf node in one merged sub-tree, j
is a leaf node in the other merged sub-tree and p and q the
leaf nodes from the rest. If the weights are not corrected,
the distributed errors may significantly affect the correct
decision making in the following merge steps.

With the above two modifications we can have an
algorithm which is able to deal with inaccurate quartet
weights, as shown in Figure 3.

At each merge step the three major contributors to the

total computational cost are: (1) the updating of im values,

(2) calculation of average confidence values for each sub-
tree to find the highest one, and (3) the quartet weight

correction. The total costs for updating im values and for

calculating average confidence values are)(2nΟ and

),(3nΟ respectively. However, each quartet weight is

corrected once and only once during the entire
computation. The total number of quartets for a given set

of n sequences is ⎟⎟⎠

⎞
⎜⎜⎝

⎛
4

n
 and obviously the total cost for

quartet correction is).(4nΟ Therefore, the total

computational cost for this algorithm will be).(4nΟ It

should also be noted that this cost is much less than the
cost for computing quartet weights using the maximum

likelihood which requires)(4snΟ operations where s is the

length of the sequences, usually a few hundreds to a few
thousands.

Figure 3. An algorithm for tree construction from
inaccurate quartet weight matrices.

Multiple tree reconstruction: Since the matrix is not
accurate, it may not always be the right decision to merge
the two sub-trees that have the highest confidence value.

After the highest confidence value ijc is obtained, we then

check whether there is another sub-tree k which has a
reasonably high confidence value associated with one of
the two sub-trees i and j, that is, we check whether

,)(or ijkiik ccc α≥ or ijkjjk ccc α≥)(or where α is a

threshold which is smaller than, but close to one. (If there
are several sub-trees which satisfy this condition, in our
current version we simply choose the one with the highest
confidence value among them.) At each of these critical
points we can have three different super quartet trees with
four sub-trees i, j, k, and the rest as its four super nodes at
different places. The problem is which one will be the
correct one leading us to find the correct tree topology. In
the current version of our algorithm we keep all three

different patterns. Therefore, we will reconstruct multiple
trees and hope that the correct tree will be included in
these generated trees. However, we need a control on the
number of trees to be reconstructed. Otherwise, we may

end up with about n3 different trees if every merge step is

a critical point. We use a parameter s to limit the total
number of trees. Each time a critical point is encountered,
two extra trees are generated until s such stages are
encountered for each tree. Therefore, the maximum

number of trees to be generated will be limited to .3s

We used the benchmarks consisting of 48,000 synthetic
data sets of DNA sequences developed by the LIRMM
Methods and Algorithms in Bioinformatics research group
[23] to test our quartet-based algorithm. The results show
that our algorithm performs much better than many
existing methods [25,26], i.e., the probability for the
correct tree to be among a small number of generated trees
is very high and the probability of obtaining the correct
tree is also high if we choose a tree from those generated
trees under the maximum likelihood criterion.

3. The Parallel Algorithm

In our quartet-based algorithm we need to calculate a

number of)(4nΟ quartet weights for all possible quartet

trees in the first stage and all these weights need to be
stored in the memory and used in the second stage. As
discussed in the previous section, each quartet is associated
with three weights for three possible resolved trees. For a

given set of n sequences, the memory will be 83
4

××⎟⎟⎠

⎞
⎜⎜⎝

⎛n

bytes in size, assuming a double variable is used for each
quartet weight. For example, we need 1.55GB to store all
the quartet weights when .200=n Therefore, the

algorithm is both compute and memory intensive. A
parallel program package of the tree-puzzle, a well-known
method based on quartet weights, can only handle
problems of size up to 250 regardless of how many
processors used in the computation because it requires a
whole set of quartet weights stored on every processor for
the construction of intermediate trees in the puzzling stage.
Our quartet-based algorithm does not have such a
requirement. In the following we describe a parallel
implementation of our algorithm which is able to tackle
problems of much larger sizes. In our implementation the
master-worker paradigm is adopted. Workflow graphs for
the master and workers are depicted in Figures 4 and 5,
respectively.

Figure 4. Master workflow graph.

Initially, the n sequences are broadcast to all the worker
processors from the master for quartet weight generation in
stage one. The generation of quartet weights in parallel is a
good application of a well-known parallel method for
combination enumeration [2]. The computation can be
done embarrassingly in parallel. In our implementation
each sequence is first given a number from 1 to n. This set
of natural numbers is then divided into p subsets of equal

size (or very close if not exactly equal) when there are p

processors involved in the computation. Since there is a

simple one-to-one mapping between a complete set of ⎟⎟⎠

⎞
⎜⎜⎝

⎛
4

n

quartets and a set of natural numbers, with just two integer
numbers, one indicating the first quartet and the other
indicating the last quartet, each processor knows exactly
which subset of quartets it needs to generate. After the
quartet generation the subset of quartet weights is kept on
each processor and used for computation in the second
stage.

In stage two a global quartet weight matrix is first
constructed by accumulating the weights of all possible
quartet trees to the corresponding entries in the matrix. To
construct this matrix each processor first builds a local
weight matrix (since the quartet weights are evenly
distributed among processors) and then the master
processor collects the local weight matrices from the
worker processors. Taking the advantage of a fast
collective network on the IBM BlueGene/L, this type of
collective communication can be done very efficiently.

Figure 5. Worker workflow graph.

After the quartet weight matrix is built, the construction
of phylogenetic trees can start using the procedure
described in Figure 3. It should be noted that this
procedure for tree reconstruction takes much less time to
complete than the quartet weight generation in stage one.
As we discussed in the previous section, it only takes

)(3nΟ time to complete when the quartet weight

correction is not concerned. We thus decide to let the
master processor do the tree reconstruction and worker
processors help for quartet weight correction (or quartet
weight matrix correction) each time after the master has
merged two sub-trees.

Since multiple trees may be constructed during the
computation, in our program only quartet weight matrix,
but not the original quartet weights, is modified. Since
quartet weights are stored across the processors, the master
processor broadcasts the merge information to worker
processors each time after two sub-trees are merge. Each
worker processor first updates the partially merged tree
structure in accordance with the structure on the master
processor and next constructs a local weight correction
matrix. (It is necessary to keep a local copy of the state of
sub-trees on each worker processor so that they know
which quartet weights are to be corrected after each merge
step and the communication cost can be minimized.) The
master processor then collect all the local weight
correction matrices and update its global quartet weight
matrix accordingly. It takes 2−n steps to merge all n

sequences in our algorithm. Therefore, the total
communication cost for tree reconstruction is the costs for

2−n broadcast messages for merge information from the

master to all worker processors plus the costs for 2−n

collective messages for collection of weight correction
matrices from the workers to the master processor.

For multiple tree construction we use a stack on the
master processor to keep track of the possible tree merges

(critical points) waiting to be evaluated. To minimize
communication costs the worker processors also maintain
the same stack. Therefore, additional information will also
be broadcast to the worker processors when a critical point
is encountered. This message can be combined together
with the message for merge information to further reduce
the communication overhead.

4. Experimental Results

We tested our parallel program on a 128 node IBM
BlueGene/L cluster. The IBM BlueGene/L is a new-
generation massively-parallel computing system designed
for research and development in computational science
[15]. It is an extremely high compute-density system with
relatively modest power and cooling requirements. Each
BlueGene/L node consists of two 700MHz CPUs and 512
MB memory (256MB per CPU). The Blue Gene/L has
implemented multiple network architectures to allow
efficient communication between processors. A 3D torus
network is used for node communication with neighbors.
During program run some communication calls are more
global than others, like all to one, one to all, and all to all.
For these Blue Gene/L provides another network: the
collective network. This collective network connects all
the compute nodes in the shape of a tree and any node can
be the tree root (originating point). The Blue Gene/L uses
this network to implement MPI collective communication
calls. Our algorithm makes effective use of this collective
network for communication to achieve good performance.
The barrier (global interrupt) network is the third dedicated
hardware network the Blue Gene/L provides for efficient
MPI communication.

The BlueGene/L operates in two primary modes, co-
processor and virtual-node. The co-processor mode
dedicates one CPU per node for computation and the other
CPU for communication. This mode is particularly suited
for communication bound computations. The virtual node
mode allows the two CPUs in each node to act as an
independent node effectively doubling the number of
available processors for computation at the cost of
communication speed. Due to the collective nature of
communication in our parallel algorithm and length of
computation time, the virtual node mode not only doubled
the number of available processors, it also provided a
linear speed up when compared to co-processor mode and
hence was used for our experiments.

In our experiments, computation time, memory usage
and communication costs of the algorithm were measured
for different number of DNA sequences and across
different number of CPUs. Synthetic DNA sequence data
of length 4000 was used and the size of input was varied
between 50 and 400 sequences. Some experimental results
are presented in the following figures.

0

1

2

3

4

5

6

7

8

9

0 50 100 150 200 250 300

Number of CPU

S
p

e
e
d

u
p
 v

s
 3

2
 C

P
U

Speed up for 50

taxa

Speed up for 150

Taxa

Linear speed up

Figure 6. Speedup vs 32 CPUs for different number of
sequences (or taxa).

0

20

40

60

80

100

120

24 32 40 48 56 64 128 192 256

Number of CPu

P
e
rc

e
n

ta
g
e
 o

f
C

o
m

p
u
ta

ti
o

n
 T

im
e

Tree Construction Quartet Generation

Figure 7. Percentage of Computation Time.

Figure 6 shows the performance in terms of speedup
(versus 32 CPUs) for two different problem sizes. When
the problem size is small, i.e., ,50=n the total

computational cost is not high in comparison with the
communication. The performance is then sub-optimal
when a large number of processors are involved in the
computation. This indicates that there is no need to use a
large number of processors to tackle small size problems.
When the number of input sequences is large, e.g.,

,150=n the overall speedup approaches linear as the

computational time for quartet generation begins to
dominate. Figure 7 shows the percentages of the total
computation time used for the quartet generation in stage
one and the tree construction in stage two. It can be seen
that the total computation and communication cost for the
second stage is only a very small fraction of the total
computational cost for a large number of long sequences.

-5000

0

5000

10000

15000

20000

25000

0 100 200 300 400 500

Number of Taxa

C
o

m
p

u
a
ti

o
n

 T
im

e

Quartet Generation

Tree Construction

Total Run Time

Figure 8. Computation times of program with 256 CPU.

As the number of sequences increases, we need a large
memory to store the quartet weights. On a 128 node IBM
BlueGene/L cluster each node has a local memory of size
512MB and the size of memory collectively is thus over
65.5GB. For a problem of size 400 the memory
requirement is about 25.2 GB. Since the quartet weights
are evenly distributed across the processors, we are able to
easily tackle the problem of size 400 or even larger on the
128 node cluster. Figure 8 shows the computation times (in
seconds) for problems of sizes from 50 to 400 using all
256 CPUs on the cluster.

Our algorithm is able to make effective use of the fast
collective communication network provided by the IBM
BlueGene/L cluster. We found in our experiments that for
a given problem the communication time remained nearly
constant as the number of processors increased. For
example, the total runtime for 250 sequences running on
256 CPUs for a single tree construction is about 1.3 hours,
but the total communication time is only 12 seconds,
which is about the same as that when using a smaller
number of CPUs.

5. Conclusions

In this paper we described a parallel implementation of
an effective quartet-based algorithm we developed recently
on the IBM BlueGene/L cluster. The algorithm is both
compute and memory intensive and needs parallelization.
By distributing the quartet weights evenly across the
processing nodes and making effective use of a fast
collective network on the IBM BlueGene/L cluster, we are
able to tackle problems of much larger size and our
experimental results show that a close to linear speedup is
achievable even when the number of processors involved
in the computation is large. This demonstrates that our
parallel algorithm is very efficient and shows that the IBM

BlueGene/L cluster is an excellent and powerful machine
for scientific computing.

6. Acknowledgement

This research was partially funded by Discovery Grants
(DP0557909) from the Australian Research Council. It was
also partially supported by IBM, Australia.

References

[1] J. Adachi and M. Hasegawa, Instability of quartet analyses of
molecular sequence data by the maximum likelihood method: the
cetacean/artiodactyla relationships, Cladistics, Vol. 5, 1999,
pp.164-166.
[2] S.G. AKL. Adaptive and Optimal Parallel Algorithms for
Enumerating Permutation and Combinations. The Computer
Journal. 1987 Vol 30, No. 5
[3] H. J. Bandelt and A Dress, Reconstructing the shape of a tree
from observed dissimilarity data, Adv. Appl. Math., Vol. 7, 1986,
pp.309-343.
[4] V. Berry and D. Bryant, Faster reliable phylogenetic analysis,
Proceedings of 3rd Annual International Conference on Comp.

Mol. Biol, 1999, pp.59-68.
[5] V. Berry, T. Jiang, P. Kearney, M. Li, T. Wareham, Quartet
cleaning: improved algorithms and simulation, Lecture Notes
Computer Science, Vol. 1643, 1999, pp.313-324.
[6] V. Berry, D. Bryant, P. Kearney, M. Li, T. Jiang, T. Wareham
and H. Zhang, A practical algorithm for recovering the best
supported edges in an evolutionary tree. Proceedings of
Symposium on Discrete Algorithms, San-Francisco, 2000,
pp.287-296.
[7] V. Berry and O. Gascuel, Inferring evolutionary trees with
strong combinatorial evidence, Theoret. Comput. Sci., 240(2),
2000, pp. 271-298.
[8] P. Buneman, The recovery of trees from measures of
dissimilarity, in: Mathematics in Archaeological and Historical
Sciences (F. R. Hobson, D. G. Kendal and P. Tautum, eds.)
University Press, Edinburgh, 1971, pp. 387-395.
[9] A. W. M. Dress and D. H. Huson, Constructing splits graphs,
IEEE Trans on Computational Biology and Bioinformatics, Vol.
1, no. 3, 2004, pp.109-115.
[10] [8] P. Erdos, M. Steel, L. Szekely and T. Warnow,
Constructing big trees from short sequences, Lecture Notes
Computer Science, Vol. 1256, 1997, pp. 827-837.
[11] W. M. Fitch, A non-sequential method for constructing trees
and hierarchical classifications, J. Mol. Evol. 18, 1981, pp. 30-37.
[12] S. Guindon and O. Gascuel, A simple, fast and accurate
algorithm to estimate large phylogenies by maximum likelihood,
Syst. Biol., 52, 2003, pp. 696-704.
[13] D. H. Huson, S. Nettles and T. Warnow, Obtaining highly
accurate topology estimates of evolutionary trees from very short
sequences, Proceedings of The 3rd Annual Int. Conf. Comp. Mol.
Biol., 1999, pp. 198-209.
[14] D. H. Huson, Splitstree: A program for analyzing and
visualizing evolutionary data, Bioinformatics, vol. 14, no. 10,
1998, pp. 68-73.
[15] IBM Journal of Research and Development, Vol. 49, No.
2/3, 2005; Special Issue on Blue Gene Supplementary Material.

[16] T. Jiang, P. E. Kearney and M. Li, Orchestrating quartets:
Approximation and data correction, Proceedings of the 39th IEEE
Symposium on Foundations of Computer Science, 1998, pp.416-
425.
[17] K. Nieselt-Struwe and A. von Haeseler, Quartet-mapping, a
generalization of the likelihood-mapping procedure, Mol. Biol.
Evol., 18(7), 2001, pp.1204-1219.
[18] G. Olsen, H. Matsuda, R. Hagstrom and R. Overbeek, A tool
for construction of phylogenetic trees of DNA sequences using
maximum likelihood, Comput. Appl. Biosci., Vol. 10, 1994,
pp.41-48.
[19] V. Ranwez and O. Gascuel, Quartet-based phylogenetic
inference: Improvements and limits, Mol. Biol. Evol., 18(6),
2001, pp.1103-1116.
[20] H. A. Schmidt, K. Strimmer, M. Vingron and A. von
Haeseler: TREE-PUZZLE: maximum likelihood phylogenetic
analysis using quartets and parallel computing. Bioinformatics,
18(3), Mar 2002, pp.502-504.
[21] M. Steel, The maximum likelihood point for phylogenetic
tree is not unique, Syst. Biol., Vol. 43, 1994, pp.560-564.
[22] K. Strimmer and A. von Haeseler, Quartet puzzling: A
quartet maximum-likelihood method for reconstructing tree
topologies, Mol. Biol. Evol., 13(7), 1996, pp.964-969.
[23] The LIRMM Methods and Algorithms in Bioinformatics
research group, www.lirmm.fr.
[24] L. S. Vinh and A. von Haeseler, IQPNNI: moving fast
through tree space and stopping in time, Mol. Biol. Evol., Vol. 21,
no. 8, 2004, pp. 1565-1571.
[25] B. B. Zhou, M. Tarawneh, C. Wang, D. Chu, A. Y. Zomaya
and R. P. Brent, A novel quartet-based method for phylogenetic
inference, Proceedings of IEEE International Symposium on
BIBE, Minneapolis, Oct. 2005.
[26] B. B. Zhou, M. Tarawneh, C. Wang, D. Chu, A. Y. Zomaya
and R. P. Brent, Phylogenetic Inference Using a Global Quartet
Weight Matrix, submitted to IEEE Transactions on Computation
Biology and Bioinformatics, 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

